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This paper proposed an improved particle swarm optimization (PSO) algorithm to solve the three-dimensional problem of path
planning for the fixed-wing unmanned aerial vehicle (UAV) in the complex environment. The improved PSO algorithm (called
DCA∗PSO) based dynamic divide-and-conquer (DC) strategy and modified A ∗ algorithm is designed to reach higher precision
for the optimal flight path. In the proposed method, the entire path is divided into multiple segments, and these segments
are evolved in parallel by using DC strategy, which can convert the complex high-dimensional problem into several
parallel low-dimensional problems. In addition, A ∗ algorithm is adopted to generated an optimal path from the particle swarm,
which can avoid premature convergence and enhance global search ability. When DCA∗PSO is used to solve the large-scale
path planning problem, an adaptive dynamic strategy of the segment selection is further developed to complete an effective
variable grouping according to the cost. To verify the optimization performance of DCA∗PSO algorithm, the real terrain data is
utilized to test the performance for the route planning. The experiment results show that the proposed DCA∗PSO algorithm
can effectively obtain better optimization results in solving the path planning problem of UAV, and it takes on better
optimization ability and stability. In addition, DCA∗PSO algorithm is proved to search a feasible route in the complex
environment with a large number of the waypoints by the experiment.

1. Introduction

1.1. Background and Motivation. In recent years, with the
development of sensor technology and intelligent control
technology, unmanned aerial vehicle (UAV) has been widely
used in military and civil fields, such as reconnaissance [1, 2],
surveillance [3], target prosecution [4], wireless communica-
tions [5, 6], and oilfield inspection [7]. As a basic technology
for autonomous navigation of the UAV system [8], the path
planner is an important component to ensure the successful
completion of the complex missions. The objective of path
planning is to seek an optimal or near-optimal flight route
from the starting position to the destination in the mission
space under the required constraint conditions [9].

The core of the path planning system is route planning
algorithm, which has been actively researched for decades.
Over the last few decades, a variety of approaches have been
proposed to deal with path planning problem for UAV or
autonomous robot. Most traditional path planning methods
based on the graph are adaptive to 2-dimensional planning
problems, such as Voronoi diagram algorithm [10], A ∗ algo-
rithm [11], and probabilistic roadmap algorithm. These
methods are relatively easy to implement, but UAV kine-
matic and dynamic constraints are seldom considered by
these algorithms. Meanwhile, these methods need more time
and huge storage memory in a large space. Potential field-
based methods, such as artificial potential field algorithm
[12], can obtain a smooth path and has little calculation time.
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Its disadvantage lies that it is easy to trap into local minimum
and even cannot find a feasible path when the distance
between the target and the obstacles is near. Hence, potential
field-based methods can seldom be used for the practical sit-
uations. Compared with the traditional methods, evolution-
ary computation (EC) algorithms have a strong ability to
obtain high-quality solutions in path planning and are easier
to implement [13]. The problem of trajectory planning is often
treated as a nonlinear NP-hard optimal problem to be solved
by evolutionary algorithms. It is well known that the ECs have
made much progress and have been deeply and extensively
studied in recent years [14–16]. EC algorithms, including
evolutionary algorithms (EAs) and swarm intelligence algo-
rithms (SIs), such as genetic algorithm (GA) [17], differential
evolution (DE) [18, 19], particle swam optimization (PSO)
[20–25], and ant colony optimization (ACO) [26], have been
widely used in handling global optimization problems.

In the application of route planning of the three-
dimensional (3D) environment, it is necessary to require a
higher ability to avoid collisions with terrain and much more
complicated calculation than two-dimensional path plan-
ning. Therefore, how to further enhance convergence speed
and solution quality of the planner will be a main motivation
in a 3D complex environment. Moreover, as the environment
and the planning task become increasingly complex, intelli-
gent optimization algorithms have difficulty in dealing with
the high dimension problems.

1.2. Related Work. ECs have been applied to find global or
approximate global optimum path. Yang et al. [27] discov-
ered the drawback that the high-quality waypoints in previ-
ous search can hardly be further exploited in evolutionary
algorithm-based due to all the waypoints of a path as an inte-
grated individual. Hence, a new idea of separately evaluating
and evolving waypoints is proposed for two-dimensional
UAV path planning. On the basis of Ref. [14], Huang [28]
proposed an improved PSO algorithm based on the competi-
tion of global best solution and applied the path planner to a
three-dimensional UAV to demonstrate. Zhang et al. [29]
formulated an improved fruit fly optimization (MAFOA)
based on the phase angle-encoded connected with mutation
adaptation mechanisms to solve the unmanned aerial vehicle
(UAV) path planning problem. Du et al. [30] proposed a
hybrid evolutionary algorithm included the main algorithm
and a subalgorithm. The main algorithm was to evolve a pop-
ulation of main solutions, and the subalgorithm was used to
optimize each UAV path. Yang and Yoo [31] proposed a
joint genetic algorithm and ant colony optimization to find
an optimal flight path in accordance with sensing, energy,
time, and risk utilities.

Inspired by the foraging behavior of birds, PSO was pro-
posed by Eberhart and Kennedy in 1995 [32]. PSO is a swarm
intelligent optimization algorithm, which has many advan-
tages, such as strong robustness, low sensitivity to population
size, less adjustment parameters, and better optimization
effects. In fact, the path planner is aimed at searching a group
of waypoints, which is a NP optimization problem. In this
case, PSO and its variants are used to solve the complex opti-
mization problems. In the preliminary study, the PSO-based

approach has been used to solve the path planning for fix-
wing UAV, which showed that PSO can provide good guid-
ance for the search of path planning owing to the globally
best particle of the entire population. Therefore, this paper
studies the PSO-based approach with dynamic divide-and-
conquer (DC) strategy and modified A ∗ algorithm for solv-
ing the path planning problem.

However, the traditional PSO algorithm has some short-
comings, such as premature convergence, slow convergence
speed in the later evolution, and it is easy to fall into local
extreme point. Meanwhile, with the increase of problem size
or dimension, PSO may be not sufficient in large-scale opti-
mization problem due to large search space and exponential
growth of local optimization. Recently, some researches have
focused on these challenges. Zhang et al. [21] proposed a
cooperative coevolutionary bare-bones particle swarm opti-
mization (CCBBPSO) with function independent decompo-
sition (FID), where binary encoding of the original model is
converted to integer encoding to reduce the dimension.
Cheng and Jin [33] proposed a novel competitive swarm
optimizer (CSO) to solve large-scale optimization problem.
Li and Yao [34] proposed a new cooperative coevolving par-
ticle swarm optimization (CCPSO2) algorithm, where the
coevolving subcomponent sizes of the variables are deter-
mined dynamically. Liang and Suganthan [35] developed a
modified dynamic multiswarm particle swarm optimizer
(DMS-PSO), where the swarms are dynamic. Wang et al.
[24] proposed a dynamic group learning distributed particle
swarm optimization (DGLDPSO) for large-scale optimiza-
tion. Cheng and Jin [36] developed a social learning PSO
(SL-PSO), where social learning mechanisms are introduced
into particle swarm optimization (PSO).

1.3. Contribution and Organization. To deal with the chal-
lenges of the traditional PSO algorithm, a dynamic DC strat-
egy and modified A ∗ algorithm are proposed for the path
planning problem of UAV. Specifically, three major novel
designs and advantages that help DCA∗PSO find the feasible
path under minimizing the cost are described as follows.

On the basis of analyses of the cost function and con-
straints for UAVs, a new path planner is formulated to
enhance the ability of solving high-dimensional route plan-
ning problem in complex 3D environment. The complex
route planning problem is decomposed into a serious of
small-scale subproblems based on the DC strategy. For each
subproblem, only the coordinates of a few waypoints need
to be concerned.

A new subsegment evaluate function is proposed for esti-
mating the optimal solution. The subsegment evaluate func-
tion provides a reference for judging the equality of the whole
path according to some waypoints in a path.

A ∗ algorithm is firstly adopted to optimize the particle
composition and enhance the equality of the particles, which
is embedded into the evolution process of the PSO algorithm.
The A ∗PSO algorithm can provide a significant improve-
ment in the convergence speed of the PSO algorithm and
avoid the local optimum entrapment.

This paper is organized as follows. Section 2 introduces
the environment and trajectory representation of route
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planning for UAV. The optimization model of the path plan-
ning problem for fixed-wing UAV is established in Section 3.
In Section 4, an improved PSO algorithm based on dynamic
DC strategy and improved A ∗ algorithm is proposed. The
improved PSO algorithm is used to solve the path planning
problem in Section 5. In Section 6, the data simulation and anal-
ysis are introduced in detail. Finally, the conclusion is offered,
and the future research direction is discussed in Section 7.

2. Environment and Trajectory Representation

2.1. Environment Representation. The representation of the
environment space, e.g., the terrain and the danger zones,
directly affects the efficiency of the planning algorithm and
the quality of planning result. The terrain map of the mission
space is described by a 2D matrix. The rows and columns of
this matrix represent the x-coordinate and y-coordinate in a
3D space, respectively. The elevation data of the map is repre-
sented by the corresponding element of the matrix as follows:

terrain =

e11 e12 ⋯ e1n

e21 e22 ⋯ e2n

⋯ ⋯ ⋯ ⋯

em1 em2 ⋯ emn

0BBBBB@

1CCCCCA, ð1Þ

where eij is the altitude of the environment terrain.
If the coordinate of a waypoint is defined as ðx, y, zÞ,

hence, the flying space for UAV can be given as

xmin ≤ x ≤ xmax,

ymin ≤ y ≤ ymax,

zmin ≤ z ≤ zmax,

8>><>>: ð2Þ

where xmin, xmax, ymin, ymax, zmin, zmax represent the bound-
aries of the 3D coordinate, respectively.

When a UAV flies into the high-risk threat of the radar,
the defense scope of the radar may be considered as omnidi-
rectional. The mathematical model of the threat source is
denoted as a geometric sphere, as seen from Figure 1, which
is described by the following matrix:

danger zones =

x1 y1 z1 r1

x2 y2 z2 r2

⋯ ⋯ ⋯ ⋯

xd yd zd rd

2666664

3777775, ð3Þ

where ðxk, yk, zkÞ is the center of the k-th radar threat, and rk
is the radius of the k-th threat source.

2.2. Trajectory Representation. There are two common repre-
sentations to describe the trajectory: the first one is a contin-
uous smooth trajectory, which is based on the description of
UAV kinematic and dynamic characteristics. The smooth-
ness of the trajectory may be omitted by this representation

method. The other is represented by the waypoints, which
are connected by straight line segments between the adjacent
waypoints. The advantage of the second trajectory represen-
tation is that the desired accuracy can be achieved by
adjusting the number of waypoints. Subsequently, the path
planning problem can be taken as the optimization of the
waypoint coordinate.

Define P = fS,W1,W2,⋯,Wi,Wi+1,⋯,WNw
, Tg as a

trajectory in the flying space, where S is the starting point,
T is the target point, and W1,W2,⋯,Wi,Wi+1,⋯,Wn are
the waypoints between the start point and the target point.
The segment composed by two adjacent waypoints Wi,
Wi+1 is divided into Nd parts equally, as shown in Figure 2.
Suppose the set of the dividing points is D = fD11,D12,⋯,
D1Nd

,D21,D22,⋯,D2Nd
,⋯,DNw1,DNw2,⋯,DNwNd

g.
The coordinates of dividing points are calculated as:

xik = xi−1 + k ⋅ xi − xi−1ð Þ/Nd ,

yik = yi−1 + k ⋅ yi − yi−1ð Þ/Nd ,

zik = zi−1 + k ⋅ zi − zi−1ð Þ/Nd ,

8>><>>: ð4Þ

where ðxik, yik, zikÞ is the coordinate of the k-th division point
corresponding to the i-th waypoint. ðxi−1, yi−1, zi−1Þ and
ðxi, yi, ziÞ are the ði − 1Þ-th waypoint and the i-th way-
point, respectively.

3. Cost Function of Path Planning for Fixed-
Wing

For the UAV path planning problem, the cost function is a
series of optimization criteria and constraints to evaluate
the quality of the flight path. The smaller the cost function
fitness value is, the better the quality of the flight path is.
To determine the cost function, it is necessary to consider
that all the factors can affect the route performance, such as
path length, flight safety altitude, threat probability, UAV
dynamic constraint, and environment constraints. In gen-
eral, the cost function mainly includes two parts: the objec-
tive function and the constraint function. The cost function
F of path planning for fixed-wing UAV is the sum of
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Figure 1: The environment with the terrain and the danger zones.

3International Journal of Aerospace Engineering



the objective function and the constraint function, which
is given as

F = 〠
3

k=1
Jk + 〠

3

n=1
Cn, ð5Þ

where ∑3
k=1 Jk is the sum of objective function, ∑3

k=1Cn is
the sum of the constraint function.

3.1. Objective Function. The objective function enables the
UAV to obtain the maximum profit under the premise of sat-
isfying the constraints. Taking the route length, the radar
threat, and flight height into account, the objective cost is cal-
culated as follows

〠
3

k=1
Jk = J length + Jaltitude + J threat, ð6Þ

where J length, Jaltitude, and J threat represent the costs of path
length, the threat, and the height, respectively.

(1) Route length cost

In general, shorter routes can save more fuel consump-
tion. To describe the length cost more accurately, path length
ratio (PLR) is utilized to measure the route length cost J length,
which is given as follows

J length =
Ltraj
LST

=
∑Nw+1

i=1 Wi−1Wi
����!��� ���
LST

=
∑Nw+1

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − xi−1ð Þ2 + yi − xi−1ð Þ2 + zi − zi−1ð Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xT − xSð Þ2 + yT − xSð Þ2 + zT − zSð Þ2

q ,

ð7Þ

where LST is the length of the straight line connecting the
starting point S and the destination T . Ltraj is the length of
the actual route. k⋅k denotes the Euclidean distance of a vec-
tor. When the actual route length is approximately closer to
the length of the straight line, a shorter route will be obtained.
The range of J length is given as follows

J length ∈ 1, 1:5½ �: ð8Þ

The length of the path with good performance is consid-
ered within the scope of 1.5 times the distance between start
and destination according to [15]. Hence, the value of 1.5 is
the preference of feasible PLR.

(2) Flight height cost

A lower-height path can reduce the risk of being detected
by radar and strengthen the threat to the enemy on the ground
for flying missions. The term Jaltitude is calculated as follows

Jaltitude = 〠
Nw+1

i=1

Aroute:i − Zmin
Zmax − Zmin

, ð9Þ

whereAroute:i represents the average flight altitude of i-th route
segment, Zmin and Zmax are the lower and higher bounds of
the flight height in mission space, respectively.

Therefore,

Jaltitude ∈ 0, 1½ �: ð10Þ

(3) Threat cost

During the process of UAV flying, it is essential to avoid
into the detection range of the radar, where it may encounter
the risk of being discovered or being attacked. The threat cost
is computed according to the route length which goes into
the threat sphere, which is calculated by

J threat =
∑Nw+1

i=1 Linside:i
∑N

k=1Dk

, ð11Þ

where Linside is the length of i-th segment that goes inside the
threat circle, Dk indicates the diameter of k-th threat, and N
is the number of threat sources. It is noted that J threat is lim-
ited to ½0, 1�.
3.2. Constraint Function. The constraint function to evaluate
the candidate route should take the environment constraint
and UAV dynamic constraints into account. The environ-
ment constraint focuses on the terrain of the flight altitude
constraint. UAV dynamic constraints mainly refer to the
turning-angle constraint and the climb/dive angle constraint.
The constraint function ∑3

n=1Cn is descripted as

〠
3

n=1
Cn = Ccollision + Cturn + Cslope, ð12Þ

where Ccollision is introduced to penalize the candidate routes
colliding with the terrain, Cturn is introduced to penalize the
route with a turning angle beyond the maximum, and Cslope
is introduced to penalize the route with the climbing/diving
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Figure 2: The flight trajectory in 3D space.
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angle beyond the constraint. The constraint function can be
depicted as follows in detail.

(1) Terrain constraint

If the flight height is lower than the terrain, then, UAV
will collide with the terrain. So the term Ccollision associated
with the terrain collision is described as follows

Ccollision =

0, if  〠
Nw+1

i=1
Lunder:i = 0,

Pe + 〠
Nw+1

i=1

Lunder:i
Ltraj:i

, if  〠
Nw+1

i=1
Lunder:i > 0,

8>>>>><>>>>>:
ð13Þ

where Lunder:i is the length of the i-th segment in a route
which located below the altitude of the terrain, Ltraj:i is the
length of the i-th actual route segment. Considering the
above objective optimization value, the penalty constant Pe
is selected to 3.5.

(2) Turning angle constraint

In view of the physical characteristics of UAV, the turn-
ing angle for UAV is required to be less than or equal to
the maximum turning angle. The turning angle constraint
function Cturning can be expressed by

Cturning =

0, if 〠
Nw

i=1
ai = 0

e +
∑Nw

i=1ai
Nw

 if 〠
Nw

i=1
ai > 0

8>>>>><>>>>>:
with ai =

0, if θi < θmax,

1, if θi > θmax,

(

ð14Þ

where θmax is the maximum turning angle, θi is the corre-
sponding turning angle of the i-th waypoint. The turning
angle θi is calculated according to

θi = arccos
xi+1 − xi, yi+1 − yið Þ ⋅ xi − xi−1, yi − yi−1ð ÞT
xi+1 − xi, yi+1 − yið Þ ⋅ xi − xi−1, yi − yi−1ð Þk k

 !
:

ð15Þ

(3) Slope angle constraint

The slope angle for UAV at each waypoint is limited into
the range between the maximum slope angle and the mini-
mum slope angle. The slope angle constraint referring to
the vertical direction is calculated as

Cslope =

0, if  〠
Nw+1

i=1
bi = 0

e +
∑Nw+1

i=1 bi
Nw + 1

 if  〠
Nw+1

i=1
bi > 0

8>>>>><>>>>>:
with bi =

0, if φmin < φi < φmax,

1, else,

(

ð16Þ

where φmin and φmax are, respectively, the minimum and
maximum slope angle, φi is the corresponding slope angle
of the i-th waypoint, which can be calculated as

θi = arctan
zi − zi−1

xi − xi−1, yi − yi−1ð Þk k
� �

: ð17Þ

4. Improved PSO Algorithm

4.1. PSO Algorithm. PSO is a typical search algorithm based
on group cooperation, which comes from the basic concept
of the study on simulating the foraging behavior of birds.
In the particle swarm optimization algorithm, each bird in
the swarm is regarded as a particle. The basic idea of PSO is
to find the optimal solution through cooperation and infor-
mation sharing among the individuals in the group. The pro-
cess is simplified as follows. First, a group of random particles
are generated at the initialization stage, and then to search the
optimal solution through iteration. Each particle updates its
position and velocity by tracking two extreme values (pbest and
gbest) at one iteration. In n-dimensional search space, a popula-
tion ofm particles is X = fx1, x2,⋯, xi,⋯, xmg, the position of
the i-th particle is xi = ðxi1, xi2,⋯, xinÞT , and its velocity is
vi = ðvi1, vi2,⋯, vinÞT . The individual best solution of the pop-
ulation is pbesti = ðpbesti1, pbesti2,⋯, pbestinÞT , and the global
best solution is gbesti = ðgbesti1, gbesti2,⋯, gbestinÞT . The
velocity and position of each particle is updated according to
the following formula

vid t + 1ð Þ =w ⋅ vid tð Þ + c1r1 pbestid tð Þ − xid tð Þð Þ
+ c2r2 gbestid tð Þ − xid tð Þð Þ,

xid t + 1ð Þ = xid tð Þ + vid t + 1ð Þ, ð18Þ

wherem is the population size, t is the current iteration, r1 and
r2 are random numbers in [0,1]. c1 and c2 are, respectively, the
personal influence parameter and the social influence parame-
ter, and w is the inertia coefficient.

4.2. Improved PSO Algorithm Based on Dynamic DC Strategy.
When the number of obstacles, the threat sources increase, or
the environment becomes complex, the number of waypoints
should increase accordingly. However, the larger the dimen-
sion of the particle, and the worse the search ability of the
intelligent algorithms becomes. Therefore, a large amount
of waypoints will result in failure of planning. The planners
based on intelligent optimization algorithms may be difficult
to explore a feasible route in a mission space. An efficient way
to solve this problem is to simplify the original problem into
lower dimensions, where existing intelligent optimization
algorithms can well suit. In consideration of computational
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accuracy and efficiency, dynamic DC strategy is introduced in
PSO to find an optimal route when the number of the way-
points increases. According to this idea, the grouping strategy
based on dynamic dimension is adopted to divide multiple

waypoints into different groups. The number of the group in
DC strategy is adjusted according to the cost function value.

A new subcost function is established to evaluate the
quality of subpath. The group cost function is defined as

where b is the number of the waypoints in each group, Jgk is
the objective function, and Cgn is the constrain function. Jgk
and Cgn can be denoted as

Fg =

〠
3

k=1
〠
bg+2

b g−1ð Þ−2
Jgk + 〠

3

n=1
〠
bg+2

b g−1ð Þ−2
Cgn, if b g − 1ð Þ > 2&bg + 2 ≤Nw,

〠
3

k=1
〠
bg+2

S

Jgk + 〠
3

n=1
〠
bg+2

S

Cgn, if b g − 1ð Þ ≤ 2&bg + 2 ≤Nw,

〠
3

k=1
〠
T

S

Jgk + 〠
3

n=1
〠
T

S

Cgn, if b g − 1ð Þ ≤ 2&bg + 2 >Nw,

〠
3

k=1
〠
T

b g−1ð Þ−2
Jgk + 〠

3

n=1
〠
T

b g−1ð Þ−2
Cgn, if b g − 1ð Þ > 2&bg + 2 >Nw,

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

ð19Þ

〠
gt

gs

Jgk = J length:g + Jaltitude:g + J threat:g =
∑gt

i=gs Wi‐1Wik k
LST

+ 〠
gt

i=gs

Aroute:i − Zmin
Zmax − Zmin

+
∑gt

i=gsLinside:i
∑n

k=1Dk
, ð20Þ

〠
gt

gs

Cgn =

0, if 〠
gt

i=gs
Lunder:i = 0& 〠

gt

i=gs
ai = 0& 〠

gt

i=gs
bi = 0,

Pe + 〠
gt

i=gs

Lunder:i
Ltraj:i

+ Pe +
∑gt

i=gsai
gt − gs + 1

+ Pe +
∑gt

i=gsbi
gt − gs + 1

, if 〠
gt

i=gs
Lunder:i > 0& 〠

gt

i=gs
ai > 0& 〠

gt

i=gs
bi > 0,

Pe + 〠
gt

i=gs

Lunder:i
Ltraj:i

+ Pe +
∑gt

i=gsai
gt − gs + 1

, if 〠
gt

i=gs
Lunder:i > 0& 〠

gt

i=gs
ai > 0& 〠

gt

i=gs
bi = 0,

Pe +
∑gt

i=gsai
gt − gs + 1

+ Pe +
∑gt

i=gsbi
gt − gs + 1

, if 〠
gt

i=gs
Lunder:i = 0& 〠

gt

i=gs
ai > 0& 〠

gt

i=gs
bi > 0,

Pe + 〠
gt

i=gs

Lunder:i
Ltraj:i

+ Pe +
∑gt

i=gsbi
gt − gs + 1

, if 〠
gt

i=gs
Lunder:i > 0& 〠

gt

i=gs
ai = 0& 〠

gt

i=gs
bi > 0,

Pe + 〠
gt

i=gs

Lunder:i
Ltraj:i

, if 〠
gt

i=gs
Lunder:i > 0& 〠

gt

i=gs
ai = 0& 〠

gt

i=gs
bi = 0,

Pe +
∑gt

i=gsai
gt − gs + 1

, if 〠
gt

i=gs
Lunder:i = 0& 〠

gt

i=gs
ai > 0& 〠

gt

i=gs
bi = 0,

Pe +
∑gt

i=gsbi
gt − gs + 1

, if 〠
gt

i=gs
Lunder:i = 0& 〠

gt

i=gs
ai = 0& 〠

gt

i=gs
bi > 0:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð21Þ
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The individual best solution of each group is selected by
comparing the group cost function Fg of previous parent
and offspring. The global best solution based on dynamic
DC strategy is generated by choosing the best group of all
the groups according to Fg value. In order to explain the
strategy, the flow chart of PSO with DC strategy is given in
Figure 3. At the starting phase, the positions and speeds

ofm particles are initialized, and then each particle is divided
into g groups based on DC strategy, so each group contains
D/g dimensions. D/g dimensions of each particle form a
group, which can be evaluated by the group cost function
Fg. According to the result of the group cost function value,
the groups with minimum group function fitness will be
found and compose the global best particle. The parallel

Initialize x and v of particle swarm

Divide D dimension variables of each particle
into g groups

Compute the fitness of 1st
group according to (19)

Select the particle
dimensions of 1st group

with minimum Fg

Compute V(t)

Compute X(t)

Output result 

Update g according to (22)

t=t+1

The 1st group The 2nd group The g-th group

Compute the fitness of 2nd
group according to (19)

Compute the fitness of g-th
group according to (19)

Select the particle
dimensions of 2nd group

with minimum Fg

Select the particle
dimensions of g-th group

with minimum Fg

Obtain a new particle as gbest and calculate
the fitness according to (5)

t>tmax

Update gbest and pbest

Y

N

Figure 3: The flow chart of PSO with divide-and-conquer (DC) strategy.
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search based on DC strategy is developed to find the whole
particle swarm and complete an iteration of search. During
the iteration of path search, the group number g is adjusted
dynamically by

g t + 1ð Þ =N g tð Þ, σ2� �
, if Fg−best tð Þ < Fg−best t − 1ð Þ,

g t + 1ð Þ = randint a, bð Þ, if else,

(
ð22Þ

where NðgðtÞ, σ2Þ is the normal distribution with mean gðtÞ
and standard deviation σ2. randintða, bÞ represents an inte-
ger chosen within the range of ½a, b�, a ≥ 1, b ≤D.

Thus, the individual best solution of each particle is
selected to participate in the next iteration operation.

4.3. An Improved PSO Algorithm Based on A ∗ Algorithm. In
order to improve the convergence accuracy and convergence
speed, A ∗ algorithm is introduced into PSO. The route
obtained by A ∗ search is regarded as a particle to optimize
the performance of the DCPSO algorithm.

A ∗ algorithm is an effective and direct search algorithm
in static environment, which determines search direction
from the starting point to the surrounding through the heu-
ristic function. In A∗ algorithm, the open list and close list
are used to realize the node expansion and the best choice
in the process of path planning. The function of open list is
to save the extended nodes which needed to be checked in
the search process. The node with the smallest value is
selected as the current node and put into close list, then all
the neighboring nodes of the current node is added to the
open list according to the neighbor node rule. The process
is repeated until a path is found from the start point to the
end point. During the search process, because each node on
the path has the minimum cost, the cost of the path is the
least.

The heuristic function of A ∗ algorithm is aimed at eval-
uating the equality of the expandable nodes. The heuristic
function is defined as follows

f nð Þ = g nð Þ + h nð Þ, ð23Þ

where n is the node to be expanded; gðnÞ is the actual cost
from the initial node to the node n in the space; hðnÞ is the
cost from node n to the target node.

For fix-wing UAV path planning problem, the heuristic
function is denoted as

f nð Þ = 〠
3

k=1
f k nð Þ + 〠

3

v=1
f CV nð Þ, ð24Þ

where∑3
k=1 f kðnÞ is cost function of node n,∑3

v=1 f CvðnÞ is the
constraints of node n.

The cost function of node n is given by

〠
3

k=1
f k nð Þ = f length nð Þ + f altitude nð Þ + f threat nð Þ, ð25Þ

where f lengthðnÞ, f altitudeðnÞ, and f threatðnÞ are the objective
functions of the length, the altitude, and the risk of radar
detection for node n, respectively.

(1) Length cost of node n

For node n, f lengthðnÞ can be given as

f length nð Þ =
n − 1ð Þn����!��� ��� + nT�!��� ���

n − 1ð ÞT*��� ���
=

xn − xn−1, yn − yn−1, zn − zn−1k k + xT − xn, yT − yn, zT − znk k
xT − xn−1, yT − yn−1, zT − zn−1k k ,

ð26Þ

where T is the goal.
Therefore,

f length nð Þ ∈ 1, 1:5½ �: ð27Þ

(2) Flight altitude cost of node n

For node n, f altitudeðnÞ is described as

f altitude nð Þ = A nð Þ − Zmin
Zmax − Zmin

, ð28Þ

where AðnÞ is the average flight of the segment between node
n − 1 and node n.

Therefore,

f altitude nð Þ ∈ 0, 1½ �: ð29Þ

(3) Threat cost of node n

For node n, f threatðnÞ can be calculated as

f threat nð Þ = dLinside
∑N

k=1Dk

, ð30Þ

where dLinside is the length of the segment between node n
and node n − 1 that go through the threat zones. Therefore,

f threat nð Þ ∈ 0, 1½ �: ð31Þ
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The Constraint Expression of node n

〠
3

v=1
f Cv nð Þ = f Cterrain nð Þ + f Cturning nð Þ + f Cslope nð Þ: ð32Þ

(1) Terrain constraint for node n

For node n, f CcollisionðnÞ can be given as

f Cterrain nð Þ = ∑Nd
k=1s1 nð Þ
Nd

,

with s1 nð Þ =
1, if zn−1,k ≤ terrain xn−1,k, yn−1,k

� �
,

0, else,

(
ð33Þ

where ðxn−1,k, yn−1,k, zn−1,kÞ is the k-th division point coordi-
nate of the node n − 1, zterrainðxn−1,k, yn−1,kÞ is the terrain
altitude of the corresponding coordinate ðxn−1,k, yn−1,kÞ on
the map.

(1) Turning angle constraint for node n

For node n, f CturningðnÞ is calculated by

f Cturning nð Þ =
C, if θn > θmax,

0, else,

(
ð34Þ

where the constant C is used to penalize the segment with the
turning angle more than the maximum turning angle.

(2) Slope constraint

For node n, f CslopeðnÞ can be given by

f Cslope nð Þ =
0, ifφmin ≤ φn ≤ φmax,

C, else:

(
ð35Þ

4.4. Improved PSO Algorithm Based on A ∗ Algorithm. The
process of improved PSO algorithm based on A ∗ algorithm
is described in Figure 4.

From the starting point S, put S into the open list. The
first waypoints of m − 1 particles are considered as the adja-
cent nodes of the starting point S. The adjacent nodes with
S are checked to join the open list. Set the starting point as
parent node and remove S from the open list to the close list.
The first waypoint of m − 1 particles with minimum fitness
will be searched and add it into the close list. Then, this way-
point in close list is seen as the parent of the next node, and
the adjacent nodes with the first waypoint are the second
waypoints of m − 1 particles. These nodes are put into the
open list, repeat the selection process based on the A ∗ heu-
ristic function value. Until the last waypoint, a whole route
is generated by A ∗ algorithm at one iteration in PSO. The

waypoints in the close list generate m-th particle. The path
found by A ∗ algorithm is seen as a particle in the particle
swarm. Them − 1 particles in PSO will be updated according
to the evolution equation. The A ∗ algorithm of the new gen-
erated particles will be continued. The new route obtained by
A ∗ algorithm from all the particles can optimize the equality
of the particles, enrich the diversity of particle swarm, and
enhance the convergence speed.

4.5. The Steps of DCA∗PSO Algorithm. The steps of the
DCA∗PSO algorithm based on DC strategy and A∗ algo-
rithm are described as follows.

Initialize X and Vof (m-1) particles 

Consider the j-th dimension of m-1
particles as the geometric j-th

search by A⁎ algorithm

j>D

j=j+1

Obtain the m-th particle

Compute the fitness of each particle

Update pbest

Update gbest

Compute V(t) of (m-1) particles

Compute X(t) of (m-1) particles

t>tmax

Output result 

t=t+1

N

Y

Y

N

Figure 4: The flow chart of PSO with A ∗ algorithm.
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Step 1. Set the parameters and initialize each particle.

Set population size m, the maximum number of itera-
tions, particle dimension, the upper and lower bounds of
velocity and position, and learning factor c1 and c2. Ran-
domly generate the initial position and the initial velocity of
each particle.

Step 2. Evaluate the particle based on group cost function.

Generate the group number g of DC strategy according
to (22). It means that the dimensions are divided into g
groups. Calculate the group cost function value of each
group. If the value is better than that of the current value, this
value is regarded as the new best value of the individual. The

global best solution based on dynamic DC strategy is
obtained by combining the groups with the best group cost
function value.

Step 3. Find the global best solution.

A path is searched by A ∗ PSO algorithm. Calculate the
fitness of this path and compare with that of the global best
solution based on DC strategy. Select the path with the less
fitness value as the global best path.

Step 4. Update speed and position.

Update the velocity and position in each group according
to (18).

Start

Model of environment and
UAV characteristics

Set the parameter D, Imax
t=1, Ld, Ud, g and learning

factor C1 and C2

Initialize the first particle according to (36)
Initialize 2 to m-1 paths considering the height of terrain, and

the m-th path is generated by A⁎PSO algorithm

Calculate the group fitness value of each particle according to
(19), and determine the global optimal path based on dynamic

DC strategy and calculate the fitness value FDC of this path .

Obtain the optimal path based on A⁎PSO algorithm, calculate
the fitness value FA⁎PSO this path.

Compare FDC and FA
⁎

PSO, the path with the less fitness value is
determined as Pgbest.

Update speed and position based on dynamic DC strategy for
m-1 paths, the m-th optimal path is generated by A⁎PSO

algorithm.

t>tmax

End

t=t+1

Adjust the value of 
g according to (22)

Y

N

Figure 5: The flow chart of the DCA∗PSO algorithm.
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Step 5. Determine the end condition.

Determine whether the end conditions are met. If the end
condition is met, the global optimum value and position of
the particle are saved. Otherwise, turn to Step 2.

5. Optimization Model of Path Planning

The proposed DCA∗PSO algorithm, which has stronger
optimization performance, is used to solve the optimization
model of path planning for UAV. The detailed process is
shown in Figure 5. The steps are described as follows:

Step 1. Establish the environment model.
The environment information is established, mainly

including the planning space, the obstacle information, the
center, and the size of the threat sources.

Step 2. Initialize the parameters.

Initialize the parameters of the DCA∗PSO algorithm.
The parameters include the population size, the maximum
number of iteration, the number of waypoints, the maximum
number of iterations Imax, the upper and lower bounds of the
velocity of the position, and the learning factor and inertial
coefficient.

Step 3. Initialize the route.

For the first particle, x, y, z coordinates of the waypoints
are initialized as

xi = i ×
xT − xS
Nw + 1

,

yi = i × yT − yS
Nw + 1

,

zi = Zterrain xi, yið Þ +Dsafe:

8>>>>>>><>>>>>>>:
ð36Þ

From the second particle to ðm − 1Þ-th particle, x
coordinates of the waypoints are given by evenly distributed
on x-axis of the coordinate from the starting point S to the
goal for m − 1 particles, and y coordinates of the waypoints
are selected randomly within the bounds for m − 1 particles.
Due to the altitude of the terrain information is known before
the planning, take full advantage of the altitude of the terrain
to optimize the initial routes. So z-coordinate of i-th
waypoint is given as follows

zi = Zterrain xi, yið Þ +Dsafe, ð37Þ

where Zterrainðxi, yiÞ represents the corresponding terrain
altitude of the coordinate ðxi, yiÞ, and Dsafe denotes a safety
reference. The m-th path is obtained by using A ∗PSO
algorithm according to the cost function of A ∗ algorithm.

Step 4. Evaluate the particle.

Calculate the group fitness value of each group. If the new
fitness value is better than that of the current value, this value
is regarded as the new best fitness value of individual. The
path based on DC strategy is found by combining the group
with the best group fitness value in all groups. Calculate the
fitness value FA∗PSO of the path based on A ∗PSO algorithm.
Compare FDC and FA∗PSO, then, the route with a smaller fit-
ness value is set as the current global best value Fgbest . This
route with global best fitness is taken in regard as the global
best route.

Step 5. Update the velocity and position.

Update the velocity and the position ofm − 1 particles by
(18) from the first group to g-th based on DC strategy. A ∗
PSO algorithm is adopted to obtain m-th optimal path.

Step 6. Determine the end condition.

Determine whether the termination condition is met,
then output the global optimum value and the corresponding
route. Otherwise, turn to Step 4.

6. The Data Simulation and Analysis

In order to demonstrate the performances of the DCA∗PSO
algorithm for the path planning problem, a series of experi-
ments with the realistic environment maps [37] were imple-
mented on a PC with Intel Core (TM) i7-9700 CPU

Table 1: The statistical results of three cases.

Item Nw Min cost Mean cost Std. dev. Gc fGc FR (%)

Case I

5 1.4851 1.6951 0.5470 1 6 96.67

7 1.5056 1.6799 0.1374 1 6 100

10 1.5352 1.6443 0.0836 1 5 100

15 1.5432 1.7130 0.1322 5 10 100

20 1.5315 1.6243 0.0739 5 12 100

25 1.6022 2.0725 0.9112 9 23 93.33

Case II

5 2.2425 3.3362 1.2896 4 15 70

7 1.6101 2.2201 0.4413 3 15 96.67

10 1.6249 1.8212 0.1102 2 6 100

15 1.5371 1.7924 0.2645 5 16 100

20 1.5255 1.7033 0.6325 4 12 96.67

25 1.5985 1.9863 1.0627 4 13 90

Case III

50 1.4152 1.4785 0.0877 4 10 100

60 1.3522 1.3913 0.0343 4 9 100

70 1.4252 1.4492 0.0420 5 12 100

80 1.3631 1.7131 0.9523 5 13 90

90 1.3813 1.8634 0.9499 5 14 90

100 1.3916 1.7671 0.9376 7 24 90
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@3.00GHz running Windows10. Each group of experiments
was conducted 30 times independently, and the main data of
the results were recorded in table for the further analysis.

6.1. The Analysis of DifferentWaypoint Number. The number
of the waypoints is an important parameter that affects the
performance of the algorithm, which has a very close rela-
tionship with accuracy of the route and algorithm computa-
tional efficiency. With the number increase of waypoints, the
search difficulty of the algorithm will increase rapidly. The
following experiments were implemented for testing the per-
formance of DCA∗PSO algorithm when the number of the
waypoints changes. The parameters of DCA∗PSO are set as
follows: population size N = 100, the maximum iteration
tmax = 100, the personal influence c1 = 1:5, and the social
influence parameter c2 = 1:5. The number of the dividing
point is Nd = 6. Three cases are utilized to test: case I is a sim-
ple environment with nine threat sources, case II is a compli-
cated model with 24 threat sources, and case III is a larger
map environment with 32 threat sources. The statistical
results of the three cases are listed in Table 1, which include
the best cost, mean cost, standard deviation of the fitness

value, Gc, fGc , and FR during 30 independent runs. Among
these, Gc andfGc denote the iteration number when the algo-
rithm finds the feasible flight route, which reflects the conver-
gence speed and the efficiency of the algorithm. The Gc is the
smallest iteration number in 30 runs, andfGc is the mean iter-
ation number in 30 runs. FR means the percentage of the fea-
sible routes in 30 runs, which is the ratio of the runs satisfying
the constraints in the total runs. The best results are marked
with boldface for clarity. It is only the feasible routes can be
used for the statistics of column 6-7. The typical 3D displays
and contour routes with different numbers of the waypoints
in case I, case II, and case III during 30 runs are plotted in
Figures 6, 7, and 8, respectively. It is noted that the mean cost
value is represented as the reciprocal of the mean cost value
in Figures 6(a), 7(a), and 8(a). According to Ref. [18], Nw is
determined as

PL
Nw + 1ð Þ ⋅Nd

< DI, ð38Þ

where PL is the route length,DI is the minimal diameter of all
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Figure 6: The comparison of results with different numbers in case I.
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the missiles and radars in space, and Nw is the number of the
waypoints (not including start point and endpoint). In general,
DI = 0:5. The minimum value of Nw is determined by (38).

From Table 1, it is easy to know that the best mean fitness
value and standard deviation are obtained when Nw = 20 in
case I. The smallest value of the best cost is obtained when
Nw = 5, and the best FR is obtained when Nw = 7, Nw = 10,
Nw = 15, and Nw = 20. When Nw = 7 and Nw = 10, the
indicator fGc is superior to when Nw = 15, Nw = 20, and
Nw = 25. The convergence speed is faster than that of the
larger number of path points. Overall, in case I, Nw = 20 is
the most appropriate value. The FR and the mean fitness
value are superior to the other Nw. In case II, as the number
of the threat resources increases, the standard deviation and
the mean fitness value get worse than those of case I. The best
mean fitness cost is obtained whenNw = 20, and the standard
deviation is obtained when Nw = 10. The best FR is obtained
when Nw = 10 and Nw = 15.

In case III, the best results are obtained when Nw = 60.
The preference of Nw = 50, Nw = 60, and Nw = 70 is better
than that of Nw = 80, Nw = 90, and Nw = 100. When the

number of the waypoints gets larger, the search of the path
becomes more difficult and the FR will get low. On the other
hand, when the number of the waypoint is too small, the dan-
gerous zone has no way to be avoided efficiently. It is more
obvious for the environment where a large number of threat
sources exist. If the number of the waypoint is too small or
too large, the standard deviation and the FR will get worse.
Meanwhile, due to the number of threat sources increases,
the security area will get narrow. The planned paths with dif-
ferent numbers of path points will be clustered in a narrow
region. The greater the number of waypoints is, the slower
convergence speed is, and more complicate the problem
becomes. Figure 7 shows the experimental results in case II.

6.2. The Performance Comparison of Different Algorithms. In
this section, to evaluate the performance of DCA∗PSO, some
population-based optimization algorithms, such as DE [38],
PSO [17], QPSO [39], AIWPSO [40], and PSOPC [41], are
utilized to make several comparisons based on different
indicators. Three cases are designed to test the performance
of six algorithms.
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Figure 7: The comparison of results with different numbers in case II.
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In case IV and case V, the population size and maximum
number of iterations for six algorithms are the same, which
are equal to 100 and 200, respectively. The number of the
waypoints is set to 7 and 10 for cases IV and V, respectively.
The specified parameters for the different algorithms are

shown in Table 2. The simulation results for six different
algorithms are given in Figure 9, Figure 10, and Table 3.

Figure 9(a) shows the convergence curves of the average
fitness value during the process of 200 generations in case
IV, which is a crucial indicator of algorithm performance. As
can be seen from Figure 9(a), because the convergence curve
of the DCA∗PSO algorithm is always above that of the other
five algorithms, it is concluded that the convergence speed of
the DCA∗PSO algorithm is faster than the DE, PSO, QPSO,
AIWPSO, and PSOPC. The indicator Gc in Table 3 also
reflects that the convergence speed of DCA∗PSO is superior
to other algorithms. Moreover, the global search ability of
the DCA∗PSO algorithm is better than the other five algo-
rithms. From Table 3, it is easy to see that the DCA∗PSO algo-
rithm has the minimum standard deviation, which indicates
that the DCA∗PSO algorithm has stronger robustness. The
FR, the average cost value, and standard deviation of DE and
QPSO are better than PSO, AIWPSO, and PSOPC.
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Figure 8: The comparison of results with different numbers in case III.

Table 2: The parameter values of different methods.

Algorithm Parameters

DE F = 0:4, Cr = 0:9

DCA∗PSO w = 0:73, c1 = c2 = 1:5

PSO w = 0:7298, c1 = c2 = 1:4960

QPSO b ∈ 0:3, 0:7½ �
AIWPSO w ∈ 0, 1½ �
PSOPC w ∈ 0:7, 0:9½ �, c1 = c2 = 0:5, c3 ∈ 0:4, 0:6½ �
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The typical 3D stereo displays and contour profiles corre-
sponding to six route planners are shown in Figures 9(b) and
9(c) in case V. It can be seen that the flight route generated by
DCA∗PSO is shorter and smoother than those based on the
DE, PSO, QPSO, AIWPSO, and PSOPC. Among these, the
routes by the AIWPSO, PSO, PSOPC, and AIWPSO can
avoid threat safely in case V. Due to the routes by DE and
QPSO go through the threat, the two algorithms fail to search
for a safe path. Threat-avoidance route can increase the effec-
tiveness of performing mission for UAV and enhance the
success rate of the mission.

The experimental results of case V are shown in
Figure 10. The average convergence curves express that
DCA∗PSO still is superior to DE, PSO, QPSO, AIWPSO,
and PSOPC algorithms in Figure 10(a). From the statistical
data in Table 3, it is not hard to find that the average fitness
cost value, the standard deviation,fGc , and the successful rate
FR of DCA∗PSO are better than those of the other five algo-
rithms. So DCA∗PSO can obtain more excellent perfor-
mance of the search ability, robustness, and convergence
speed in two cases. In case V, the performance of DE and
QPSO is worse than case IV. The mean fitness cost of DE
and QPSO is larger than AIWPSO and PSOPC algorithms.
Figures 10(b) and 10(c) show the 3D stereo displays and con-
tour profiles in case V, and only DE and DCA∗PSO can find
the safe route to avoid the detection from the radars.

Intelligent method is sensitive to the number of waypoint
for the UAV route planning application. As the number of
the waypoints increases, a feasible flight route obtained by
the algorithm will become more and more difficult in high-
dimensional search space. The large realistic terrain environ-
ment is utilized to test the performance of DCA∗PSO when
solving the high-dimensional planning problem.

In order to further demonstrate the optimization perfor-
mance of the proposed DCA∗PSO algorithm, SLPSO [33],
CCPSO2 [34], DMSPSO [35], and CSO [36] are selected to
solve the constructed multi-objective optimization model of
route planning. The parameters of these algorithms are set
in Table 4.

The comparison results are shown in Table 5. It is noted
that the performance of CSO, CCPSO2, DMSPSO, and SLPSO
in case III cannot find the feasible route in 30 runs. As can be
seen from Table 5, the minimum cost, mean cost, and FR of
DCA∗PSO is best among the five algorithms. But the standard
deviation is not the minimum one in five algorithms. Because
there were three turns in all 30 turns experiments cannot find
a feasible solution for the DCA∗PSO algorithm, the standard
deviation is increased by the penalty constant.

The path planners based on CSO, CCPSO2, DMSPSO,
and SLPSO failed to generate a flight route in case III. The
convergence curves are shown in Figure 11.

By comparing the convergence curves shown in
Figure 11, it is easy to see that as the increase of waypoint
number, the initial fitness cost of the DCA∗PSO algorithm

Table 3: The statistical results of two cases.

Item Method
Min
cost

Mean
cost

Std.
dev.

~Gc FR (%)

Case
IV

DE 1.9914 3.0480 1.4419 104 83.33

DCA∗
PSO

1.7237 1.8879 0.6125 11 96.67

PSO 1.8511 5.3384 3.9335 115 23.33

QPSO 1.8593 3.4639 1.5880 107 63.33

AIWPSO 1.8275 5.3014 2.0900 67 20

PSOPC 1.8308 5.3840 2.3791 126 23.33

Case V

DE 2.7575 4.3976 1.2025 170 26.67

DCA∗
PSO

1.6928 1.9400 0.1022 7 100

PSO 2.2837 4.6835 1.3901 138 30

QPSO 1.8928 4.9618 1.1591 87 10

AIWPSO 1.8749 3.9607 1.8140 55 53.33

PSOPC 1.8532 3.3924 1.6887 109 63.33

Table 4: The parameters of the algorithms.

Algorithm Parameter

CSO m = 200, φ = 0:15

CCPSO2 m = 200, p = 0:5, S = 2, 5, 10, 20, 50, 100½ �
DMSPSO m = 60,w = 0:729, c1 = c2 = 1:49445

SLPSO m = 100, α = 0:5, β = 0:01

DCA∗PSO m = 200,w = 0:73, c1 = c2 = 1:5,Nd = 5

Table 5: The statistical results of different algorithms in case III.

Method Min cost Mean cost Std. dev. FR (%)

CSO 13.2990 13.5231 0.1422 0

CCPSO2 14.8774 20.7542 3.6629 0

DMSPSO 28.2125 29.2021 1.4512 0

SLPSO 23.9754 25.6341 0.7212 0

DCA∗PSO 1.3916 1.7671 0.9376 90
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Figure 11: The average cost of different algorithms in case III.

17International Journal of Aerospace Engineering



is far better than four improved PSO algorithm. The DCA∗
PSO still can obtain a more satisfactory performance than
the other four PSO-based algorithms and eventually find a
flight optimal path with less cost when the number of path
points is large. In general, the DCA∗PSO algorithm can
effectively improve the performance of route planning in a
3D complex environment. The proposed DCA∗PSO algo-
rithm takes on the ability to escape the local minimum value
and improve the global search ability of algorithm.

7. Conclusion

In this paper, considering the minimum route length, the
minimum flight height, the minimum risk of being detected,
the dynamic constraints of fix-wing UAV (e.g., the turning
angle and slope angle), and the terrain constraint, a multiob-
jective optimization model of path planning problem for fix-
wing UAV is constructed. A novel improved PSO called
DCA∗PSO is proposed to solve the UAV route planning
problem. DCA∗PSO is presented by introducing the
improved A ∗ algorithm and DC strategy. The improved A
∗ algorithm can quickly find a high-quality solution from
the particles of PSO, which speeds up the optimization of
the algorithm. Meantime, the DC strategy enhances the
search efficiency by optimizing the structure of particles
when the number of path points increases. The experiment
results in three typical cases show that DCA∗PSO is better
than other methods in terms of convergence speed, robust-
ness, and premature avoidance. The proposed method can
effectively provide a valuable reference for route planning
in complex 3D terrain. In future work, the cooperative route
planning of multiple UAVs will be researched and extended.
In future work, more parallel large-scale PSO algorithms and
complex terrain environments should be adopted to enhance
the performance of the path planner.
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