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An antisaturation backstepping control scheme based on constrained command filter for hypersonic flight vehicle (HFV) is
proposed with the consideration of angle of attack (AOA) constraint and actuator constraints of amplitude and rate. Firstly,
the HFV system model is divided into velocity subsystem and height subsystem. Secondly, to handle AOA constraint, a
constrained command filter is constructed to limit the amplitude of the AOA command and retain its differentiability. And the
constraint range is set in advance via a prescribed performance method to guarantee that the tracking error of the AOA meets
the constraint conditions and transient and steady performance. Thirdly, the proposed constrained command filter is
combined with the auxiliary system for actuator constraints, which ensures that the control input meets the limited
requirements of amplitude and rate, and the system is stable. In addition, the tracking errors of the system are proved to be
ultimately uniformly bounded based on the Lyapunov stability theory. Finally, the effectiveness of the proposed method is
verified by simulation.

1. Introduction

Hypersonic flight vehicle (HFV) has attracted wide attention
in the world due to its great application prospect in military
and civil fields. As the key technology to develop HFV, flight
control technology can realize tracking trajectory and stable
flight. Therefore, the research on the controller design of
HFV is significant to its development.

HFV is characterized by large flight envelope, complex
flight characteristics, and variable external environment
and is strong coupled, nonlinear, and uncertain [1]. It is
challenging to design a controller for HFV. For the problem
of nonminimum phase, Ref. [2] proposes a control-oriented
model which ignored the lift-lift coupling. At present, the
commonly used idea is to design controllers for the input-
output subsystem based on output redefinition method [3,
4]. An alternative method which is available for dealing with
the controller design problem of such a strong nonlinear sys-
tem as HFV is backstepping approach [5–11]. The backstep-
ping method is applied firstly to the attitude control of HFV

in Ref. [5], and the control design is completed, and the sta-
ble tracking of the system is realized. The problem of “differ-
ential explosion” occurs easily in the design of the
backstepping controller due to the high order of the altitude
subsystem of HFV. To solve the problem, the command fil-
ter [6], dynamic surface control [8, 9], tracking differentiator
[10, 11], and other technologies are widely used in the back-
stepping control method. To deal with uncertainties as well
as external disturbance of HFV, disturbance observers [12,
13] and intelligent approximations [14–16] are widely used
in controller design. In addition, in order to improve the
transient performance of the control system, the prescribed
performance method is applied in the controller design
[17–19]. This method originally proposed by Bechlioulis
and Rovithakis [20], which could characterize the conver-
gence rate and maximum overshoot of tracking error such
that the desired transient performance is achievable by lim-
iting the tracking error in the prescribed convergence range.

Although a lot of progress has been made in the control-
ler design of HFV, the AOA constraint has not gotten
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enough attention. The scramjet engine used in HFV is
extremely sensitive to AOA, and its intake efficiency
depends on the AOA. The amplitude of AOA must meet
certain constraints to ensure the normal operation of the
scramjet, otherwise it will cause scramjet thermal choke
problem [21]. The traditional method that makes AOA meet
the constraint requirements is to make AOA converge to a
desired trim value [22, 23]. However, this method cannot
prove that the AOA would be guaranteed to fall into prede-
fined interval in theory. At present, barrier Lyapunov func-
tion (BLF) has been effectively used in dealing with the
problem of AOA constraint [24–29]. The main characteris-
tic of BLF is that its value tends to infinity as the system
approaches a predefined boundary. The boundedness of
the BLF indicates that the AOA error is constrained within
the specified range. Ref. [24] proposes a modified adaptive
dynamic surface control scheme. An asymmetric BLF is
introduced in this scheme to guarantee state constraints of
HFV. However, in the above literatures on the AOA con-
straint, the proposed control schemes need to assume that
the initial error of AOA satisfies the constraint condition.
In practice, the initial error of AOA is difficult to obtain
accurately. In addition, most studies focus on the steady-
state performance of AOA error and ignore its dynamic per-
formance. If the tracking error has a good dynamic perfor-
mance, the AOA constraint problem will be better handled
and the maneuverability of HFV will be further improved.

In practice, the control force provided by the actuator is
limited. It is easy to cause the problem of actuator saturation
due to the high-altitude flight of HFV and the influence of
the external environment [30]. The ideal control law cannot
be effectively implemented when the system is saturated,
which leads to large deviation in command tracking and
even seriously affecting the stability of the system [31].
Therefore, the input saturation problem cannot be ignored.
The commonly method is to construct the auxiliary system
in the controller design process [31–35]. The auxiliary vari-
ables in the system compensate the tracking error and stabi-
lize the system when actuators are saturated. However, the
existence of auxiliary variables affects the convergence of
tracking errors inevitably. Therefore, Refs. [33, 34] construct
new auxiliary system whose auxiliary variable can converge
with faster speed and higher precision when actuator exits
saturation. However, the above studies only consider the
amplitude saturation of the control input. In practice, the
rate of actuators of HFV has also certain limitations. Ref.
[36] further considers the saturation of the actuator’s ampli-
tude and rate at the same time. The command filter is con-
structed to constrain the control input, but this method
lacks theoretical proof, and the constraint effect of filter is
difficult to guarantee in [36]. Ref. [37] proposes an adaptive
control scheme with multiple constraints on the amplitude
and rate of the actuator. Although the amplitude and rate
of the control input are constrained effectively by this
scheme, the controller design is too complicated.

In general, in order to solve the control problem of HFV
considering AOA limitation and actuator constraint of
amplitude and rate, an antisaturation backstepping control
strategy based on the constrained command filter is pro-

posed. Compared with the existing research work, the main
contributions of this paper are as follows:

(1) A control method combining the constrained com-
mand filter and prescribed performance method is
proposed to handle the problem of AOA constraint.
Compared with Refs. [24–29], there is no need to
assume that the initial error of AOA is within the
limited range in this method, which is easier to
implement in practice. In addition, the transient per-
formance of AOA error is further improved, and the
theoretical proof that AOA meets the constraint con-
ditions is completed

(2) A control method combining constrained command
filter and auxiliary system is proposed to handle
actuator constraint. Different from Refs. [31–35],
this paper further considers the saturation of the
actuator’s rate. The control input can satisfy the limit
conditions of amplitude and rate in this paper. Com-
pared with Ref. [36, 37], the control law design in
this paper is simpler and easier to implement in
practice, and the theoretical proof is completed to
guarantee the effectiveness of proposed method

The rest of this paper is organized as follows: Section 2
formulates the HFV model and preliminaries; Section 3 pre-
sents the controller design process; Sections 4 and 5 give a
stability analysis and a simulation study, respectively; the
conclusions are proposed in Section 6.

2. HFV Model and Preliminaries

2.1. HFV Model. In this paper, we consider the longitudinal
control-oriented FHV model developed by Ref. [2]:

_V =
T cos α −D

m
− g sin γ, ð1Þ

_h =V sin γ, ð2Þ

_γ =
L + T sin α

mV
−
g cos γ

V
, ð3Þ

_α = q − _γ, ð4Þ

_q =
M
Iyy

, ð5Þ

where velocity V , altitude h, flight-path γ, AOA α, and pitch
rate q are rigid body states; m, g, and Iyy represent vehicle
mass, acceleration owing to gravity, and moment of inertia,
respectively; and T , D, L, andM represent thrust, drag force,
lift, and pitch moment, respectively, with the following
expressions [18]:
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D ≈QS Cα2

D α
2 + Cα

Dα + C0
D

� �
,

L = L0 + Lαα,

T = TΦ αð ÞΦ + T0 αð Þ,
M =MT +M0 αð Þ +Mδe

δe,

8>>>>>><
>>>>>>:

ð6Þ

where Q = ð1/2ÞρV2 represents dynamic pressure, in which
ρ is air density; S represents reference area; Φ, δe represent
deflection fuel equivalency ratio and elevator angular deflec-
tion, respectively; Cα2

D , C
α
D, C

0
D, L0, Lα, TΦðαÞ, T0ðαÞ repre-

sent the related aerodynamic parameters of thrust, drag
force, and lift, respectively; and MT , M0ðα:Þ, and Mδe

repre-
sent the related parameters of pitch moment.

Assumption 1. The value of the term T sin α in equation (3)
is much smaller than the value of lift L, so this term can be
ignored.

The assumption can be verified by calculation according
to the model data and the range of states provided in Ref.
[2]. In addition, the rationality of the assumption is also
explained and analyzed in Ref. [38].

The outputs of the system model are velocity V and alti-
tude h; the control inputs are fuel equivalent ratio Φ and ele-
vator angular deflection δe. According to the models (1)–(5)
and Assumption 1, it can be seen that the velocity V change
is mainly controlled by the fuel equivalent ratio Φ, and the
elevator angular deflection δe controls the altitude h by
directly controlling the change of the pitch rate q and then
controlling the change of AOA α and flight-path γ. In order
to facilitate the design of the control law, the models (1)–(5)
can be decomposed into velocity subsystem and height sub-
system under normal circumstances [39]:

_V = f V + gVΦ + d1, ð7Þ

_h =V sin γ,

_γ = f γ + gγα + d2,

_α = f α + q − d2,

_q = f q + gqδe + d3,

8>>>>><
>>>>>:

ð8Þ

where

f V =
T0 αð Þ cos α −D

m
− g sin γ, gV =

TΦ αð Þ cos α
m

,

f γ =
L0 −mg cos γ

mV
, gγ =

Lα
mV

,

f α = −f γ − gγα,

f q =
MT +M0 αð Þ

Iyy
, gq =

Mδe

Iyy
:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð9Þ

diði = 1, 2, 3Þ represent disturbance items, including
external interference and parameter perturbation, and the
following assumption is made:

Assumption 2. The first derivatives of disturbance terms dið
i = 1, 2, 3Þ are bounded.

Assumption 2 is common in existing results for the lon-
gitudinal motion model of HFV, and the analysis of litera-
tures has shown that this assumption is in line with the
actual physical system and external flight environment of
HFV, such as Refs. [24, 33].

2.2. Actuator Saturation and AOA Constraint. In order to
avoid the phenomenon of thermal choke in the actual pro-
ject, the fuel equivalent ratio Φ needs to be within a certain
range, otherwise scramjet will stop working [34]. The
restricted fuel equivalent ratio Φ can be described as

Φ =HΦ Φdð Þ =
Φmax,Φd ≥Φmax,

Φd ,Φmin <Φd <Φmax

Φmin,Φd ≤Φmin,

8>><
>>: , ð10Þ

where Φd represents the ideal control law and Φmax and
Φmin are the upper and lower bounds of Φ, respectively.

The amplitude and rate of the elevator angular deflection
δe are limited due to the deflection limit of actual physical
mechanism, and the limited conditions can be described as

δe =Hδe
δedð Þ =

δmax, δed ≥ δmax,

δed , δmin < δed < δmax,

δmin, δed ≤ δmin,

8>><
>>: ð11Þ

Ψe =HΨ Ψedð Þ =
Ψmax,Ψed ≥Ψmax,

Ψed ,Ψmin <Ψed <Ψmax

Ψmin,Ψed ≤Ψmin,

8>><
>>: , ð12Þ

where δed represents the ideal control law; δmax and δmin are
the upper and lower bounds of δe, respectively; Ψe = _δe is the
rate of elevator angular deflection; Ψed = _δed is the rate of the
ideal control law; and Ψmax and Ψmin are the upper and
lower bounds of Ψe, respectively.

The scramjet of HFV is extremely sensitive to the AOA
which directly affects its operating conditions [21]. The nor-
mal operation of the scramjet requires AOA to be in an
allowable range. So it is necessary to consider AOA con-
straint which can be expressed as

Am ≤ α ≤ AM , ð13Þ

where AM and Am are the upper and lower bounds of AOA,
respectively.

2.3. Prescribed Performance. The prescribed performance
[20] method includes performance function and error trans-
formation, which means that while the tracking error
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converges in an arbitrary small set, the convergence rate and
overshoot of the tracking error meet the prescribed
conditions.

Performance function ϖðtÞ is a strictly decreasing posi-
tive function. Then, the objective of guaranteeing prescribed
tracking performance is equivalent to ensure that

−ϖ tð Þ < e tð Þ < ϖ tð Þ: ð14Þ

To transform inequality constraints into equality con-
straints, define

e tð Þ = ϖ tð ÞS εð Þ, ð15Þ

where ε denotes transformed error. The conversion function
is defined as SðεÞ = ðeε − e−εÞ/ðeε + e−εÞ. It is easy to know
that SðεÞ is a smooth and strictly increasing reversible func-
tion with the following properties:

−1 < S εð Þ < 1,

lim
ε⟶−∞

S εð Þ = −1,

lim
ε⟶∞

S εð Þ = 1:

8>>><
>>>:

ð16Þ

Further, the inverse transformation of SðεÞ is defined as

ε = S−1 e, ϖð Þ = 1
2
ln

1 + e/ϖ
1 − e/ϖ

� �
: ð17Þ

Remark 3. According to equation (17), if ε is bounded, then
inequality (14) holds. That is, the tracking error of system is
not only bounded but also limited within the setting range,
which guarantees that it meets the requirements of pre-
scribed transient and steady-state performance.

2.4. Command Filter. The command filter in [40] is as fol-
lows:

_χ1 = χ2,

_χ2 = 2τω
ω2

2τω
xd − χ1ð Þ − χ2

� �
,

8><
>: ð18Þ

where xd is the filter input; the outputs χ1 and χ2 are the
estimated value of xd and its first derivative; the filter design
parameters are ω > 0 and τ ∈ ð0, 1�.

According to Ref. [40], there are lim
ω⟶∞

χ1 = xd and

lim
ω⟶∞

χ2 = _xd . Therefore, the following assumption is made.

Assumption 4. There exist unknown constants η1 > 0, η2 > 0
such that jx1 − xdj ≤ η1 and jx2 − _xdj ≤ η2.

2.5. Linear Extended State Observer. Consider the following
first-order uncertain system:

_x1 tð Þ = f x1ð Þ + g x1ð Þu + d tð Þ,
y = x1 tð Þ,

(
ð19Þ

where dðtÞ represents the uncertain term, it is assumed that
dðtÞ is continuous, and its first derivative is bounded. For
this system, LESO can be established as shown below:

e1 tð Þ = x1 tð Þ − x̂1 tð Þ,
_̂x1 tð Þ = x̂2 tð Þ + l1e1 tð Þ + f x1ð Þ + g x1ð Þu,
_̂x2 tð Þ = l2e1 tð Þ,

8>><
>>: ð20Þ

where x̂1ðtÞ is the estimation value of x1ðtÞ; x̂2ðtÞ is the esti-
mation value of dðtÞ; and li > 0ði = 1, 2Þ.

The bandwidth configuration method [41] is used to
select the parameters which meet the following conditions:
½l1, l2� = ½ω0α1, ω0α2�, where ω0 is the bandwidth of the
observer, and the parameters are chosen as αi = 3!/i!∙ð3 − iÞ
!ði = 1, 2Þ. According to Ref. [42] on the proof of LESO con-
vergence that the observation error ~d = x̂2 − d converges to
zero in a finite time, the assumption can be made as follows.

Assumption 5. LESO estimation error is bounded, and there
exists an unknown constant ~D > 0, such that j~dj ≤ ~D.

3. Controller Design

For the control objective, considering that the control system
of HFV with AOA constraint and actuator constraints of
amplitude and rate, the system output can track the com-
mand signal stably, and the actuators and AOA meet the
constraints. The structure of control scheme presented for
FHV is shown in Figure 1.

3.1. Velocity Subsystem Controller Design. According to
equation (7), the tracking error is defined as e = V −Vd ,
where Vd is the velocity command. The compensation error
is defined as

υV = eV − ξV , ð21Þ

where ξV is the auxiliary variable to be designed.
Combining equation (7) and deriving equation (21), we

get

_υV = f V + gVΦ + d1 − _Vd − _ξV : ð22Þ

The subsystem control law is designed as

Φd =
1
gV

−kVυV − f V + _Vd − d̂1 − kVξξV
� �

, ð23Þ

where kV > 0, kVξ > 0, and d̂1 is the LESO estimation of d1.
Considering the input saturation problem of fuel equiv-

alent ratio Φ, by substituting equation (23) into equation
(10), the actual control input can be obtained:

Φ =HΦ Φdð Þ: ð24Þ
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In order to guarantee the stability of system when fuel
equivalent ratio Φ is saturated, the auxiliary compensation
system is designed as

_ξV = −kVξξV + gV Φ −Φdð Þ: ð25Þ

Substituting equations (23)–(25) into equation (22), we
get

_υV = −kVυV + d1 − d̂1: ð26Þ

3.2. Height Subsystem Controller Design. Define the height
tracking error eh = h − hd , where hd is the height command.
According to Ref. [24], the virtual control law is designed as

γd = arcsin
−kheh + _hd

V

 !
, ð27Þ

where kh > 0 is the designed parameter.
Define the errors of flight path, AOA, and pitch rate,

respectively

eγ = γ − γd , eα = α − αd , eq = q − qd , ð28Þ

where αd and qd are the virtual control laws to be designed.
Considering that it is difficult to obtain the derivative of

the virtual law in the design of the backstepping controller,

the command filter is introduced to estimate the virtual
command γd and its derivative _γd .

_χγ1 = χγ2,

_χγ2 = 2τγωγ

ω2
γ

2τγωγ

γd − χγ1

� �
− χγ2

" #
,

8>><
>>: ð29Þ

where τγ > 0 and ωγ > 0.

Step 1. Define compensation error

υγ = eγ − ξγ, ð30Þ

where ξγ is the auxiliary variable to be designed.

Combining equation (8) and deriving (30), we get

_υγ = f γ + gγαd + gγeα + d2 − _γd − _ξγ: ð31Þ

Considering the problem of AOA constraint, the desired
control law αc needs to be limited; and in order to ensure the
differentiability of the limiting command, the following con-
strained command filter is constructed to obtain the control
law αd :

_χα1 = χα2,

_χα2 = 2ταωα

ω2
α

2ταωα

sat αcð Þ − χα1ð Þ − χα2

� �
,

αd = χα1,

8>>><
>>>:

ð32Þ

LESO 2

V

𝜉V
𝜐V

𝛷d𝛷

dh

h

e𝛼

𝜔𝛼

𝛼d

++

–

–

+

–

+

–

q

q

𝛷

V

𝜉q

𝜉𝛾

𝜐q

𝛿e

𝛿e
𝛿ed

Φ

Actuators constra ints

Auxiliary compensation
system

+

Vd

𝛷d

±
–

Controller of
velocity subsystem

d1
⌃

d2
⌃d2

⌃
d3
⌃

–
–

LESO 1

AHV model

Saturation
function

Constrained
command filter

𝛿e

𝛿ed

+
–

LESO 3

Controller of
step 3

Auxiliary
compensation

system

Controller
of step 2–

–

–

+
qd

𝛼

𝛼c

𝛼c
𝛼d

𝜐𝛾 Constrained
command filter

of AOA

Cntroller
of step 1

Auxiliary
compensation

system

𝛾d

eh 𝛾

𝛾

Control law

AOA constraint

Figure 1: The structure of control scheme presented for FHV.
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where τα > 0 and ωα > 0. The saturation function is as fol-
lows:

sat αcð Þ =
αM , αc > αM ,

αc, αm ≤ αc ≤ αM

αm, αc < αM ,

8>><
>>: , ð33Þ

where αM > 0 and αm < 0 are the upper and lower bounds of
AOA command, respectively.

Remark 6. In equation (32), the initial values of χα1 and χα2
are set as χα1ð0Þ = αð0Þ and χα2ð0Þ = −ðωα + 1Þχα1ð0Þ.

The purpose is to make the initial error of AOA zero and
meet specific constraint. Compared with Refs. [24–29], there
is no need to assume that the initial error satisfies the con-
straints. And it can be ensured that the AOA command αd
meets the limiting condition by assigning an initial value;
the relevant proof will be given below.

In order to offset the influence caused by limiting AOA
command, the auxiliary compensation system is designed as

_ξγ = −kγξξγ + gγ sat αcð Þ − αcð Þ, ð34Þ

where kγξ > 0.
Combining equations (31) and (34), the virtual control

law is designed as

αc =
1
gγ

−kγυγ −
g2γυγ
2

− f γ − d̂2 + χγ2 − kγξξ

 !
, ð35Þ

where kγ > 0 and d̂2 is the LESO estimation of d2.
Substituting equations (34) and (35) into equation (31),

we get

_υγ = −kγυγ + gγeα + gγ αd − sat αcð Þð Þ − 1
2
g2
γυγ + d2 − d̂2 + χγ2 − _γd:

ð36Þ

Step 2. Define the performance function for AOA error

ϖα tð Þ = ϖ0 − ϖ∞ð Þ exp −μtð Þ + ϖ∞, ð37Þ

where ϖ0 > 0, ϖ∞ > 0, μ > 0,and ϖ0 > ϖ∞.

According to equation (17), the AOA error is trans-
formed as

εα tð Þ = 1
2
ln

1 + eα/ϖα

1 − eα/ϖα

� �
: ð38Þ

Remark 7. This paper constrains the AOA error within the
prescribed range by using the prescribed performance
method, which can further improve the transient perfor-
mance of the tracking error while ensuring its steady-state
performance.

Combining equations (28) and (8), the derivative of εα is
given by

_εα = rα f α + qd + eq − d2 − _αd
� 	

+ να, ð39Þ

where

rα =
1

1 − eα/ϖαð Þ2 ∙
1
ϖα

> 0,

να =
1

1 − eα/ϖαð Þ2 ∙
_ϖα

ϖ2
α

ð40Þ

The virtual control law is designed as

qd = −kαεα −
ϖ2
α

rα
εα −

σαrα
4

εα − f α − d̂2 + _αd −
να
rα

− ξq,

ð41Þ

where kα > 0, σα > 0 and ξq is the auxiliary variable to be
designed.

Substituting equation (41) into equation (39),

_εα = −kαrαεα − ϖ2
α +

σαr
2
α

4

� �
εα + rα eq − ξq

� 	
− rα d2 − d̂2

� �
:

ð42Þ

Remark 8. The solution of the problem of AOA constraint is
restricting AOA command and tracking error separately in
this paper. That is to ensure that αm < αd < αM and jeαj <
ϖαð0Þ, so that α ∈ ðαm − ϖαð0Þ, αM + ϖαð0ÞÞ.

Step 3. Define compensation error

υq = eq − ξq: ð43Þ

Combining equations (28) and (8), the derivative of υq is
given by

_υq = f q + gqδe + d3 − _qd − _ξq: ð44Þ

Considering the problem of the elevator angular deflec-
tion δe constraints of amplitude and rate, a constrained com-
mand filter is constructed to restrain the desired control law
δed and obtain the actual control input:

_χδ1 = χδ2,

_χδ2 = 2τδωδ HΨ

ω2
δ

2τδωδ

δed − χδ1ð Þ
� �

− χδ2

� �
,

δe =Hδ χδ1ð Þ,

8>>>><
>>>>:

ð45Þ

where τδ > 0 and ωδ > 0; the specific definitions of Hδð∙Þ and
HΨð∙Þ are given by equations (10) and (11).

Remark 9. Compared with Ref. [36], the constrained com-
mand filter can ensure that the elevator angular deflection
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δe meets the constraint conditions of amplitude and rate.
The specific proof will be given below.

In order to offset the influence of input saturation, the
auxiliary system is designed:

_ξq = −kqξ1ξq − kqξ2 gq



 


ξq + gq δe − δedð Þ, ð46Þ

where kqξ1 > 0 and kqξ2 > 0.
Combining equations (44) and (46), the desired control

law is designed as

δed =
1
gq

−kqυq − f q − d̂3 + χq2 − rαεα − kqξ1ξq − kqξ2 gq




 


ξq� �
,

ð47Þ

where kq > 0; d̂3 is the LESO estimation of d3; and χq2 is the
estimation of the derivative of the virtual control law _qd ,
which can be obtained by the following command filter.

_χq1 = χq2,

_χq2 = 2τqωq

ω2
q

2τqωq
qd − χq1

� �
− χq2

" #
,

8>><
>>: ð48Þ

where τq > 0 and ωq > 0.
Substituting equations (46) and (47) into (44) at the

same time, we get

_υq = −kqυq + d3 − d̂3 + χq2 − _qd − rαεα: ð49Þ

4. Stability Analysis

Theorem 10. For the system (7) and (8), by using equations
(24) and (47) to limit the control input, it is guaranteed that
fuel equivalent ratio Φ and elevator angular deflection δe
meet the restricted conditions, respectively, such that Φ ∈ ½
Φmin,Φmax�, δe ∈ ½ δmin, δmax�, and Ψe = _δe ∈ ½Ψmin,Ψmax�.

Proof. Since Φ =HΦðΦdÞ and δe =Hδðχδ1Þ, it is easy to get
Φ ∈ ½Φmin,Φmax� and δe ∈ ½ δmin, δmax� according to the defi-
nition of saturation function HΦð∙Þ and Hδð∙Þ.

The term

_χδ2 = 2τδωδ HΨ

ω2
δ

2τδωδ

δed − χδ1ð Þ
� �

− χδ2

� �
ð50Þ

in equation (45) is transformed as

_χδ2 + cδχδ2 = cδHΨ

ω2
δ

cδ
δed − χδ1ð Þ

� �
, ð51Þ

where cδ = 2τδωδ. Due to the saturation function HΨð∙Þ ∈ ½
Ψmin,Ψmax�, equation (51) is satisfied with

cδΨmin ≤ _χδ2 + cδχδ2 ≤ cδΨmax: ð52Þ

Multiplying inequality (52) by exp ðcδtÞ, we have

cδΨmin exp cδtð Þ ≤ χδ2 exp cδtð Þð Þ′ ≤ cδΨmax exp cδtð Þ:
ð53Þ

Integrating inequality (53) yields

χδ2 ≥Ψmin 1 − exp −cδtð Þð Þ + χδ2 0ð Þ,
χδ2 ≤Ψmax 1 − exp −cδtð Þð Þ + χδ2 0ð Þ:

(
ð54Þ

In practice, the upper and lower bounds of Ψe satisfy
Ψmin < 0 and Ψmax > 0. Taking the initial value χδ2ð0Þ = 0,
equation (54) can be simplified to

Ψmin ≤ χδ2 ≤Ψmax: ð55Þ

When χδ1 ∈ ðδmin, δmaxÞ, then δe =Hδðχδ1Þ = χδ1, and

Ψe = _δe ∈ ½Ψmin,Ψmax�; when χδ1 ∉ ½δmin, δmax�, then δeðtÞ
= δmin or δeðtÞ = δmax, such that _δe = 0 ∈ ½Ψmin,Ψmax�, so
Ψe = _δe ∈ ½Ψmin,Ψmax�.☐

Remark 11. The constrained command filter in Ref. [36]
constructed for limiting the amplitude and rate of control
input is designed as

_χδ1 = χδ2,

_χδ2 = 2τδωδ HΨ

ω2
δ

2τδωδ

Hδ δedð Þ − χδ1ð Þ
� �

− χδ2

� �
,

δe = χδ1:

8>>>><
>>>>:

ð56Þ

If the function HΨð∙Þ reaches the saturation point, equation
(56) is transformed as

_χδ1 = χδ2,

_χδ2 = 2τδωδ Ψm − χδ2ð Þ,
δe = χδ1,

8>><
>>: ð57Þ

where Ψm =Ψmin or Ψm =Ψmax. Obviously, equation (57)
cannot ensure that the amplitude of δe meets the restricted
conditions. Therefore, the constrained command filter con-
structed in Ref. [36] cannot guarantee that it achieves effec-
tive constraint on δe.

Theorem 12. For the system (7) and (8), under Assumptions
1–5, consider the constraints of AOA and actuators, and use
designed control laws (24) and (47).
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(1) The tracking error of the closed-loop system is ulti-
mately uniformly bounded

(2) AOA satisfies α ∈ ðαm − ϖαð0Þ, αM + ϖαð0ÞÞ

Proof. Define Lyapunov function for system as

W =
1
2

υ2V + υ2γ + ε2α + υ2q

� �
: ð58Þ

Combining equations (26), (36), (42), and (49), the
derivative ofW is obtained as

_W = υV −kVυV + ~d1
� �

+ υγ −kγυγ + gγeα + gγηα −
1
2
g2
γυγ + ~d2 + _ηγ

� �

+ εα −kαrαεα − ϖ2
α +

σαr
2
α

4

� �
εα + rαυq − rα~d2

� �

+ υq −kqυq + ~d3 + _ηq − rαεα
� �

,

ð59Þ

where ηγ = χγ1 − γd , ηα = αd − satðαcÞ, and ηq = χq1 − qd are

the errors of command filter and ~di = di − d̂iði = 1, 2, 3Þ are
the estimation errors of LESO.☐

According to Assumption 4, there exist unknown con-
stantsNiði = 1, 2, 3Þ > 0, such that j _ηγj ≤N1, jηαj ≤N2, and
j _ηqj ≤N3. According to Assumption 5, there exist unknown

constants ~Diði = 1, 2, 3Þ > 0, such that j~d1j ≤ ~D1, j~d2j ≤ ~D2,
and j~d3j ≤ ~D3.

The following inequalities in equation (59) hold:

υV
~d1 ≤

kV
2
υ2V +

1
2kV

~d
2
1,

υγgγeα ≤
1
4
g2γυ

2
γ + e2α, υγgγηα ≤

1
4
g2
γυ

2
γ + η2α,

υγ
~d2 ≤

kγ
4
υ2γ +

1
kγ

~d
2
2, υγ _ηγ ≤

kγ
4
υ2γ +

1
kγ

_η2γ,

−rαεα~d2 ≤
σα

4
r2αε

2
α +

1
σα

~d
2
2,

υq
~d3 ≤

kq
4
υ2q +

1
kq

~d
2
3, υq _ηq ≤

kq
4
υ2q +

1
kq

_η2q:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð60Þ

Equation (38) can be transformed as

tanh εαð Þ = eα
ϖα

: ð61Þ

According to the mean value theorem, tanh ðεαÞ =
1 − tanh2ðεαÞjεα=εα′∙εα, where εα′ is an unknown constant

which lies on the closed interval formed by 0 and εα. Note
that ð1 − tanh2ðεαÞÞ ≤ 1; equation (61) satisfies

εαϖαð Þ2 ≤ e2α: ð62Þ

Combining equations (60) and (62), equation (59) can
be simplified to

_W ≤ −
kV
2
υ2V −

kγ
2
υ2γ − rαkαε

2
α −

kq
2
υ2q +

1
2kV

~d
2
1

+
1
kγ

+
1
σα

 !
~d
2
2 +

1
kq

~d
2
3 + η2α +

1
kγ

_η2γ +
1
kq

_η2q:

ð63Þ

Let Λ = ½υV , υγ, εα, υq�T and �k =min
½kV /2, kγ/2, rαkα, kq/2�T. According to the previous analysis,
there exists an unknown constant NW > 0, such that

1
2kV

~d
2
1 +

1
kγ

+
1
σα

 !
~d
2
2 +

1
kq

~d
2
3 + η2α +

1
kγ

_η2γ +
1
kq

_η2q ≤NW :

ð64Þ

Furthermore, equation (63) is obtained as

_W ≤ −�k Λk k22 +NW : ð65Þ

When kΛk ≥
ffiffiffiffiffiffiffiffiffiffiffiffi
NW/�k

q
, equation (65) is satisfied with

_W ≤ 0: ð66Þ

Therefore, it can be stated that W is bounded and
according to the definition of W. υV , υγ, εα, and υq are
bounded. According to Remark 3, eα is bounded and meets
the prescribed conditions by the boundedness of εα.

When the control inputs exit saturation and the ideal
AOA command satisfies the constraint conditions, there
are Φ −Φd = 0 and satðαcÞ − αc = 0 for the auxiliary systems
(25) and (34), then the auxiliary variables ξV ⟶ 0 and ξγ
⟶ 0, such that υV ⟶ eV , υγ ⟶ eγ. Therefore, eV and eγ
are bounded obviously.

According to the auxiliary system (46), we choose the
Lyapunov function Wξ = ð1/2Þξ2q and its derivative is
obtained as

_Wξ = −kqξ1ξ
2
q − kqξ2 gq




 


ξ2q + gq δe − δedð Þξq

≤ −kqξ1ξ
2
q − kqξ2 gq




 


 ξ2q −
δe − δedð Þξq


 



kqξ2

 !
:

ð67Þ

When the control input exits saturation, δed ∈ ½ δmin,
δmax�, notice that lim

ωδ⟶∞
χδ1 = δed , and δe =Hδðχδ1Þ, so in

equation (67), there is ðδe − δedÞ ∈ l∞. When the auxiliary
variable satisfies jξqj ≥ jðδe − δedÞ/kqξ2j, equation (67) can
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be simplified to _Wξ ≤ −kqξ1ξ
2
q obviously. Therefore, ξq is

bounded and eq is bounded.
Equation (32) is transformed as

€χα1 + 2ταωα _χα1 + ω2
αχα1 = ω2

αsat αcð Þ: ð68Þ

Since αm ≤ satðαcÞ ≤ αM , equation (68) is satisfied with

αmω
2
α ≤ €χα1 + 2ταωα _χα1 + ω2

αχα1 ≤ αMω
2
α: ð69Þ

Let τα = 1; multiplying inequality (69) by exp ðϖαtÞ, we
get

αmω
2
α exp ϖαtð Þ ≤ χα1 exp ϖαtð Þð Þ′′ ≤ αMω

2
α exp ϖαtð Þ:

ð70Þ

Integrating inequality (70), we get

χα1 ≥ αm 1 − e−ϖαt 1 + ϖαtð Þ� 	
+ 1 + ϖαð Þχα1 + _χα1 0ð Þ,

χα1 ≤ αM 1 − e−ϖαt 1 + ϖαtð Þ� 	
+ 1 + ϖαð Þχα1 + _χα1 0ð Þ:

(

ð71Þ

According to the initial assignment of Remark 6, ð1 +
ϖαÞχα1 + _χα1ð0Þ = 0, since αM > 0, αm < 0, and αd = χα1,
equation (71) can be simplified to

αm ≤ αd ≤ αM: ð72Þ

In addition, according to Theorem 10, it can be obtained
jeαj < ϖαðtÞ by the boundedness of εα, and furthermore,

−ϖα 0ð Þ < eα < ϖα 0ð Þ: ð73Þ

According to equations (72) and (73) and α = eα + αd , we
have

α ∈ αm − ϖα 0ð Þ, αM + ϖα 0ð Þð Þ: ð74Þ

5. Simulation Results

In order to verify the effectiveness of the control scheme
proposed in this paper, the longitudinal motion model
(1)–(5) of HFV is taken as the object, and the controller
designed in Section 3 is used to perform MATLAB simula-
tion. The relevant parameters of the HFV model are taken
from Ref. [2].

The gains of the controller are chosen as kV = 0:4, kh =
0:5, kγ = 0:2, kα = 1, kq = 2, and σα = 0:001. The parameters
of the constrained command filters are chosen as τα = 1, τγ
= τq = 0:8, τδ = 0:5, ωγ = ωα = 10, ωq = 20, and ωδ = 90. The
parameters of the prescribed performance are chosen as μ
= 0:1, ϖ0 = 0:01, and ϖ∞ = 0:005. The parameters of the
auxiliary system are chosen as kVξ = 0:1, kγξ = 0:2, kqξ1 =
0:2, and kqξ2 = 0:02. The parameters of LESO are chosen as
ωV0 = ωγ0 = ωq0 = 5. The external disturbances in d1, d2,
and d3 are set as 2 sin ð0:1tÞ, 0:001 sin ð0:1tÞ, and 0:2 sin ð
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Figure 2: Curves of velocity and its tracking error.
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0:1tÞ, respectively. We suppose that there is the following
perturbation of 30% in the HFV model

C = C0 1 + 0:3 sin 0:1tð Þð Þ, ð75Þ

where C represents the simulation value and C0 represents
the nominal value.

The initial value of the system states is set as V0 = 7702
ft/s, h0 = 85000 ft, γ0 = 0 deg, α0 = 1:5153 deg, and q0 = 0
deg/s. We assume the constraint of AOA is set as α ∈ ½−6°,
6°�, and the boundaries of saturation function (33) are set as

αM = 6π/180 − ϖα 0ð Þ = 0:0947 radð Þ,
αm = −6π/180 + ϖα 0ð Þ = −0:0947 radð Þ:

(
ð76Þ

The actuator constraints are set as Φ ∈ ½0:05,1:5�, δe ∈ ½
−30°, 30°�, and _δe =Ψe ∈ ½−100°/s, 100°/s�. The reference
commands Vd , hd are generated, respectively, by passing
step commands △Vd = 2000 ft/s and

△hd =
10000 ft, 0 < t ≤ 200 s,

−5000 ft, t > 200 s,

(
ð77Þ

through the following filter command signal [43]:

G sð Þ = 0:042

s2 + 0:064s + 0:042
: ð78Þ

In order to verify the superiority of the proposed control
scheme (denoted as “A”), the adaptive antisaturation control
scheme (denoted as “B”) designed in [20] is introduced for
comparison and simulation. For the fairness of the compar-
ison, scheme B selects the same control gain parameters as
scheme A and adopts LESO with the same parameters to
observe the disturbances.

The simulation results are shown in Figures 2–13. It can
be seen from Figures 2–7 that both control schemes A and B
can guarantee that the system tracks the command signal. It
can be seen from Figure 2 that the curves of velocity and its
tracking error of scheme A are basically the same as scheme
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B, because both schemes A and B use the dynamic inverse
method in the controller design of velocity subsystem. It
can be seen from Figures 3–7 that the tracking accuracy of
scheme A is better than scheme B obviously for the altitude

subsystem. Figure 6 shows that scheme B lacks the limit of
the AOA command, which leads to AOA that can achieve
command tracking but exceed the constraint range. And it
is obvious that AOA of scheme A can track the limiting
command stably, and it is always within the constraint
range. Figure 7 shows that the constraint range of scheme
B is large which affects the tracking accuracy of AOA,
because the range needs to be greater than the initial abso-
lute value of AOA error. And the constraint range is small
because the initial value of AOA error is zero in scheme A,
which makes AOA error converge to zero quickly. It is the
initial value of AOA error that affects the setting of error
constraint range, which influences the tracking command
effect of AOA and even the whole altitude subsystem (see
Figures 3–7).

Remark 13. The solution of the AOA constraint problem by
scheme A is mainly due to the following two points. Firstly,
there is no need to consider the influence of the initial error
on the constraint conditions. So the tracking error converges
quickly to zero and meets the prescribed transient and
steady-state performance (see Figure 7). Secondly, the
AOA command of scheme A is obtained by the constrained
command filter, and its amplitude is within the constraint
range (see Figure 8). The effectiveness of the constrained
command filter is verified.

It can be seen from Figures 9–11 that the amplitude and
rate of the control input meet the constraint requirements in
scheme A. Although scheme B restricts the amplitude of the
control input and the actuator meets the requirements, the
rate limitation of the actuator is ignored, and the rate of ele-
vator angular deflection cannot meet the constraint condi-
tions. Figure 12 shows that when the control input is
saturated or the desired AOA command exceeds the con-
straint range, the auxiliary variable responds quickly to com-
pensate the tracking error, which ensures the stability of the
system. And the auxiliary variable quickly converges to zero
when the system exits saturation. Figure 13 shows that LESO
can observe system disturbances effectively, and its estimate
is bounded.
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Remark 14.We can clearly see that the amplitude and rate of
the control input meet the constraint requirements in
scheme A. The effectiveness of the constrained command fil-
ter limiting the control input is verified. And the problem of
actuator constraints is solved effectively.

In summary, the problem of AOA and actuator con-
straints taking into account parameter perturbation and
external disturbance can be solved successfully by the con-
trol scheme designed in this paper. And the system achieves
a better command tracking effect. The effectiveness of the
proposed control scheme is verified by this simulation result.

6. Conclusions

An antisaturation backstepping control scheme based on the
constrained command filter is proposed for HFV. The AOA
constraint problem is solved by combining the proposed con-
straint command filter and prescribed performance method.
AOA meets the constraint during the process of tracking
command by constraining the AOA command and tracking
error separately. Then, the amplitude and rate of the actua-
tors meet the restricted requirements due to the constrained
command filter constructed for the limited input. The prob-
lem of AOA and actuators constraint can be solved effectively
by the proposed scheme based on the constrained command
filter in this paper through theoretical proof and simulation
test. In the future research, the methods for controller design
of HFV under states constraint and actuator faults will be
investigated. Meanwhile, intelligence method will be added
in the proposed control scheme.
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