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This paper focuses on the problem of automatic carrier landing control with time delay, and an antidelay model predictive control
(AD-MPC) scheme for carrier landing based on the symplectic pseudospectral (SP) method and a prediction error method with
particle swarm optimization (PE-PSO) is designed. Firstly, the mathematical model for carrier landing control with time delay is
given, and based on the Padé approximation (PA) principle, the model with time delay is transformed into an equivalent
nondelay one. Furthermore, a guidance trajectory based on the predicted trajectory shape and position deviation is designed in
the MPC framework to eliminate the influence of carrier deck motion and real-time error. At the same time, a rolling optimal
control block is designed based on the SP algorithm, in which the steady-state carrier air wake compensation is introduced to
suppress the interference of the air wake. On this basis, the PE-PSO delay estimation algorithm is proposed to estimate the
unknown delay parameter in the equivalent control model. The simulation results show that the delay estimation error of the
PE-PSO algorithm is smaller than 2ms, and the AD-MPC algorithm proposed in this paper can limit the landing height error
within ±0.14m under the condition of multiple disturbances and system input delay. The control accuracy of AD-MPC is much
higher than that of the traditional pole assignment algorithm, and its computational efficiency meets the requirement of real-
time online tracking.

1. Introduction

As an important symbol of national power, aircraft carriers
play an indispensable role in maritime security [1]. As one
of the key technologies in aircraft carrier systems, automatic
carrier landing technology is of great importance to the navies
of various countries. A well-designed automatic carrier land-
ing system (ACLS) not only improves the landing accuracy
of carrier-based aircraft but also reduces flight control diffi-
culty and training costs for pilots. The small space on a carrier
deck and significant marine environmental disturbances such
as deck motion and carrier air wake impose severe limitations
on landing performance [2]. According to the authors of [3],
anACLS can be divided into four layers for an inner loop, auto-
pilot, guidance control, and guidance compensation. In [4], an
ACLS was designed based on the H-infinity control technique

to improve path control precision under the worst-case condi-
tions of a vertical gust. Yu et al. proposed an active disturbance
rejection control scheme for an ACLS in the final approach to
achieve better tracking performance [5]. An ACLS design
scheme with dynamic inversion techniques was also demon-
strated to be promising and robust [6]. A stable adaptive
control scheme was developed based on the LDU (lower-diag-
onal-upper) decomposition of the high-frequency gain matrix
for carrier landing during the final approach [7]. Regarding
the carrier landing problem for aircraft with short takeoff and
landing capabilities, gain-scheduled linear optimal control
and L-1 adaptive control were applied to an ACLS design in
[8]. Additionally, several novel optimization algorithms have
been proposed to optimize ACLS parameters and assist control
algorithms to operate at full capacity [9, 10]. These optimiza-
tion algorithms are mainly applied to controller parameter
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tuning. However, the influence of time delay in the control
system is not considered in the above studies.

Time delay is a difficult problem which cannot be ignored
in an ACLS. During the process of automatic carrier landing,
radar systems, shipboard computers, and flight control
systems will introduce delay effects of different magnitudes
for calculation or communication. Additionally, the response
characteristics of the control actuator itself will also intro-
duce delay effects. However, research on time delay in auto-
matic carrier landing control is very sparse. The authors of
[11] analyzed the sources and influences of delay in an ACLS,
and a delay observer was designed to predict deck motion.
However, the influence of control delay on ACLS was not
considered in that article. Focusing on the manned aircraft
carrier landing problem, Liu discussed the delayed control
problem for carrier landing based on a pilot delay model
[12]. In [13], the delay effects of the actuator and engine
dynamics were eliminated via state space realization and state
equation incorporation, but measurement signal delay and
signal transmission delay were not considered. In general,
these related studies were not comprehensive in terms of
considering the delay.

The main contributions for this paper are listed below:
firstly, we proposed a model predictive control framework
for the carrier landing control problem. Compared with
other methods, the advantages of MPC are as follows: (1)
In the longitudinal carrier landing trajectory control prob-
lem of an F/A-18, there are four control variables. The
general control method often needs to consider the control
allocation problem, while MPC can flexibly deal with the
MIMO system with a coupling relationship. And the opti-
mal control allocation scheme can be given according to
the objective function. (2) The physical constraints usually
exist in the controller actuator, and MPC can explicitly deal
with the control problems with constraints. (3) The MPC
control structure allows introducing model and environ-
ment prediction information into the control decision. So
the predictable information of deck motion and the
steady-state part of the ship air wake can be introduced into
the current control decision-making, which is difficult to
achieve by other methods. As a result, the influence of the
ship air wake and deck motion on the control system can
be well suppressed, and the landing control accuracy can
be improved. Furthermore, there are few studies on the time
delay control problem of carrier landing. Considering the
time delay problem in the carrier landing progress, the
MPC control framework is modified based on the Padé
approximation principle, and to estimate the time delay, a
PE-PSO delay estimate method is proposed in this paper.
The modified MPC for carrier landing is suitable for time
delay scenarios.

This paper focuses on the problem of automatic carrier
landing control with time delay, and the remainder of this
paper is organized as follows. In Section 2, the mathematical
model for the carrier landing control with time delay is
presented. In Section 3, an AD-MPC scheme for carrier
landing based on the SP method and PE-PSO is designed.
Experimental simulations and result analysis are presented
in Section 4. Finally, Section 5 concludes this paper.

2. Mathematical Model for Carrier
Landing with Time Delay

2.1. Small Disturbance Equation and Environment Model for
Carrier Landing. In this paper, the following longitudinal
linear small disturbance equation for an F/A-18A aircraft is
presented to describe the carrier landing process [3, 13]:

_X =AMX + BMU + EMαg,

X =
Δv
V0

, Δα, Δθ, Δq,
Δh
V0

� �T
,

U = ΔδH, ΔδLEF, ΔδRT, ΔδPL½ �T ,

8>>>>><>>>>>:
ð1Þ

where Δv, Δα, Δθ, Δq, and Δh represent the velocity, angle of
attack, pitch angle, pitch angle velocity, and altitude devia-
tion relative to the nominal state, respectively. Additionally,
ΔδH, ΔδLEF, ΔδRT, and ΔδPL represent deviations in terms
of the horizontal tail deflection, leading-edge flap deflection,
rudder toe-in deflection, and engine throttle control angle,
respectively. Finally, αg represents the deviation of the attack
angle caused by vertical wind disturbances. The nominal
state for carrier landing is V0 = 69:96m/s, α0 = 8:3°, and γ0
= −3°. In actual control systems, the following limits on the
range and rate of change of the control surface deflection
and throttle control angle must be considered:

Umin
i ≤Ui ≤Umax

i

_Ui

�� �� ≤ _U
max
i

(
, i = 1, 2,⋯, 4: ð2Þ

A carrier is subjected to six-degree-of-freedom deck
motions based on the wind and waves encountered at sea.
In this study, the pitching and heaving motions of the carrier
were taken into consideration based on their significant
impact on landing accuracy. The deck motion models are
defined as follows [14]:

θS degð Þ = 0:5 sin 0:6t + φ1ð Þ + 0:3 sin 0:63t + φ1ð Þ + 0:25,

ZS ftð Þ = 4:0 sin 0:6t + φ2ð Þ + 1:0 sin 0:2t + φ2ð Þ,

(
ð3Þ

where φ1 and φ2 represent random initial phases and θS and
ZS represent the pitching and heaving motions of the carrier.

The following engineering model for the carrier air wake
from [14] is adopted in this paper:

ug = u1 + u2 + u3 + u4,

vg = v1 + v4,

wg =w1 +w2 +w3 +w4,

8>><>>: ð4Þ

where ug, vg, and wg represent the air wake in the x, y, and z
directions, respectively, in the inertial frame. The subscript i
(i = 1, 2, 3, 4) represents atmospheric turbulence, the
steady-state component, periodic component, and random
component of the carrier air wake. Because the model in
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Equation (1) is only related to the air wake in the vertical
direction, ug and vg were not considered in this study.

2.2. Sources of Time Delay in an ACLS. Time delays in an
ACLS can be divided into four categories according to their
sources, namely, measurement signal delay, control signal
delay, signal transmission delay, and actuator response delay.
Regarding their effects on a control system, the first three
types of delay effects can be regarded as pure time delays,
whereas the actuator delay is a type of high-order dynamic
response delay. Various methods can be adopted to handle
time delay effects. The time delays for each component of
the F/A-18 ACLS are listed in Table 1 [11].

In Table 1, there is a certain degree of delay in each com-
ponent of the ACLS. Although the delay effect is not signifi-
cant for a single component, delay will have a significant
impact on the ACLS when the delay times of all components
are combined.

Figure 1 presents a schematic of data transmission in the
ACLS. The effects of pure time delay can be regarded as the
control action exerted by the control system at the current
time T , which is obtained according to the state of the control
system at T-θ.

After the position and speed of the carrier aircraft at time
T are measured and filtered by the shipboard radar, the guid-
ance system on the carrier calculates the corresponding
information at time T + dt1. The guidance and control
system calculates the control law according to the position,
speed, and flight status information and obtains a corre-
sponding control law at T + dt1 + dt2. After a series of coding,
transmission, and decoding operations, the actuators receive
the control law information and begin to work at T + dt1 +
dt2 + dt3, resulting in a pure time delay for the entire closed
loop of τ = dt1 + dt2 + dt3. It is typically necessary to limit τ
to less than 200ms in practice.

During the process of carrier landing, there will be a time
delay between the control actuator (rudder and engine)
receiving control signals and achieving the required position
or state. Generally, the delay for a control surface is relatively
small; it has little influence on control effects and can be
ignored [13]. However, the response time of the engine is
sufficiently slow to have a significant impact on control
system performance. Considering the dynamic response
delay of the engine, the throttle input variable δpL in the
longitudinal landing model given in Equation (1) must be
replaced with the thrust response variable δT .

Delay in the control law will result in an aircraft being
unable to track the ideal glide path accurately. This is because
the control inputs for the control system cannot eliminate the
current output errors in time based on the delayed signal,
which increases adjustment time. The resulting overshoot
causes the system to oscillate [15]. If the time delay is too
large, then the control system cannot make correct control
actions according to the current system state, which could
lead to control failure. And the follow-up simulation results
will also verify the above analysis.

2.3. Carrier Landing Control Model with Time Delay. For the
F/A-18 aircraft, the following transfer function model for the

dynamic relationship between the thrust response and the
throttle input was given as follows:

δT
δpL

=
as + b

s2 + cs + b
=

2:6710s + 1:1846
s2 + 2:5336s + 1:1846

: ð5Þ

For this type of time delay effect, the state space model of
the transfer function is typically constructed using the state
space realization method from the linear system theory. To
eliminate the influence of time delay, the constructed state
space model is combined with the original model to obtain
a new system model as follows:

_x9

_x10

" #
=M

x9

x10

" #
+NδPL =

−c 1

−b 0

" #
x9

x10

" #
+

a

b

" #
δPL,

ð6Þ

where x9 = δT and x10 are intermediate variables. Addi-
tionally, to introduce the rate of change information for
ΔδH, ΔδLEF, and ΔδRT into the system model explicitly, it is
necessary to augment Equation (1) in the following manner:

_�x = �A�x + �B�u + �Eαg,

�x = X, ΔδH, ΔδLEF, ΔδRT, ΔδT , x10½ �T ,

�u = Δ _δH, Δ _δLEF, Δ _δRT, ΔδPL
h iT

,

8>>>><>>>>:
ð7Þ

where

A =

AM BM 05×1
⋯ ⋯ ⋯

03×10
⋯ ⋯ ⋯

02×8 M

2666666664

3777777775
B =

05×4
⋯ ⋯ ⋯

I3×3 03×1
⋯ ⋯ ⋯

02×3 N

2666666664

3777777775
E =

EM

⋯

05×1

2664
3775

8>>>>>>>><>>>>>>>>:
ð8Þ

The main influence of the pure time delay is that it will
generate control signal input lag. The measurement times

Table 1: Time delays of the F/A-18 ACLS.

Source of delay
Delay time

(ms)

α − β filter of the guidance radar 10

Asynchronous delay of signal transmission [0, 50]

Receiver decoding time 1

Asynchronous delay of the task computer [0, 50]

Task computer computation delay [12, 50]

Asynchronous delay of the flight control system [0, 50]

Flight control system foreground calculation
delay

[6, 56]

Flight control system calculation delay 6.25
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of each state variable are different, which will lead to the
desynchronization of various measurement signals. This
delay difference is typically very small, and the influence on
the control system can be ignored. However, it is assumed
that the flight control and guidance signals are both calcu-
lated by the shipboard guidance system. Therefore, all state
variable information required for the control law generation
process is transmitted to the carrier through a data link after
airborne measurement, except for the altitude and velocity
information, which are measured by the shipboard radar.
For the convenience of processing, it is assumed that the
measurement delays of all states are approximately equal
and denoted as dt1.

Considering the time delay in the control system, the
longitudinal small disturbance mathematical model for
carrier landing can be defined as follows:

_�x = �A�x + �B�u t − τð Þ + �Eαg,

�x = X, ΔδH, ΔδLEF, ΔδRT, ΔδT , x10½ �T ,

�u = Δ _δH, Δ _δLEF, Δ _δRT, ΔδPL
h iT

,

8>>>><>>>>:
ð9Þ

where τ represents the pure delay of the entire ACLS.
In this study, to handle the time delay problem, the first-

order Padé approximation [16] was incorporated by intro-
ducing virtual time delay variables, and the original control
system with time delay was transformed into a delay-free
system. First, an input term with a delay �uðt − τÞ is trans-

formed using the Laplace transform. Then, by applying the
first-order Taylor approximation, we have

L �u t − τð Þ½ � = e−τsL �u tð Þ½ � ≈ 1 − τs/2
1 + τs/2

L �u tð Þ½ �, ð10Þ

resulting in

L �u t − τð Þ½ �
L �u tð Þ½ � ≈

1 − τs/2
1 + τs/2

=
4/τ

s + 2/τ
− 1: ð11Þ

The intermediate variable xdðtÞ is selected to satisfy

_xd tð Þ = 4
τ
�u tð Þ − 2

τ
xd tð Þ: ð12Þ

Then, the original system can be rewritten as

_x =
_�x
_xd

" #
=Ax + Bu + Eαg =

�A �B
0 ~A

" #
�x
xd

" #
+

−�B
~B

" #
�u tð Þ +

�E
0

" #
αg,

~A = −
2
τ
I4, ~B =

4
τ
I4:

8>>><>>>:
ð13Þ

The carrier landing problem can be regarded as a trajec-
tory tracking problem for an ideal glide path under the
constraints of flight dynamics, control variables, and state
variables. Based on the analysis above, the equivalent
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Figure 1: Data transmission in the ACLS.
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mathematical model for the optimal control problem of
carrier landing with time delay is defined as

min J =
1
2

ðt0+T
t0

x − xeð ÞTP x − xeð Þ + uTRu
h i

dt,

s:t:

_x =Ax + Bu + Eαg,

xmin ≤ x ≤ xmax, umin ≤ u ≤ umax,

8>>>>>>><>>>>>>>:
ð14Þ

where xe is the ideal flight state vector of the carrier-based
aircraft, x is the actual flight state vector, and u is the actual
control input. P and R are diagonal coefficient matrices,
where P is a semipositive definite matrix and R is a positive
definite matrix.

3. AD-MPC Algorithm for Carrier Landing with
Time Delay

MPC is a closed-loop rolling optimization control method
based on the mathematical model of the controlled plant
[17]. The main idea of MPC is to solve the optimal control
problem in a small limited period under the condition of
control constraints. The optimal control input sequence is
obtained through the optimization of the objective function,
and the first input value of the control sequence is selected as
the actual input of the next step. Then, the actual state of the
system is introduced into the next calculation step as the
initial condition. Repeat the above process until the control-
ling task is finished. The control block diagram can be
summarized as Figure 2.

3.1. Guidance Trajectory Design Based on Trajectory Shape
and Tracking Error. A crucial problem for MPC tracking
control is selecting a standard tracking trajectory xe, which
is similar to the guidance law design for traditional tracking
control. A well-designed tracking trajectory can make an
aircraft track the desired glide accurately and eliminate track-
ing error rapidly. In this study, by combining trajectory
deviations with the predicted trajectories, a guidance trajec-
tory design method based on predicted trajectory shapes
and position deviations was developed.

This guidance trajectory design method is illustrated in
Figure 3. In Figure 3, A represents the position of the aircraft
at the current time, and he represents its height deviation
from the ideal position A0. B0 is the expected position of

the aircraft after ΔT , and A0B0
_

is the ideal trajectory obtained

based on deck motion prediction. AB
_

is the reference trajec-

tory obtained by moving A0B0
_

in a parallel direction and is

used to generate the guidance trajectory AB0
_

. The points on

AB0
_

satisfy the relationship ht = he × l1/ðl1 + l2Þ. Therefore,
the guidance trajectory AB0

_
contains the prediction informa-

tion for the future ideal trajectory and the error correction
information for the current position simultaneously. To
improve the adaptability of the guidance trajectory in differ-
ent environments, the adjustment coefficients Kα and Kβ are

introduced into the guidance trajectory, and the corre-

sponding height difference between AB0
_

and AB is
adjusted as follows:

Δh = Kαhs + Kβhe
l1

l1 + l2
: ð15Þ

When the values of Kα and Kβ are both 1.0, the guid-

ance trajectory is represented by AB0
_

in Figure 3.
To obtain future reference trajectory heights, prediction

information based on deck motion is incorporated. To
improve the efficiency of the algorithm, an autoregressive
(AR) prediction algorithm is adopted to predict the deck
motion of an aircraft carrier. The details of this method can
be found in [18].

3.2. Trajectory Tracking Optimal Control Based on the
Symplectic Pseudospectral Algorithm. In this paper, the sym-
plectic pseudospectral algorithm based on the second type
of generation function [19] is used as the rolling optimiza-
tion method in the MPC framework. It is an efficient and
accurate computational optimal control technique and has
the capability of handling constraints on state and control
variables [1]. Under general conditions, Equation (14) is
modified as follows:

min J = 1
2

ðt0+T
t0

x − xeð ÞTP x − xeð Þ + uTRu
h i

dt,

s:t:

_x =Ax + Bu + w,
h =Cx +Du +V ≤ 0,

8>>>>>>><>>>>>>>:
ð16Þ

where w = Eαg, and by introducing a nonnegative relaxa-
tion vector α, the inequality constraint in Equation (16)
can be rewritten as follows:

Cx +Du +V + α = 0: ð17Þ

Then, by introducing the costate vector λ and
Lagrangian multiplier μ, Equation (16) can be transformed
into an unconstrained optimal control problem. The
objective function can be expressed as

J =
ðt0+T
t0

H − λT _x
� �

dt, ð18Þ

where H is the Hamilton function:

H x, u, λ, β, αð Þ = 1
2

x − xeð ÞTP x − xeð Þ + 1
2
uTRu + λT

� Ax + Bu +wð Þ + μT Cx +Du +V + αð Þ:
ð19Þ
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According to the parametric variational principle, the
following equations should be satisfied when the objective
function J reaches its minimum value:

∂H
∂u = Ru + BTλ +DTμ = 0,

_x = ∂H
∂λ

=Ax − BR−1 BTλ +DTμ
� �

+ w,

_λ = −
∂H
∂x = −P x − xeð Þ −ATλ − CTμ:

8>>>>>>><>>>>>>>:
ð20Þ

According to the inequality constraints and the
Karush-Kuhn-Tucker condition, we have

Cx −DR−1 BTλ +DTμ
� �

+V + α = 0,

αTμ = 0, μ ≥ 0, α ≥ 0:

(
ð21Þ

Equation (16) defines an optimal control problem
with a fixed terminal time. Therefore, when the terminal
state is free, we have λðt0 + TÞ = 0 according to the trans-
versality condition.

The variables x, λ, μ, and α are approximated using the
NðjÞ-degree Legendre-Gauss-Lobatto (LGL) pseudospectral
method in the jth subinterval as follows:

x jð Þ τð Þ = 〠
N jð Þ

i=0
x jð Þ
i ρ

jð Þ
i τð Þ, λ jð Þ τð Þ = 〠

N jð Þ

i=0
λ

jð Þ
i ρ

jð Þ
i τð Þ,

μ jð Þ τð Þ = 〠
N jð Þ

i=0
μ

jð Þ
i ρ

jð Þ
i τð Þ, α jð Þ τð Þ = 〠

N jð Þ

i=0
α

jð Þ
i ρ

jð Þ
i τð Þ,

8>>>>><>>>>>:
ð22Þ

where ρðjÞi ðτÞ is the Lagrangian interpolation polynomial
corresponding to the ith LGL node within the jth
subinterval [19].

The stagnation point condition for the second-
generation function [20, 21] is applied to the jth subinterval,
and we have

K jð Þ

x j−1
�x jð Þ

�λ
jð Þ

λj

2666664

3777775 +
ξxð Þ jð Þ

ξλð Þ jð Þ

" #
μ∧ jð Þ +

ζxð Þ jð Þ

ζλð Þ jð Þ

" #
=

λj−1

0dN jð Þ ,1

0dN jð Þ ,1

x j

2666664

3777775:
ð23Þ

According to the constraint in Equation (21) and the
complementarity condition, we obtain the following rela-
tionship for each subinterval Γj:

G jð Þx∧ jð Þ −H jð Þλ∧ jð Þ −M jð Þμ∧ jð Þ + v∧ jð Þ + α∧ jð Þ = 0,

α∧ jð Þ ≥ 0, μ∧ jð Þ ≥ 0, μ∧ jð Þα∧ jð Þ = 0:

(
ð24Þ

By assembling Equations (23) and (24) in every inter-
val according to the boundary conditions, the two-point
boundary value problem (TPBVP) in ½t0, t0 + T� can be
rewritten as follows:

a : Kσ x̂, bλ� �
+ ξbμ + ζ = r,

b : Gx̂ −Hbλ −Mbμ + v̂ + bα = 0,

c : bα ≥ 0, bμ ≥ 0, μ∧Tbα = 0,

8>>><>>>: ð25Þ

where x̂, bλ , and bμ contain the information regarding the
state vectors, costate vectors, and Lagrange multipliers at
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trajectory

r

e(k)

yr(k+i)

yp(k+i)

y(k)u(k)

ym(k)

hi

–

–

Figure 2: Schematic of the MPC algorithm.

Predicted trajectory
Guidance trajectory
Reference trajectory

A

l1

l2

B

he

Bo

ht

hs

he

Ao

Figure 3: Schematic diagram of the guidance trajectory design.
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the LGL collocation points, respectively. According to Equa-

tion (25)(a), the variables x̂ and bλ can be expressed as functions
of bμ . Therefore, the TPBVP given in Equation (25) can be
transformed into a standard linear complementarity problem
based on Equations (25)(b) and (25)(c), as shown in Equation
(26). Additionally, bμ can be derived using the Lemke method

[22], and x̂ and bλ can be derived according to Equation
(25)(a). Finally, the control variable u can be obtained by

substituting x̂ and bλ into Equation (20).

Ybμ + q ≥ 0,bμ ≥ 0,

μ∧T Ybμ + qð Þ = 0:

8>><>>: ð26Þ

The specific expressions of the variables involved in Equa-
tions (23) to (26) and the detailed derivation process of the
symplectic pseudospectral algorithm based on the second type
of generation function can be found in the appendix.

It should be note that the atmospheric turbulence, peri-
odic component, and random component of the carrier air
wake in Equation (4) contain random factors. That means
their strength information cannot be obtained in advance.
However, the steady-state component w2 is usually only
related to the strength of the deck wind, so this part informa-
tion of the air wake field can be introduced into the rolling
optimization process, that is, to let w = Eα2 in Equation
(19), where α2 = −w2/V0.

3.3. PE-PSO Estimation Algorithm for Pure Time Delay. The
pure time delay τ in Equation (13) can be determined by
experience. However, influenced by various factors, the time
delay may vary in practical application. Therefore, it is neces-
sary to estimate the time delay of the closed-loop system
according to its input and output information. This problem
lies in the category of parameter estimation, but traditional
parameter estimation algorithms are largely based on the
AR moving average model. In this study, system inputs are
obtained based on the MPC control algorithm, and their
probability distribution information cannot be obtained.
Therefore, PE-PSO is utilized to identify the closed-loop time
delay of the control system.

In simulations and practical engineering, data sampling
and calculations are conducted in discrete forms. Therefore,
the following discrete prediction system is constructed to
identify the time delay parameter τ:

b�x k + 1ð Þ =Gb�x kð Þ +H�u k − bτ
ΔT

	 

,

G = e
�AΔT ,

H =
ðΔT
0
e
�AΔTdt

	 

�B,

8>>>>>><>>>>>>:
ð27Þ

where

�x k + 1ð Þ =G�x kð Þ +Nαg kð Þ, k ∈N+&k < d,

�x k + 1ð Þ =G�x kð Þ +H�u k − dð Þ +Nαg kð Þ, k ∈N+&k ≥ d,

�x kð Þ = x kð Þ, ΔδH kð Þ, ΔδLEF kð Þ, ΔδRT kð Þ, ΔδT kð Þ, x10 kð Þ½ �T ,

�u kð Þ = Δ _δH kð Þ, Δ _δLEF kð Þ, Δ _δRT kð Þ, ΔδPL kð Þ
h iT

,

N =
ðΔT
0
e
�AΔTdt

	 

�E:

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð28Þ

Here, �xðkÞ and �uðkÞ represent the values of �x(kΔT) and
�u(kΔT), respectively. When d̂ = bτ/ΔT or d = τ/ΔT is a non-
integer, �uðk − bτ/ΔTÞ and �uðk − dÞ are obtained via linear
interpolation, where b�x and bτ represent the estimators of �x
and τ, respectively.

The PE-PSO method is used to estimate the time delay
variable τ, based on the deviations between the state outputs
of the reconstructed and actual systems. Because the dummy
variable x10 in �x cannot be measured, the observable state
variable y in the system should be predicted according to
the following prediction model to obtain its estimated value
ŷ at kΔT :

ŷ kð Þ = f Y k − 1ð Þ, �U kð Þ, k, bτ� �
=CM

b�x kð Þ

=CM Gk−k0x k0ð Þ + 〠
k−k0−1

i=k0

Gk−i−1H�u i − bτ
ΔT

	 
" #
,

ð29Þ

where CM is the observation matrix, and the actual observ-
able value yðkÞ can be expressed as

y kð Þ = CM Gk−k0x k0ð Þ + 〠
k−k0−1

i=k0

Gk−i−1 H�u i − τ

ΔT

	 

+Nαg ið Þ

	 
" #
+ e kð Þ

= CM Gk−k0x k0ð Þ + 〠
k−k0−1

i=k0

Gk−i−1H�u i − τ

ΔT

	 

+ 〠

k−k0−1

i=k0

Gk−i−1Nαg ið Þ
" #

+ e kð Þ = f Y k − 1ð Þ, �U kð Þ, k, τ� �
+ ε kð Þ,

ð30Þ

where εðkÞ =∑k−k0−1
i=k0

Gk−i−1NαgðiÞ + eðkÞ. Yðk − 1Þ represents
all historical datasets of observable variables �y before kΔT ,
and �UðkÞ represents the datasets of �u at kΔT and before kΔ
T . The prediction error at kΔT is denoted as

vk bτð Þ = y kð Þ − ŷ kð Þ: ð31Þ

When comparing the prediction model to the actual
dynamic model, it can be seen that εðkÞ is mainly composed
of two parts: interference caused by atmospheric turbulence
and measurement error in observable variables. Generally,
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measurement error can be regarded as white noise. When a
carrier aircraft is located outside the influence area of the car-
rier air wake, atmospheric disturbance can also be regarded
as white noise. Therefore, εðkÞ approximately obeys a zero-
mean normal distribution. Additionally, based on the small
time scale of the final glide process, the delay τ is not
expected to change significantly during this period. Assum-
ing that the observation sequence contains N observation
values, the prediction error sequence can be expressed as
fvkðbτÞg, k = k1, k2,⋯kN , and the estimated value of the
delay variable τ is calculated as

bτ = arg min J bτð Þ = arg min
1
N

〠
k=kN

k=k1

y kð Þ − y∧ kð Þ½ �T y kð Þ − ŷ kð Þ½ �
( )

:

ð32Þ

Theorem 1. When the sequence fεðkÞg follows a normal dis-
tributionwith zeromean and the components are independent,
the estimated value bτ obtained by Equation (32) is strongly
consistent when the objective function JðbτÞ is minimized.

This can be proven as follows:

J bτð Þ = 1
N

〠
k=kN

k=k1

y kð Þ − y∧ kð Þð ÞT y kð Þ − ŷ kð Þð Þ

=
1
N

〠
k=kN

k=k1

y kð Þ − f Y k − 1ð Þ, �U kð Þ, k, τ∧� �� �T
� x kð Þ − f Y k − 1ð Þ, �U kð Þ, k, bτ� �� �

=
1
N

〠
k=kN

k=k1

ε kð Þ + Δf τ∧, τð Þ½ �T ε kð Þ + Δf bτ , τð Þ½ �

=
1
N

〠
k=kN

k=k1

εT kð Þε kð Þ + 1
N

〠
k=kN

k=k1

εT kð ÞΔf bτ , τð Þ

+
1
N

〠
k=kN

k=k1

Δf T bτ , τð Þε kð Þ + 1
N

〠
k=kN

k=k1

Δf T bτ , τð ÞΔf bτ , τð Þ,

ð33Þ

where

Δf bτ , τð Þ = f Y k − 1ð Þ, �U kð Þ, k, τ� �
− f Y k − 1ð Þ, �U kð Þ, k, bτ� �

:

ð34Þ

Assuming that the statistical characteristics of each sto-
chastic process do not change over time (i.e., stationary sto-
chastic process), when N ⟶∞, each item in the formula
above converges to its mean value with a probability of one.

1
N

〠
k=kN

k=k1

εT kð Þε kð Þ⟶a:s: E εT kð Þε kð Þ �
= E 〠

k−k1−1

i=k1

Gk−i−1Nαg ið Þ + e kð Þ
" #T

〠
k−k1−1

i=k1

Gk−i−1Nαg ið Þ + e kð Þ
" #8<:

9=;
= E 〠

k−k1−1

i=k1

〠
k−k1−1

j=k1

Cijα
T
g ið Þαg jð Þ + 2eT kð Þ 〠

k−k1−1

i=k1

Gk−i−1Nαg ið Þ + eT kð Þe kð Þ
" #

= 〠
k−k1−1

i=k1

〠
k−k1−1

j=k1

CijRαα i − jð Þ + 〠
n

i=1
σ2i = C,

ð35Þ

where

Cij =NT Gk−i−1
� �T

Gk−j−1N,

Rαα i, jð Þ = E αTg ið Þαg jð Þ
h i

= Rαα i − jð Þ:

8><>: ð36Þ

Here, Rααði, jÞ and σ2i represent the cross-correlation
function of atmospheric turbulence at different times and
variance of state variable measurement errors, respectively.
Under the assumption of a stationary random process, C is
constant. Because εðkÞ only contains information regarding
atmospheric disturbances and current measurement errors,
its value is not affected by historical measurement data, the
initial state, control inputs, or delay values. Therefore, εðkÞ
and Δf ðbτ , τÞ are independent of each other, implying

1
N

〠
k=kN

k=k1

Δf T bτ , τð Þε kð Þ⟶a:s: E Δf T bτ , τð Þε kð Þ
n o

= E Δf T bτ , τð Þ
h i

E ε kð Þ½ � = 0:

ð37Þ

Similarly,

1
N

〠
k=kN

k=k1

Δf T bτ , τð Þε kð Þ⟶a:s: E Δf T bτ , τð Þε kð Þ
n o

= 0,

1
N

〠
k=kN

k=k1

Δf T bτ , τð ÞΔf bτ , τð Þ⟶a:s: E Δf T bτ , τð ÞΔf bτ , τð Þ
n o

:

ð38Þ

When N ⟶∞,

J bτNð Þ⟶a:s: C + E Δf T bτN , τð ÞΔf bτN , τð Þ
n o

: ð39Þ

When JðbτÞ is taken as the minimum value, the following
equation must be satisfied [23]:

E Δf T bτN , τð ÞΔf bτN , τð Þ
n o

= 0: ð40Þ

According to the definition of Δf ðbτN , τÞ, if bτ ≠ τ, then
Δf ðbτN , τÞ ≠ 0 holds with a probability of one. Therefore,
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the above formula is equivalent to bτN ⟶a:s: τ and Theorem
1 is proven.

To obtain bτ that satisfies Equation (32), we transfer the
problem of extremum determining to an optimation prob-
lem as follows:

ϒ :

min J bτð Þ = 1
N

〠
k=kN

k=k1

y kð Þ − y∧ kð Þ½ �T y kð Þ − ŷ kð Þ½ �
( )

,

s:t:bτ ∈R+,

0 ≤ bτ ≤ τmax,

8>>>>><>>>>>:
ð41Þ

where τmax represents the maximum possible value of τ,

which can be determined by practical experience. Then, the
classical PSO algorithm is used to solve optimation problem
ϒ , and the optimal estimation result bτ of τ is obtained.

The process of approaching and landing on an aircraft car-
rier is typically divided into two stages. In stage 1, the influence
of deckmotion is not considered, and the tracking trajectory is
a straight-line glide path in space. Under the small disturbance
linear model, the control process can be regarded as zero-
trajectory control. In stage 2 (i.e., approximately 20 s before
carrier deck contact), deck motion is introduced. The aircraft
must adjust its height according to the motion of the ideal
landing point. In stage 1, the carrier aircraft is still outside
the influence range of the carrier air wake, and the atmo-
spheric turbulence disturbance on the aircraft can be regarded
as white noise. Therefore, the accuracy of time delay parame-
ter identification in this stage has theoretical support.

Initialization
Determine the parameters T and 𝛿

Symplectic pseudospectral
algorithm combined with Padé

approximation

Historical data of aircra�
carrier movement

AR prediction

Variables: x, 𝜆, 𝜇
Control law: uopt

Guidance trajectory based on
predicted trajectory shapes and

position deviations

Four order
Runge-Kutta 

Air wake and
other disturbances

Data record

Result
output

x0
e (t)

xne (t)

No

Yes

Did the carrier
plane touch the deck?

x(t0+T) = xe(t0+T)
Λ = [t0, t0+T], x(t0) = x0

u = uopt (t0+n𝛿)
Λ = [t0+n𝛿, t0++n𝛿+T]

x
⁎ = (t0+(n+1)𝛿)

PE-PSO

Calculating the real
landing position 

𝜏

Figure 4: Flowchart for the carrier landing control algorithm with time delay.
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A flowchart for the carrier landing control algorithm with
time delay developed in this study is presented in Figure 4,
where a dashed line or dotted box indicates that the corre-
sponding step is only performed once.

4. Simulation Experiments and Analysis

4.1. Simulation Results for AD-MPC Carrier Landing Control
Algorithm. The matrices of the longitudinal linear small
disturbance equation in Equation (1) are listed as follows:

AM =

‐0:0705 0:0475 ‐0:1403 0 ‐5:8 × 10−5

‐0:3110 ‐0:3430 0 0:9913 1:02 × 10−3

0 0 0 1 0

0:0218 ‐1:1660 0 ‐0:2544 0

0 ‐1 1 0 0

2666666664

3777777775
,

BM =

0:0121 0:00248 0:1690 0:2316

‐0:0721 0:0140 0:0128 ‐0:0338
0 0 0 0

‐1:8150 ‐0:0790 0:1681 0:0023

0 0 0 0

2666666664

3777777775
,

EM = 0:0475 ‐0:343 0 ‐1:166 0½ �T : ð42Þ

The initial state of the aircraft x0 = 10−2 ×
½1 − 0:17 0:35 − 0:17 − 0:29 01×9�T , which means the initial
error of Δh is -0.2m. The control parameter matrices are P
= 103 × ½2 2 1 5 100 01×9�T and R = ½20 20 10 20�T . The control
parameters are Kα = 0:1 and Kβ = 1. In the PE-PSO algo-
rithm, the number of particles was set to 20, and the maxi-
mum number of iterations was set to 30. In the time delay
estimation stage, the time delay in the control system in
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Figure 5: Carrier landing control effectiveness.
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Equation (13) is set to 200ms by default. All simulation
experiments are performed using MATLAB R2016b on a
Personal Computer with a 2.3GHz CPU and 8G of RAM.

Firstly, assume that the pure time delay of the landing
system τ is 200ms and the proposed AD-MPC carrier land-
ing control method is applied. Figure 5 presents the simula-
tion results. The glide path tracking result of aircraft is
shown in Figure 5(a), where the dotted line indicates the time
when the deck motion is introduced. It can be analyzed from
Figure 5(a) that the AD-MPC carrier landing control method
can accomplish accurate tracking of the ideal glide path

under the conditions of carrier air wake, deck motion,
random interference, and time delay. Then, the simulation is
calculated for 10 times, and the average calculation time of a
single step is 35ms, which is significantly less than the simula-
tion step of 50ms. It indicates that the AD-MPC algorithm
meet the requirements of online tracking calculation efficiency.

Further, the deck motion tracking result is given in
Figure 5(b). It is shown in Figure 5(b) that the control scheme
can eliminate the initial error in about 3 seconds when the
initial height error is -0.2m and the aircraft can accurately
track the deck motion within the last 15 seconds before
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Figure 6: Results of the state and control variables.
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Figure 9: Time delay estimation results for the ACLS.
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landing. The height error of aircraft is shown in Figure 5(c),
which demonstrates that within the last 15 seconds before
landing, the maximum height tracking error of the aircraft
is only 0.13m, which is far less than the allowable height
error of 1.5m during the carrier landing process [24]. Mean-
while, the delay estimation results of PE-PSO are given in
Figure 5(d). It can be seen that the PE-PSO algorithm can
estimate the time delay in ACLS system effectively, and the
final estimation error is less than 1ms.

The state variables and control variables are presented in
Figure 6. One can see that the control variables obtained
using the AD-MPC carrier landing method are relatively
stable, and there is no significant jitter. Additionally, the
control variables are all constrained by the performance

range of the corresponding actuator, which ensures the feasi-
bility of the control law.

4.2. Control Performance Comparison. In order to verify the
control performance of the AD-MPC carrier landing control
algorithm, the traditional pole assignment method is selected
for comparison. To get better comparison result, the initial
value is increased to -0.35m, and the initial condition x0 is
set as 10−2 × ½0:43 − 0:17 − 0:3 0 − 0:5 01×9�T .

Firstly, set τ as 100ms and the deck motion tracking
results of the two algorithms are given in Figure 7. It is shown
in Figure 7(a) that the aircraft can accomplish the glide path
tracking under the control of pole assignment method when
the deck motion is not introduced into the control system.
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Figure 10: Statistics of Monte Carlo simulation results.
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However, there will be a significant phase lag on the aircraft
height tracking result after the introduction of deck motion.
Further, Figure 7(b) demonstrates that in the initial control
stage, the response speed of pole assignment method is
slightly faster than that of AD-MPC algorithm, but during
the last 15 seconds before landing, the altitude tracking error
range of pole assignment method is about ±0.55m, while this
error range of AD-MPC is ±0.13m, which is only 1/4 of that
of the pole assignment method.

Furthermore, when the time delay is set as 150ms, the
comparison results of the two algorithms are given in
Figure 8. As can be seen from Figure 8(a), due to the increase
of time delay, the pole assignment method cannot effectively
control the height of aircraft even if the deck motion is not
considered. The height of aircraft will fluctuate continuously.
After the introduction of deck motion, the phase lag still
exists, and the tracking performance is worse than that of
Figure 7(a) (τ = 100ms). Further, it can be seen from
Figure 8(b) that within the last 15 seconds before landing,
the height error range of pole placement method is about
±0.6m, while this error range of AD-MPC is ±0.14m. When
the time delay is increased to 200ms, the pole assignment
method will diverge, and it can be seen from Figure 5 that
AD-MPC algorithm can still effectively control the aircraft.

The above analysis shows that the AD-MPC carrier land-
ing control method designed in this paper has stronger anti-
delay capability and higher control accuracy compared with
the traditional pole assignment method.

4.3. Simulation Results for Time Delay Estimation Algorithm.
The time delay estimation results of the two examples in
Section 4.2 are shown in Figures 9(a) and 9(b), respectively.
It can be seen from Figure 9 that the estimation errors of
the two cases are both less than 2ms, which shows that the
PE-PSO algorithm can estimate the time delay accurately.

To further verify the effectiveness of the PE-PSO time
delay estimation algorithm, control delays of 50, 100, 150,
and 200ms are introduced into the landing control system
successively. And for comparison, the artificial fish school
algorithm (AFS) and pigeon-inspired optimization (PIO)
algorithm are selected to replace PSO in PE-PSO. Consider-
ing the four time delay scenarios, Monte Carlo simulations
are carried out 500 times for every situation. The numbers
of population sizes are all set as 20. And the statistical results
are show in Figure 10 and Table 2.

It can be seen from the statistical results that the PIO
algorithm yields the smallest mean fitness function value
(MFFV) among the three methods. The RMSE of AFS is
the minimal except when time delay is 200ms. The RMSE
and the MFFV of the three methods are quite close to each

other (the largest difference is less than 0.52 %), while the
CPU time of AFS is almost 4 times of that of PSO for the
unique trial mechanism of AFS. Meanwhile, the CPU time
of PIO is about 2.3 times of that of PSO.

In fact, there is only one variable to be optimized in time
delay parameter estimation, and the optimization problem is
not complicated. Comparing with the absolute accuracy of
parameter estimation, we are more concerned about how to
obtain the enough accurate delay estimate result in the short-
est time. Shorter time consumption means faster updating
frequency of the delay estimate result. And from the Monte
Carlo simulations, it can be seen that the PE-PSO proposed
in this paper meets this design requirement.

5. Conclusion

Automatic carrier landing control is a challenging problem
based on a variety of disturbances and high control accuracy
requirements. Additionally, the impact of time delays in an
ACLS further increases the difficulty of the carrier landing
control. In this study, the problem of automatic carrier land-
ing control with time delay was examined. The main contri-
butions of this paper can be summarized as follows.

Based on the SP algorithm and PE-PSO time delay esti-
mation algorithm, an AD-MPC carrier landing control algo-
rithm is proposed in this paper. In the framework of MPC,
the algorithm makes full use of the prediction information
of deck motion and the steady-state component of carrier
air wake to improve the control performance. And Padé
approximation principle is also applied to transform the time
delay control system into a nondelay one to avoid the control
performance degradation caused by time delay.

Simulation results demonstrated that the PE-PSO algo-
rithm designed in this study can accurately estimate the pure
time delay in an ACLS. Additionally, the AD-MPC algo-
rithm can effectively overcome the adverse effects of time
delays in the process of landing control. Under typical sea
conditions, the steady-state height error is less than 0.14m,
which is far less than the allowable height error during the
carrier landing process.

Appendix

A. Reference [21]

The second type of generating function on the time interval
½a, b� is expressed as

V = λTb xb −
ðb
a
λT _x −H
� �

dt: ðA:1Þ

Table 2: Statistics of Monte Carlo simulation results.

Real time delay (ms)
RMSE (ms) Mean fitness function (10-7) Mean CPU time (ms)

AFS PIO PSO AFS PIO PSO AFS PIO PSO

50 1.9729 1.9731 1.9771 8.4033 8.4033 8.4038 551.83 340.15 147.43

100 2.0868 2.0869 2.0875 8.5529 8.5528 8.5530 565.67 352.86 148.08

150 1.2372 1.2411 1.2437 8.9680 8.9676 8.9683 541.63 325.35 137.82

200 0.8666 0.8654 0.8622 9.2304 9.2298 9.2319 614.15 328.56 141.37
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By taking the variation of Equation (A.1), and consider-
ing Equation (20), we have

δV = λTa δxa + δλTb xb +
ðb
a
− _x − ∂H

∂λ

	 
T

δλ + _λ + ∂H
∂x

	 
T

δx
" #

dt

= λTa δxa + δλTb xb:
ðA:2Þ

Then, the time interval ½t0, t0 + T� is divided into M
subintervals ΓðjÞ = ½t j−1, t j�(j = 1, 2,⋯M:). And each subin-

terval ΓðjÞ = ½t j−1, t j� is transformed into the time interval

τðjÞ = ½−1, 1� by the linear transformation

τ jð Þ =
2

t j − t j−1
t −

t j + t j−1
2

	 

: ðA:3Þ

The generating function in the jth subinterval is
expressed as

V jð Þ = λTj x j −
ð1
−1

λ jð Þ
� �T

_x jð Þ −
t j − t j−1

2
H jð Þ

	 

dτ: ðA:4Þ

The variables x, λ, μ, and α are approximated using
the NðjÞ-degree Legendre-Gauss-Lobatto (LGL) pseudos-
pectral method in the jth subinterval as follows:

x jð Þ τð Þ = 〠
N jð Þ

i=0
x jð Þ
i ρ

jð Þ
i τð Þ, λ jð Þ τð Þ = 〠

N jð Þ

i=0
λ

jð Þ
i ρ

jð Þ
i τð Þ,

μ jð Þ τð Þ = 〠
N jð Þ

i=0
μ

jð Þ
i ρ

jð Þ
i τð Þ, α jð Þ τð Þ = 〠

N jð Þ

i=0
α

jð Þ
i ρ

jð Þ
i τð Þ,

8>>>>><>>>>>:
ðA:5Þ

where

ρ
jð Þ
i τð Þ = 1

N jð Þ N jð Þ + 1
� �

L jð Þ
i

⋅
τ2 − 1
� �

_L
jð Þ
τð Þ

τ − τ
jð Þ
i

: ðA:6Þ

In (A.6), LðjÞðτÞ is the NðjÞ-degree Legendre polyno-

mial of the interval [-1, 1]. τðjÞl , l = 1, 2,N − 1 are the

LGL points, which are the roots of equation _L
ðjÞðτÞ = 0.

And τðjÞ0 = −1; τðjÞN = 1.
Because xðjÞ0 = x j−1 and λðjÞ

Nð jÞ = λ j are regard as “indepen-
dent variables” in the jth subinterval, the remaining compo-
nents of the state and costate in the jth subinterval are
donated as

�x jð Þ = x jð Þ
1

� �T
, x jð Þ

2

� �T
,⋯, x jð Þ

N jð Þ

� �T� �T
�λ

jð Þ

= λ
jð Þ
0

� �T
, λ

jð Þ
1

� �T
,⋯, λ

jð Þ
N j−1

� �T� �T

:

ðA:7Þ

Define the first-order differentiation matrix ½DðjÞ
kl � as

d
dτ

x jð Þ
k = 〠

N

l=0
D jð Þ
kl x

jð Þ
l : ðA:8Þ

Then, Equation (A.2) can be written as

V jð Þ = λ
jð Þ
N jð Þ

� �T
x jð Þ
N jð Þ − 〠

N jð Þ

k=0
w jð Þ

k λ
jð Þ
k

� �T
〠
N jð Þ

l=0
D jð Þ
kl x

jð Þ
l

 !
−
t j − t j−1

2
H jð Þ

k

 !
,

ðA:9Þ

where

w jð Þ
k =

2
N jð Þ N jð Þ + 1

� � ⋅ 1

L jð Þ
k

� �2 : ðA:10Þ

Based on Equation (A.2), by applying the variational
principle to Equation (A.9) for each subinterval, one has

f x0ð Þ jð Þ = λ j−1 f xmð Þ jð Þ = 0,m = 1, 2,⋯,N jð Þ,

f λN jð Þ

� � jð Þ
= x j f λm

� � jð Þ
= 0,m = 0, 1,⋯,N jð Þ − 1,

8><>:
ðA:11Þ

where

f xmð Þ jð Þ =
∂V jð Þ

∂x jð Þ
m

= 〠
N jð Þ

n=0
Kxx
mnð Þ jð Þx jð Þ

n + 〠
N jð Þ

n=0
Kxλ
mn

� � jð Þ
λ jð Þ
n + ξxm

� � jð Þμ jð Þ
m + ζxm

� � jð Þ,

f λm
� � jð Þ

=
∂V jð Þ

∂λ jð Þ
m

= 〠
N jð Þ

n=0
Kλx

mn

� � jð Þ
x jð Þ
n + 〠

N jð Þ

n=0
Kλλ

mn

� � jð Þ
λ jð Þ
n + ξλm

� � jð Þ
μ jð Þ
m + ζλm

� � jð Þ
:

8>>>>><>>>>>:
ðA:12Þ
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Detailed expressions of ðKxx
mnÞðjÞ, ðKxλ

mnÞ
ðjÞ
, ðξxmÞðjÞ, ðζxmÞðjÞ,

ðKλx
mnÞ

ðjÞ
, ðKλλ

mnÞ
ðjÞ
, ðξλmÞ

ðjÞ
, and ðζλmÞ

ðjÞ
are listed as follows:

Kxx
mnð Þ jð Þ =

t j − t j−1
2

w jð Þ
m P jð Þ

m − Q jð Þ
m

� �T
R jð Þ
m

� �‐1
Q jð Þ

m

	 

δnm,

Kxλ
mn

� � jð Þ
= Kλx

nm

� � jð Þ	 
T

= −w jð Þ
n D jð Þ

nmI + δN
jð Þ

m I +
t j − t j−1

2
w jð Þ

m

	
� A jð Þ

m

� �T
− Q jð Þ

m

� �T
R jð Þ
m

� �‐1
B jð Þ
m

� �T	 


δnm,

Kλλ
mn

� � jð Þ
= −

t j − t j−1
2

w jð Þ
m B jð Þ

m R jð Þ
m

� �‐1
B jð Þ
m

� �T
δnm,

ξxm
� � jð Þ =

t j − t j−1
2

w jð Þ
m C jð Þ

m

� �T
− Q jð Þ

m

� �T
R jð Þ
m

� �‐1
D jð Þ

m

� �T	 

,

ζxm
� � jð Þ =

t j − t j−1
2

w jð Þ
m E jð Þ

m − P jð Þ
m xrefð Þ jð Þ

m + Q jð Þ
m

� �T	
� R jð Þ

m

� �‐1
Q jð Þ

m xrefð Þ jð Þ
m − F jð Þ

m

� �

,

ξλm

� � jð Þ
= −

t j − t j−1
2

w jð Þ
m B jð Þ

m R jð Þ
m

� �−1
D jð Þ

m

� �T
,

ζλm

� � jð Þ
=
t j − t j−1

2
w jð Þ

m B jð Þ
m R jð Þ

m

� �‐1
Q jð Þ

m xrefð Þ jð Þ
m − F jð Þ

m

� �	
+ B jð Þ

m urefð Þ jð Þ
m +w jð Þ

m



:

ðA:13Þ

Furthermore, Equation (A.11) can be rewritten into a
compact form as

K jð Þ

x j−1
�x jð Þ

�λ
jð Þ

λj

2666664

3777775 +
ξxð Þ jð Þ

ξλð Þ jð Þ

" #
μ∧ jð Þ +

ζxð Þ jð Þ

ζλð Þ jð Þ

" #
=

λj−1

0dN jð Þ ,1

0dN jð Þ ,1

x j

2666664

3777775,
ðA:14Þ

where

K jð Þ =

K jð Þ
11 K jð Þ

12 K jð Þ
13 K jð Þ

14

K jð Þ
21 K jð Þ

22 K jð Þ
23 K jð Þ

24

K jð Þ
31 K jð Þ

32 K jð Þ
33 K jð Þ

34

K jð Þ
41 K jð Þ

42 K jð Þ
43 K jð Þ

44

2666666664

3777777775

=

Kxx
00ð Þ 0d ⋯ 0d 0d Kxλ

00

� �
Kxλ
01

� �
⋯ Kxλ

0,N jð Þ−1

� � jð Þ
Kxλ

0N jð Þ

� � jð Þ

0d Kxx
11ð Þ jð Þ ⋯ 0d 0d Kxλ

10

� �
Kxλ
11

� �
⋯ Kxλ

1,N jð Þ−1

� � jð Þ
Kxλ

1N jð Þ

� � jð Þ

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0d 0d ⋯ Kxx
N jð Þ−1,N jð Þ−1

� �
0d Kxλ

N jð Þ−1,0

� � jð Þ
Kxλ
N jð Þ−1,1

� � jð Þ
⋯ Kxλ

N jð Þ−1,N jð Þ−1

� � jð Þ
Kxλ
N jð Þ−1,N jð Þ

� � jð Þ

0d 0d ⋯ 0d Kxx
N jð ÞN jð Þ

� � jð Þ Kxλ
N jð Þ0

� � jð Þ
Kxλ

N jð Þ1

� � jð Þ
⋯ Kxλ

N jð Þ ,N jð Þ−1

� � jð Þ
Kxλ

N jð ÞN jð Þ

� � jð Þ

Kλx
00

� � jð Þ
Kλx

01

� � jð Þ
⋯ Kλx

0,N jð Þ−1

� � jð Þ
Kλx
0N jð Þ

� � jð Þ
Kλλ

00

� � jð Þ
0d ⋯ 0d 0d

Kλx
10

� � jð Þ
Kλx

11

� � jð Þ
⋯ Kλx

1,N jð Þ−1

� � jð Þ
Kλx
1N jð Þ

� � jð Þ
0d Kλλ

11

� � jð Þ
⋯ 0d 0d

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

Kλx
N jð Þ−1,0

� � jð Þ
Kλx

N jð Þ−1,1

� � jð Þ
⋯ Kλx

N jð Þ−1,N jð Þ−1

� � jð Þ
Kλx
N jð Þ−1,N jð Þ

� � jð Þ
0d 0d ⋯ Kλλ

N jð Þ−1,N jð Þ−1

� � jð Þ
0d

Kλx
N jð Þ0

� � jð Þ
Kλx
N jð Þ1

� � jð Þ
⋯ Kλx

N jð Þ ,N jð Þ−1

� � jð Þ
Kλx

N jð ÞN jð Þ

� � jð Þ
0d 0d ⋯ 0d Kλλ

N jð ÞN jð Þ

� � jð Þ

26666666666666666666666666666666666666664

37777777777777777777777777777777777777775

,

ξxð Þ jð Þ = diag ξx0
� � jð Þ, ξx1

� � jð Þ,⋯, ξxN jð Þ
� � jð Þ� �

, ξλð Þ jð Þ = diag ξλ0

� � jð Þ
, ξλ1

� � jð Þ
,⋯, ξλN jð Þ

� � jð Þ	 

,

ζxð Þ jð Þ = ζx0
� � jð Þ� �T

, ζx1
� � jð Þ� �T

,⋯, ζxN jð Þ
� � jð Þ� �T� �T

, ζλð Þ jð Þ = ζλ0

� � jð Þ	 
T

, ζλ1

� � jð Þ	 
T

,⋯, ζλN jð Þ

� � jð Þ	 
T
( )T

,

μ∧ jð Þ = μ
jð Þ
0

� �T
, μ

jð Þ
1

� �T
,⋯, μ

jð Þ
N jð Þ

� �T� �T

: ðA:15Þ
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Define

ξ jð Þ =
ξxð Þ jð Þ

ξλð Þ jð Þ

" #
, ζ jð Þ =

ζxð Þ jð Þ

ζλð Þ jð Þ

" #
,

rini = λT0 , 01, 2N 1ð Þ+1ð Þd
n oT

, rter = 01, 2N Qð Þ+1ð Þd , xTQ
n oT

,

σ = xT0 , �x 1ð Þ
� �T

, �λ
1ð Þ� �T

, λT1 , xT1 , �x 2ð Þ
� �T

,
�

� �λ
2ð Þ� �T

, λT2 ,⋯, xTQ−1, �x Qð Þ
� �T

, �λ
Qð Þ� �T

, λTQ
�T

: ðA:16Þ

Equation (A.11) within all subintervals can be rewritten
into a more compact form as

Kσ + ξbμ + ζ = r, ðA:17Þ

where

K =

K 1ð Þ
11 K 1ð Þ

12 K 1ð Þ
13 K 1ð Þ

14

K 1ð Þ
21 K 1ð Þ

22 K 1ð Þ
23 K 1ð Þ

24

K 1ð Þ
31 K 1ð Þ

32 K 1ð Þ
33 K 1ð Þ

34

K 1ð Þ
41 K 1ð Þ

42 K 1ð Þ
43 K 1ð Þ

44 −I

−I K 2ð Þ
11 K 2ð Þ

12 K 2ð Þ
13 K 2ð Þ

14

K 2ð Þ
21 K 2ð Þ

22 K 2ð Þ
23 K 2ð Þ

24

K 2ð Þ
31 K 2ð Þ

32 K 2ð Þ
33 K 2ð Þ

34

K 2ð Þ
41 K 2ð Þ

42 K 2ð Þ
43 K 2ð Þ

44 −I
−I ⋱ −I

−I K Qð Þ
11 K Qð Þ

12 K Qð Þ
13 K Qð Þ

14

K Qð Þ
21 K Qð Þ

22 K Qð Þ
23 K Qð Þ

24

K Qð Þ
31 K Qð Þ

32 K Qð Þ
33 K Qð Þ

34

K Qð Þ
41 K Qð Þ

42 K Qð Þ
43 K Qð Þ

44

26666666666666666666666666666666666664

37777777777777777777777777777777777775

,

ðA:18Þ

ξ = diag ξ 1ð Þ, ξ 2ð Þ,⋯, ξ Qð Þ
� �

, ζ

= ζ 1ð Þ
� �T

, ζ 2ð Þ
� �T

,⋯, ζ Qð Þ
� �T� �T

, bμ
= μ∧ 1ð Þ
� �T

, μ∧ 2ð Þ
� �T

,⋯, μ∧ Qð Þ
� �T� �T

,

ðA:19Þ

r = rini
� �T , 01,2d N 2ð Þ+1ð Þ, 01,2d N 3ð Þ+1ð Þ,⋯, 01,2d N Q−1ð Þ+1ð Þ, rter

� �Tn oT
:

ðA:20Þ
In Equation (A.18),K is symmetric since Equation (A.17)

is obtained by variational principle.
Consider the jth subinterval and impose Equation (21) at

all ðNðjÞ + 1Þ LGL nodes, we have

G jð Þ
m x jð Þ

m −H jð Þ
m λ jð Þ

m −M jð Þ
m μ jð Þ

m + ~v jð Þ
m + α jð Þ

m = 0, m = 0, 1,⋯,N jð Þ,
ðA:21Þ

where

G jð Þ
m =C jð Þ

m −D jð Þ
m R jð Þ

m

� �−1
Q jð Þ

m

� �T
,H jð Þ

m

=D jð Þ
m R jð Þ

m

� �−1
B jð Þ
m

� �T
,M jð Þ

m

=D jð Þ
m R jð Þ

m

� �−1
D jð Þ

m

� �T
,

~v jð Þ
m =D jð Þ

m urefð Þ jð Þ
m − R jð Þ

m

� �−1
F jð Þ
m −Q jð Þ

m xrefð Þ jð Þ
m

� �	 

+ v jð Þ

m :

ðA:22Þ

All ðNðjÞ + 1Þ relationships of Equation (A.21) within the
jth subinterval can be rewritten as

G jð Þx∧ jð Þ −H jð Þλ∧ jð Þ −M jð Þμ∧ jð Þ + v∧ jð Þ + α∧ jð Þ = 0, ðA:23Þ

where

G jð Þ =

G jð Þ
0

G jð Þ
1

⋱

G jð Þ
N jð Þ

266666664

377777775
,H jð Þ

=

H jð Þ
0

H jð Þ
1

⋱

H jð Þ
N jð Þ

266666664

377777775
,M jð Þ

=

M jð Þ
0

M jð Þ
1

⋱

M jð Þ
N jð Þ

266666664

377777775
,

x∧ jð Þ = x jð Þ
0

� �T
, x jð Þ

1

� �T
,⋯, x jð Þ

N jð Þ

� �T� �T

, λ∧ jð Þ

= λ
jð Þ
0

� �T
, λ

jð Þ
1

� �T
,⋯, λ

jð Þ
N jð Þ

� �T� �T

,

v∧ jð Þ = ~v jð Þ
0

� �T
, ~v jð Þ

1

� �T
,⋯, ~v jð Þ

N jð Þ

� �T� �T

, α∧ jð Þ

= α
jð Þ
0

� �T
, α

jð Þ
1

� �T
,⋯, α

jð Þ
N jð Þ

� �T� �T

:

ðA:24Þ

Equation (A.23) within all subintervals can be rewritten
into a more compact form as

Gx̂ −Hbλ −Mbμ + v̂ + bα = 0, ðA:25Þ
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where

G = diag G 1ð Þ,G 2ð Þ,⋯,G Qð Þ
� �

,H

= diag H 1ð Þ,H 2ð Þ,⋯,H Qð Þ
� �

,M

= diag M 1ð Þ,M 2ð Þ,⋯,M Qð Þ
� �

,

x̂ = x∧ 1ð Þ
� �T

, x∧ 2ð Þ
� �T

,⋯, x∧ Qð Þ
� �T� �T

, bλ
= λ∧ 1ð Þ
� �T

, λ∧ 2ð Þ
� �T

,⋯, λ∧ Qð Þ
� �T� �T

,
v̂ = v∧ 1ð Þ

� �T
, v∧ 2ð Þ
� �T

,⋯, v∧ Qð Þ
� �T� �T

, bα
= α∧ 1ð Þ
� �T

, α∧ 2ð Þ
� �T

,⋯, α∧ Qð Þ
� �T� �T

:

ðA:26Þ

Similarly, the inequality in Equation (21) within all
subintervals can be rewritten as follows:

bα ≥ 0, bμ ≥ 0, μ∧T bα = 0: ðA:27Þ

The boundary conditions of free terminal state are applied
to Equation (A.17). And Equation (A.17) can be modified as

Kfσ + ξf bμ + ζf = rf , ðA:28Þ

where the detailed expressions of K f , ξf , ζf , and rf can be
found in reference [19].

By deducing Equation (A.28), σ can be written as

σ = −K−1
f ξf bμ +K−1

f rf − ζf
� �

orσ =Ωbμ + φ, ðA:29Þ

where Ω = −K−1
f ξf and φ =K−1

f ðrf − ζf Þ .
Then, x̂ and bλ can be expressed as the linear functions ofbμ as

x̂ =Ωxbμ + φx , bλ =Ωλbμ + φλ, ðA:30Þ

where

Πx =

Π 2d〠
0

k=1
N kð Þ + 1
� �

+ 1 : 2d〠
0

k=1
N kð Þ + 1
� �

+ d N 1ð Þ + 1
� �" #

Π 2d〠
1

k=1
N kð Þ + 1
� �

+ 1 : 2d〠
1

k=1
N kð Þ + 1
� �

+ d N 2ð Þ + 1
� �" #

⋮

Π 2d 〠
Q−1

k=1
N kð Þ + 1
� �

+ 1 : 2d 〠
Q−1

k=1
N kð Þ + 1
� �

+ d N Qð Þ + 1
� �" #

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

,

Πλ =

Π 2d〠
0

k=1
N kð Þ + 1
� �

+ d N 1ð Þ + 1
� �

+ 1 : 2d〠
1

k=1
N kð Þ + 1
� �" #

Π 2d〠
1

k=1
N kð Þ + 1
� �

+ d N 1ð Þ + 1
� �

+ 1 : 2d〠
2

k=1
N kð Þ + 1
� �" #

⋮

Π 2d 〠
Q−1

k=1
N kð Þ + 1
� �

+ d N 1ð Þ + 1
� �

+ 1 : 2d〠
Q

k=1
N kð Þ + 1
� �" #

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

,

ðA:31Þ

whereΠ refers toΩ or φ and the symbolΘ½a : b� refers to the
submatrix which contains a ~ b rows of the matrix Θ.

Substituting Equation (A.30) into Equation (A.25),
one has

Ybμ + q = bα , ðA:32Þ

where

Y =M −GΩx +HΩx , q =Hφλ −Gφλ − v̂: ðA:33Þ

Then, we get a standard LCP as follows:

Ybμ + q = bα ,bα ≥ 0, bμ ≥ 0, μ∧T bα = 0:

(
ðA:34Þ

The LCP can be solved by the classical Lemke’s algo-

rithm. Then, x̂ and bλ can be obtained by Equation
(A.30). Finally, the control variables can be obtained
based on the first equation of Equation (20).

Data Availability

The data used to support the findings of this study are
included within the article.
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