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Timely and effective fault diagnosis of sensors is crucial to enhance the working efficiency and reliability of the aeroengine. A new
intelligent fault diagnosis scheme combining improved pattern gradient spectrum entropy (IPGSE) and convolutional neural
network (CNN) is proposed in this paper, aiming at the problem of poor fault diagnosis effect and real-time performance when
CNN directly processes one-dimensional time series signals of aeroengine. Firstly, raw fault signals are converted into spectral
entropy images by introducing pattern gradient spectral entropy (PGSE), which is used as the input of CNN, because of the
great advantage of CNN in processing images and the simple and rapid calculation of the modal gradient spectral entropy. The
simulation results prove that IPGSE has more stable distinguishing characteristics. Then, we improved PGSE to use particle
swarm optimization algorithm to adaptively optimize the influencing parameters (scale factor A), so that the obtained spectral
entropy graph can better match the CNN. Finally, CNN mode is proposed to classify the spectral entropy diagram. The method
is validated with datasets containing different fault types. The experimental results show that this method can be easily applied

to the online automatic fault diagnosis of aeroengine control system sensors.

1. Introduction

As one of the key components in any aircraft system, a reli-
able aeroengine is critical for performance and flight safety
[1]. Aeroengine control systems have grown increasingly safe
and reliable alongside modern technological advancements;
the sensors supporting these systems thus require increas-
ingly stringent accuracy and reliability [2]. Because of its
wide distribution, special installation position, and extreme
working conditions, the sensor is the most vulnerable com-
ponent of the aeroengine control system [3]. The digital con-
trol system works based primarily on sensor signals. Sensor
faults are generated by the degradation or failure of engine
functions, which represent serious economic losses. It is
essential to develop timely and effective sensor diagnosis
techniques as improving the safety and reliability of the
aeroengine is, arguably, much more important than simply
improving its performance.

Fault diagnosis involves first acquiring fault signals, then
obtaining fault information from the signals through proper
diagnostic techniques, and finally judging and classifying

them before making decisions accordingly [4]. The aeroen-
gine sensor signals collected in an engineering scenario are
nonlinear and nonstationary; the complex structure of the
aeroengine results in a complex signal transmission path
and noise coupling, which makes fault diagnosis extremely
challenging [5].

Traditional model-based fault diagnosis schemes have
inherent limitations such as large interference, low model
accuracy, difficulty in obtaining fault information, and inef-
fective threshold designs [6]. It is yet necessary to secure
newer, effective fault feature extraction and fault diagnosis
methods. Since the ear of big data, with the mining and appli-
cation of massive data, data-driven fault diagnosis methods
emerge and develop rapidly, becoming a research focus.
The data-driven approach uses a large amount of process
data, including historical data and online measurement data,
for fault diagnosis. Machine learning-based fault diagnosis is
one of the typical data-driven methods.

Commonly used intelligent algorithms include the BP
neural network [7], extreme learning machine (ELM) [8],
support vector machine (SVM) [9], and fuzzy algorithm
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[10]. For example, Li et al. [9] proposed a fault diagnosis
method based on the combination of SVM and principal
component analysis feature information extraction, which
speeds up the diagnosis. Kai et al. [7] successfully detected
the faults of the aeroengine based on BP neural network.
However, because the performance of SVM involves the
operation of m-order matrix (M is the number of samples),
especially when M is very large, this method is extremely
memory consuming. BP network is a shallow model, which
usually only learns one or two layers of data representation,
and cannot obtain enough fault information, which limits
the accuracy of the final diagnosis. In addition, for these shal-
low networks used in the above methods, the performance of
the data-driven fault diagnosis scheme depends largely on
the degree of the individual operator’s professional experi-
ence or prior knowledge. This brings difficulties and errors
to feature extraction [11, 12]. The performance of the data-
driven fault diagnosis scheme depends largely on the degree
of the individual operator’s professional experience or prior
knowledge [9, 10]. This brings difficulties and errors to fea-
ture extraction. Therefore, the performance of the training
model is poor, and it can no longer meet the rapid and
high-precision requirements of modern fault diagnosis. A
faster and more reliable automated diagnostic process is still
needed.

The alternative method, convolutional neural network
(CNN), is regarded as the most prominent deep learning
method. Compared with the shallow network, deep learning
can dig deeper information [13]. It acquires feature informa-
tion through a hierarchical network to resolve the depen-
dence on artificially designed features [14]. In other words,
no prior knowledge of signals is required. The CNN can solve
gradient decay problems in addition to its stronger feature
learning and characterization abilities than the shallow net-
work [15, 16]. The CNN preprocessing procedure is rela-
tively brief, so the learning time is brief—there is less data
necessary to learn free parameters, which relieves the mem-
ory burden for network operation and allows for the con-
struction of a very powerful neural network [17]. The CNN
also has strong antinoise capability and preserves all neces-
sary information during feature selection. These advantages
of CNN are beneficial for the field of fault diagnosis. There-
fore, it is feasible to select CNN for aeroengine fault
diagnosis.

However, directly constructed CNN-based fault diagnosis
method exposes the problems of large calculation and long
running time because the sensor signal is a long-time series
data. In addition, CNN has irreplaceable advantages in pro-
cessing two-dimensional (2D) images, but the efficiency of
direct processing one-dimensional (1D) data is low, especially
for complex one-dimensional data such as aircraft signals,
which are nonstationary, nonlinear, and low signal-to-noise
ratio and have random fluctuations. Some scholars solve this
problem by dividing one-dimensional data directly into two-
dimensional data. For example, Li and Qu [3] reshape 256 =
1 data into 16 * 16 data as the input of the CNN network.
But this method cannot solve the problem fundamentally;
the effect is not satisfactory. Subsequently, some scholars pro-
posed to convert the data into time-frequency graph first and
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then take the time-frequency graph as the input of CNN. For
example, Alaskar [14] processed a signal via STFT to obtain
scalograms and then diagnosed bearing faults with a CNN.
Gao et al. [18] used Morlet CWT to obtain the time-
frequency diagram of the signal and combined with CNN
for fault diagnosis. However, since STFT is used to process
time-varying signals by segmenting the signal interception,
STFT is still a stationary signal analysis method in nature. It
is difficult to obtain good results for nonlinear and nonstation-
ary aeroengine signals. The wavelet transform is famous for its
multiresolution analysis performance [19, 20], but it needs to
choose wavelet basis with the help of manual experience and
lacks self-adaptability. Moreover, these time-frequency analy-
sis methods are very complex, which is not conducive to the
use of CNN for real-time diagnosis of aeroengine control
system sensors. Therefore, a more effective method is needed
to process aeroengine sensor signals.

Pattern gradient spectral entropy with mathematical
morphology (MM) as the core idea is a good solution to the
abovementioned problems of CNN for fault diagnosis. It is
especially suitable for the analysis and research of all kinds
of complex nonlinear signals, and has the advantages of sim-
ple calculation, fast parallel, and convenient for hardware
implementation [21]. MM extracts fault features by process-
ing the signal from a collective perspective rather than the
traditional numerical modeling and analysis [17], which has
obtained considerable application in many fields such as
signal processing and fault diagnosis.

Pattern spectrum (PS) is a commonly used fault identifi-
cation method based on MM which uses multiscale morpho-
logical analysis to process nonstationary signals to extract
their hidden characteristics [22]. Li [23] characterized vibra-
tion signals based on an extended morphological pattern
spectrum (MPS) calculation with a morphological erosion
operator. Wang et al. [24] used the improved pattern spec-
trum (IPS) to process vibration signals and form effective fea-
tures. However, PS can only extract unilateral fault features
of the signal, which is easy to ignore the feature information
hidden on the other side [25]. From this perspective, PS can-
not completely and accurately describe the morphological
complexity of signals. This is remedied by introducing
pattern gradient spectral entropy based on Shannon entropy
and gradient operator.

The advantages of this approach include the following:
(1) PGSE can fully consider the dynamic characteristics on
multiple time scales and the remote correlation information
of signals. When different scale structural elements are used
to analyze and process the signal, different characteristics of
the signal can be retained. This is equivalent to an adaptive
perceptual process to match the signal. (2) It is not only sim-
ple to calculate, easy to implement on-line by hardware, but
also has antinoise characteristics. (3) Most importantly, it
converts one-dimensional signals into spectral entropy
graphs as input to CNN to refine and summarize the mor-
phological features of faults at multiple levels while retaining
details. This greatly reduces the calculation and training time
of CNN, and makes accurate CNN online diagnosis possible.

PGSE still has several limitations for fault diagnosis.
Some limitations are in fault diagnosis based on PGSE. The
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FiGgure 1: Flowchart of proposed method.

key parameter (scale factor A) value is usually determined in
PGSE according to the empirical parameters and by manual
intervention, which does not typically provide effective treat-
ment. In view of this, particle swarm optimization (PSO)
algorithm is proposed in this paper to improve the pattern

gradient spectral entropy (IPGSE), which can be used to
determine the scale factor A adaptively to better match
CNN’s pattern classification. Compared with the random
or empirical selection of the scale factor, the optimal param-
eter A, selected via PSO increases the differentiation degree



between different faults. This facilitates the accurate identifi-
cation of subsequent classifiers and improves the fault diag-
nosis accuracy. In a word, IPGSE can extract fault features
more effectively and quickly and is conducive to accurate
classification.

This paper proposes a hybrid intelligent fault diagnosis
scheme which combines IPGSE and CNN for aeroengine
control system sensors and introduces PSO algorithm to
determine the scaling factor adaptively. The IPGSE first
obtains the multiscale fault information of the preprocessed
sensor signal and generates a spectral entropy graph. The
CNN then classifies the labeled spectral entropy graph.
Experimental results, as discussed in detail below, show that
the proposed method is applicable for the online automatic
fault diagnosis of aeroengine control system sensors.

The major contributions and innovations of this paper
are summarized as follows.

(i) A new data-driven diagnosis method is developed
which combines the IPGSE and CNN to extract fault
features effectively and quickly to accurately classify
faults

(ii) In order to solve the shortage and real-time problem
of CNN in processing one-dimensional aeroengine
signals, PGSE was proposed as a good supplement
to CNN. In this method, one-dimensional signals
are converted into two-dimensional spectral entropy
diagrams as the input of CNN, which maximizes the
advantages of CNN and makes accurate CNN online
diagnosis possible

(iii) To solve the problem of insufficient fitness of the
algorithm, PSO algorithm is proposed to determine
scale factor of structural element adaptivity, and
PGSE is improved to better match the CNN pattern
classification

The structure of this paper is as follows. Section 2 pre-
sents the framework of the intelligent fault diagnosis method
based on IPGSE and CNN for aeroengine control system
sensors. Section 3 discusses the experiments conducted to
evaluate the effectiveness of the proposed method. Section 4
gives concluding remarks.

2. Fault Diagnosis Method Framework

For the signals collected on the sensors of the aeroengine
control system, the fault characteristics are weak owing to
noise coupling and the complex transmission channel. The
mixed waveforms of different fault signals are difficult to dis-
tinguish, so it is difficult to obtain ideal fault diagnosis results.
Pattern gradient spectrum entropy analysis is a workable
supplement to traditional fault diagnosis techniques. The
IPGSE based on MM processes nonstationary signals,
extracting the characteristic information hidden in the signal
efficiently. The CNN was selected in this study for its strong
feature classification effects. Joining IPGSE and CNN to
establish an intelligent fault diagnosis scheme was the focus
of this work.
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The framework of the proposed fault diagnosis algorithm
is shown in Figure 1. It is mainly a four-step process.

(1) Fault signal marking rules and preprocessing: fault
marking rule is defined to highlight the differences
between different fault states. The collected sensor
signal is preprocessed to minimize the error of
the measurement signal generated in the signal
collection process and reduce the computational
complexity

(2) Fault feature extraction: IPGSE processes the prepro-
cessed sensor signal to relieve the limitation of
parameter selection based on experience. The PSO
calculates the PGSE after obtaining the optimal SE
scale and then outputs a spectral entropy diagram

(3) Fault diagnosis model training: a CNN model is con-
structed with the spectral entropy map within the
interception range A € (17,25) as the input to train
the model. CNN depends on supervised learning, so
the spectral entropy map generated in the previous
step is labeled according to the fault marking rule
before it is input to the network

(4) Performance evaluation: after the CNN model is
trained, a performance evaluation function is estab-
lished to judge its quality. If the performance meets
the requirements, the trained model is used to
identify and isolate the faults

2.1. Fault Signal Marking Rules and Preprocessing

2.1.1. Fault Signal Marking Rules. Sensor faults are generally
divided into two categories according to their performance:
hard faults and soft faults. A hard fault is manifested as a sud-
den change in the output value of the sensor due to structural
damage or other reasons (e.g., open-circuit faults, short-
circuit faults, and bias faults). Soft faults are manifested as a
slow change in the output value of the sensor due to device
aging or other reasons (e.g., spike faults, drift faults, and peri-
odic disturbances). Seven health conditions of aeroengine
control system sensors were investigated in this study: the
abovementioned six fault conditions and the normal working
condition of the sensor.

In the supervised machine learning process, the
expected output is already known and serves as the cate-
gory of sample data before the training process begins.
Fault marking rules were stipulated in this study accord-
ingly as shown in Table 1.

2.1.2. Fault Signal Marking Rules and Preprocessing. In prac-
tice, aeroengine variables usually use different measurement
units. Taking into account the importance of eliminating
errors in signal acquisition, the measurement data should
be standardized. Normalizing a signal generally allows the
signals to be processed at the mean level (Equation (1)). This
can reduce computation complexity and processing time in
subsequent steps.
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x(k) - x(k)
a(x(k))

= (k) (1

i=1

y(k) = —F——=

where y(k) is the processed signal and x(k) is the sensor
signal to be processed.

2.2. Fault Feature Extraction Based on IPGSE

2.2.1. Introduction to Pattern Gradient Spectral Entropy. The
core idea of pattern gradient spectral entropy is MM,
which is a nonlinear filtering method that creatively uti-
lizes SEs with certain morphologies to interact with sig-
nals. Its main objective is to extract the shape
information of signals to grasp the signal characteristics.
Researchers have introduced multiscale SEs into MM-
based analyses to extract fault feature information, refer-
ring to the entropy and gradient operators, and ultimately
generate pattern gradient spectral entropy.

Take the expansion operation as an example. For a given
signal f(n), suppose g is a unit structural element (USE) and
g(m) is an SE, A is the scale factor, and Ag is the SE under

scale factorA. The domain is G=(0, 1,2, ).
A-1 A-1
Ag=9®g0-0g=((90-09)®9) 09 2)
A-1

(forgm) =fO(gDgD D7)
where @ denotes the dilation operator and © is the erosion
operator.

The pattern spectrum (PS) can be defined as follows:

_dA(oAg)
PS(f, A, g) = aA 3)

where o is the open operator and e is the close operator.

Entropy maps signal complexity and uncertainty.
According to Shannon entropy, the pattern spectrum
entropy (PSE) is defined as follows:

‘max

Y a(A)Ing(d), (4)

A=min

PSE(f, 1) = —

where q(1) =PS(A, g)/YPS(A, g).
After introducing the gradient operator, the pattern
gradient spectrum (PGS) and the pattern gradient spectral

5
TABLE 1: Fault labels.
Fault Short-circuit Open-circuit Spike Bias
Label 0 1 2 3
Fault Drift Normal Periodic disturbance ~— —
Label 4 5 6 —

entropy (PGSE) can be defined as follows:

_dA(felg-fOAg)

, A>0,
PGS(f. A, g) = i
dA(f & (-N)g-[0(-Ng)
dA ’ ’
PGSE(f, A) = Z A)Ing, (A
(5)
where g, (1) =PGS(A, g)/YPGS(A, g).

Four types of random signal (blue, white, pink, and
brown noise) were taken as the research objects without loss
of generality to test the PGSE in this study. The temporal
waveforms and frequency-domain waveforms of these ran-
dom signals are shown in Figure 2. Figure 3 shows the PS,
PSE, PGS, and PGSE waveforms of the processed random
signals. The abscissa in Figure 3 represents SE scale, and
the ordinate represents the calculation result. It is clear from
Figure 3 that PGSE is more separable and stable than the
other three methods.

2.3. Improved Pattern Gradient Spectral Entropy. Morpho-
logical operations use SEs at different scales to flatten or
strengthen the required parts of the signal. Figure 4 shows
some common SE shapes at different scales. The flat SE is
the focus of this paper because of its simplicity. The height
H of the flat SE is zero, so it is necessary to determine only
its length L in this case. This is equivalent to using a set to
operate on the signal, which is widely applicable.

The geometric meaning of the PGSE indicates that the
scale of SEs affects the calculation results. The size selec-
tion of SEs is important in this regard, but there is no
standard selection principle for SE parameters. Parameters
are typically selected according to experience and by man-
ual intervention, which makes it difficult to achieve good
treatment effects. Nikolaou and Antoniadis [26] suggested
that the length of the flat SE be between 0.6T and 0.7T
to obtain acceptable filtering results. Dong et al. [27] pro-
posed the maximum kurtosis criterion and selected the
optimal SE length from 0.1 T,0.2¢,---, T. Others have sug-
gested that the maximum analysis scale is the ratio
between the sampling frequency and fault characteristic
frequency, where the scale increment is 1 [28]. The maxi-
mum length of SE L, is usually chosen as [f/f,] [29]

max
wheref represents the sampling frequency of the signal,
fg is the fault characteristic frequency, and |-| is the
downward  integration operation. However, these
approaches increase the interference over a series of
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FIGURE 2: Time-domain waveform and frequency-domain waveform of random signals.
human factors and obscure the optimal SE scale parame-  to illustrate the effects of the SE scale factor A on the fault
ters, which can degrade the final diagnosis results  feature extraction effects of aeroengine control system
considerably. sensors. The minimum scale we set here is 1 and the

We drew spectral entropy diagrams at different scales  increment is 1, so the parameter to be determined is actu-
for sensor signals under seven different health conditions  ally the SE maximum scale A .. We explored the results
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n=3

o

FiGURE 4: SE with varied scale: (a) flat SE, (b) semicircular SE, and (c) triangular SE.

with A, of 10, 25, and 30, respectively, as shown in
Figure 5. The actual processing of a sensor signal under
certain health conditions only produces a curve. The fea-
ture extraction effects differed in this case over different
SE scale ranges and different SE maximum scale A,
values. When A, was too small, the noise suppression
ability was poor and the characteristics of each fault signal
could not be extracted effectively. When A, was too
large, the signal detail retention was poor.

The black dotted line box in Figure 5(c) is a local
enlarged image. The solid red line box in Figure 5(c)
shows where the curve of the periodic interference fault
was mixed with other curves, making it difficult for subse-
quent classifiers to distinguish various fault signals. We
also carefully considered the increase in computational
burden introduced by adding scales, which in practice
would reduce the real-time fault diagnosis performance.
Our goal in conducting this study is to establish a method
for effectively optimizing SE parameters while accurately
calculating the size of SEs.

The PSO algorithm has strong parameter global opti-
mization capability. We used it here to adaptively optimize
the SE maximum scale A, of the PGSE to improve the
feature extraction effects of our proposed method. Com-
pared with key parameters selected randomly or empiri-
cally, the optimal parameters selected via PSO according
to the error classification rate of the training samples
increase the differentiation degree between different faults,
which facilitates effective pattern recognition and improves
the fault diagnosis accuracy. Derived from the concepts of
“population” and “evolution”, the PSO searches an optimal
solution in complex space through the cooperation and
competition among individuals. The stepwise PSO process
is as follows (Figure 6).

(1) Input dataset and initialize particle swarm X;,i=1
,2, ---, m, where m is the dimension of the parameter
to be optimized. The parameters to be set include
population size N = 100, maximum iteration number
T =200, learning factor ¢, = 1.5, ¢, = 1.5, maximum
inertia weight w,, =0.9, and minimum inertia
weight w,;, = 0.8. The random factor 6 is a random
number between [0, 1]. Initialize the position x; and
velocity v; of each particle

(2) According to the error classification rate of the train-
ing samples, the fitness value is calculated and
compared to determine the fit[i] of each particle

(3) Update the optimal particle. A larger fitness function
value means the corresponding particle position is
closer to the global optimal position. For each parti-
cle, the fitness value fit[i] is compared with its indi-
vidual extremum P, If fit[i] <Py, then fit[i] is
replaced with P,;. For each particle, the fit[i] is com-
pared with the global extremum p,. If fit[i] <p,,,

then fit[i] is replaced with p ;

(4) Iterate to update the velocity x; and velocity v; of the
particle

Via(t+1) =vig(t) + 171 (Pig = Xia) + €21 (pgd - xid) )

xig(t+1) =x;(t) +viu(t+1),

where d represents the dimension of the system.

(5) Conduct boundary condition processing

(6) Judge whether the algorithm termination condition is
satisfied. If the preset error or the number of itera-
tions is satisfied, the optimization operation ends
and the optimization result is output. Otherwise,
return to Step 2

maxop = 25 Was obtained here

after PSO intelligent optimization. We randomly selected

350 sets of sensor data including 50 sets for each health con-

dition. The method proposed above was used to extract fea-

tures of fault signal clusters. The results are shown in

Figure 7. Figure 7 demonstrates that each health condition

was roughly separable, but unrecognizable to the naked

eye—a powerful intelligent algorithm is still needed to
classify the fault type. We accomplished this with the CNN,
which is adept at learning features and representations.

The optimal parameter A

2.4. Convolutional Neural Network Theory. The CNN is an
excellent deep learning algorithm [30] that can be used to
obtain hierarchical feature information rather than relying
on the manual design of features. As a feedforward neural
network, the CNN is primarily made of a convolutional layer,
pooling layer, and full connection layer [31]. The architecture
of the CNN used in the paper is shown in Figure 8.

On the convolutional layer, after the convolution of the
input image is carried out through multiple convolution
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kernels and the bias term is added, a series of characteristic
graphs can be obtained through the nonlinear transforma-
tion of the activation function. The convolution is denoted
as follows:

xp=¢| D e PR by ), (7)

ieMk

where x! is the j* feature graph of the i convolution layer,
¢( ) is the activation function, Mis the input graph set, Sis
the convolution kernel, and by, is the corresponding bias.
After the convolutional layer comes a pooling layer. The
dimensionality reduction of feature map is the major purpose

of the pooling layer. This operation extracts essential
features, reduces the data complexity, and improves the
network’s tolerance to environmental changes. The pooling
layer can be expressed as follows:

xt = ¢(widown (x;") + b}), (8)

where down( )is the subsampling function, w] denotes the
weight matrix, and the meaning of other parameters is the
same as in the above equation.

After multiple alternate propagations between the
convolutional layer and the pooled layer, the input image is
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FIGURE 9: Locally enlarged spectrum as CNN input.

classified using the full connection layer:
Vi =¢(wix + b)), ©)

where w} denotes the weight matrix, y} is the output of the
full connection layer, and the meaning of other parameters
is the same as in the above equations.

Figure 6 shows the architecture of the CNN implemented
in this study. To prevent overfitting and improve the general-
ization ability and robustness of the network, a portion of
neurons and their connections were randomly discarded
during training by dropout technology [32]. We used the
PyTorch deep learning framework, BP algorithm, and adap-
tive moment estimation (Adam) algorithm to optimize the
model. During the optimization process, the deviation degree
between the actual output value and target output prediction
was calculated, and then the internal parameters of the model
(e.g., weights and bias) were rapidly updated and fine-tuned
until the training error was minimal.

The cross-entropy loss function is often used in classifica-
tion problems, especially in neural networks. The sigmoid
function (Softmax) combined with cross-entropy loss
depends on an interclass competition mechanism and
effectively learns interclass information. The purpose of the
cross-loss function is to measure training error. The cross-
loss function F(0) is calculated as follows:

Fom) == 3 I+ (1-y) (-3}, (10)

class

where 7 indicates the dimension of training data. Class is the
tag category into which signals need to be classified, y, is the
output of the sensor fault signal of the neural network, and y,
is the mark result of the sensor fault signal.

The spectral entropy diagram is regarded as the input of
the CNN. Figure 5 shows the spectral entropy diagram of
aeroengine sensors under different health conditions. For
open-circuit faults and normal conditions, though they look
similar in Figure 5(b), we found when we enlarged the image
locally that there were notable differences between them that
were recognized by the CNN. In other words, each health
condition has a distinguishable degree that the CNN can rec-
ognize. As shown in Figure 5(b), when A, ,,, = 25, there was
considerable discrepancy between signals within the range of
A€ (17,25); the signals within the range of A€ (1,16)
showed a small degree of differentiation.

The spectral entropy diagrams were processed so as to
enhance the classification accuracy. We intercepted the
spectral entropy diagram within the range of A € (17,25)
as the input of the CNN, as shown in Figure 9. The out-
put of the CNN in this case is the classification result. We
selected optimal parameters via PSO according to the mis-
classification rate of the CNN, which increases the distinc-
tion between different faults and is conducive to feature-
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TaBLE 2: Common sensor types, fault causes, and simulation methods.
Fault Reason Simulation method

Short-circuit .
connection

Open-circuit

Spike surge

Bias Bias current or bias voltage
Drift Temperature drift

Periodic .

disturbance 50 Hz interference from power supply

Pollution caused by bridge road erosion line short

Signal line is broken; chip pin is not connected

Random disturbance in power supply and ground wire,

Signal is close to 0.1
Signal approaches maximum
Add a pulse signal to original signal

Add a small constant or random signal to original signal
Signal is offset by a certain rate

Signal of a certain frequency superimposed on original
signal

learning and pattern recognition, thus improving the fault
diagnosis accuracy.

The CNN is a supervised machine learning technique that
needs tagged inputs. The spectral entropy diagram should be
labeled according to the marking rules given in Section 2.1.
Considering the complexity of the network, we compressed
the image so that the size of the processed time-frequency graph
was the (224 x 224) pixel size best managed by the CNN.

2.5. Performance Evaluation Function. It is generally
acknowledged that the quality evaluation of the CNN model
after training is an important issue. The classification accu-

racy rate is a powerful tool to assess the performance of any
CNN model. When training the deep network here, we calcu-
lated the classification accuracy of the training dataset after
each iteration and then conducted reliability tests to
determine the accuracy of the test dataset. “Classification
accuracy” refers here to the ratio of the correctly identified
sample number to the total sample number.

AC(y ) = Ve, (1)

where AC(y,, y;) is the accuracy rate, the summing function
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FiGure 11: Simulated sensor signals for 7 health conditions.
is the fault classification result of the neural network output, The sensor signals under seven healthy states of aeroen-

yc and sensor fault signal yl have the same value, and N isthe ~ gine control system were standardized, and then the features
dimension of yc. of the processed signals were extracted by IPGSE to generate



16 International Journal of Aerospace Engineering
TaBLE 3: Network parameters.

Name Parameter Output feature size

Input layer Input data 3 %224 %224

Convolutional layer (C1) 6 filters, size 5 * 5, stride 1 6 %220 * 220

Pooling layer (P1) Filter size 2 * 2, stride 1 6% 110 % 110

Convolutional layer (C2) 16 filters, size 5 * 5, stride 1 16 * 106 * 106

Pooling layer (P2) Filter size 2 * 2, stride 1 16 % 53 * 53

Fully connected layer (F1) 120 nodes, dropout = 0.5 44944 % 120

Fully connected layer (F2) 84 nodes, dropout = 0.5 120 * 84

Fully connected layer (F3) 7 nodes 84 %7

Output layer Output data 7% 1

Learning rate 0.00004 None

Training dataset 2450 None

Test dataset 1050 None

Iteration times 35000 None

Scale factor /\max,op 25 None

the spectral entropy diagram. Next, we trained the CNN transfer function is as follows:

model. The input of the CNN was the marked spectral entropy

diagram and the output was the health of the sensor. We eval- w?

uated the quality of the trained CNN model to find that it met Gs)= 52— -7, (12)

the relevant requirements for fault detection and isolation.

3. Experiment and Discussion

Model validations such as the one we conducted in this study
are reasonable evidence of the diagnostic capability of a given
method. We tested the effectiveness of our method on the
sensor faults of an aeroengine control system as well as com-
paring it against other state-of-the-art methods (IPGSN+BP
network). A flow chart of this experiment is given in
Figure 10.

3.1. Acquisition of Experimental Dataset. We established an
experimental dataset to test the proposed method. Deep
learning requires numerous datasets with different
instances. A low data quantity tends to result in underfit-
ting. Increasing the amount of data can remedy this. In
addition, most aeroengine control systems are under nor-
mal operation conditions most of the time—fault condi-
tions are rare—so fault data and normal data tend to be
asymmetrical, leaving few actual fault data to train the
model efficiently. A model with poor generalization ability
can result in incorrect diagnosis results. So we need to
obtain a sufficient quantity of analog sensor signals under
various faults.

In other words, part of the experimental dataset is the
simulated sensor signal. The remainder of the experimental
data was collected from flight measurement recordings of
an aeroengine under different working conditions and fault
patterns.

We first establish a simulation model of the sensor. The
second-order inertial link [6] was adopted to establish the
sensor simulation model by referring to previous studies. Its

2 +28w,s + w?

where £ =1.25,w, =9,7=0.12.

The input signal of the sensor simulation model comes
from the C-MAPSS aeroengine simulation model. The
engine model operates at a ground design point and high alti-
tude off-design point, respectively. The output signals of the
sensor model were processed in accordance with the method
in Table 2 for fault simulation. Environmental noise (Gauss-
ian white noise) was then injected randomly into the input
and output signals to make the experimental data as realistic
as possible and to realistically reflect the robustness of the
proposed method.

We randomly inject faults to generate various sensor fault
signals, as our data was stochastic and initially asymmetrical.
We changed the fault occurrence time, fault pattern, fault
degree, fault period, and other parameters at random in the
experiment. We did this because the resulting bias fault is
affected, for example, when the value of the set bias is differ-
ent; similarly, the peak fault differs when the impulse
response is different. A random slope setting can result in a
variety of drift faults and a variety of periodic disturbance
faults can be obtained by randomly setting the period and
amplitude of the disturbance.

Figure 11 shows the temporal waveform and frequency-
domain waveform of the fault analog signal. The time-
domain waveform of complex signals shows nonlinear and
nonstationary characteristics. When the sensor faults, the
time-domain waveform presents obvious impact characteris-
tics. We could not accurately identify fault types based on the
time waveform and spectrum alone, so we extracted the fault
characteristics from sensor signals and subjected them to pat-
tern recognition to distinguish the different fault types.
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According to the sensor measurements and degree of
sensitivity to aeroengine control system fault, we con-
ducted an independence analysis between the measured
value and influence degree of the measured values of
engine work. We selected an aeroengine control system
with nine key measurable sensors: the throttle lever angle
PLA, inlet temperature T, low-pressure rotor speed N,
high-pressure rotor speed N,, compressor outlet pressure
P, low-pressure turbine outlet pressure P, compressor
inlet temperature T,5, high-pressure turbine outlet temper-
ature T,s, and low-pressure turbine outlet temperature T'.
These parameters are considered appropriate indicators of
engine performance changes.

We sampled 1000 data points to maintain the original
precision of the signal. The time interval between any two
sample points was 10 ms. This implies that the signal size of
each sensor is 1 * 1000. Each fault dataset was constructed
with 500 sample data resulting in a total of 3500 sets of data.
The dataset we used in this experiment includes actual
parameter recordings and analog signals of the engine under
various working and flight conditions. As described above,
this experimental dataset contains a large number of simu-
lated fault signals obtained through the above operation.
The remainder of the experimental dataset was collected
from flight measurement recordings of an aeroengine under
different working conditions and fault patterns. A usable
sample dataset was obtained after mixing these two groups
of data randomly. And then we adopted a cross-validation
strategy to train the CNN network as effectively as possible.
We also arbitrarily partitioned the original sample dataset
into training and test sets accounting for 70% and 30% of
the total, respectively.

3.2. Experimental Settings. Before training the CNN, we set
the initial parameters and important feature parameters
including the initial data segment size, filter size, number
of convolutional layer filters, and learning rate. Our
CNN structure was designed with an input 3-channel
RGB image of 224 x 224, 2 convolutional layers, 2 pooling
layers, and 3 full connection layers plus a dropout layer in
the latter 2 full connection layers. The learning rate of the
training process was 0.000015, and the dropout layer was
0.5. We set the iteration termination condition to 35,000
times. The parameters to be set are listed in Table 3.

3.3. Results and Discussion. Under normal circumstances, an
accuracy curve can be drawn to represent the performance
of a trained CNN model. Accuracy rate and mean compu-
tation time are used as indicators of evaluating method
performance. Note that the mean computation time con-
sists of training time and testing time. Here, we calculated
the classification accuracy rate of each iteration, then
adjusted the bias after each training until the iteration
was terminated, and then drew the accuracy curve of IPG-
SE+CNN shown in Figure 12. The training iteration times
and accuracy rate are the x-coordinate and the y-coordi-
nate in Figure 12, respectively. The results shown in
Figure 12 indicate that our method can accurately diag-
nose faults.
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FIGURE 13: Accuracy rate curve of CNN.

First, in order to verify the necessity of IPGSE, we com-
pare the method proposed in this paper with a fault diagnosis
scheme based on CNN that directly takes raw data as input.
The accuracy curve of CNN that directly takes raw data as
input is shown in Figure 13. It can be seen from the compar-
ison between Figures 13 and 12 that the accuracy of directly
constructing CNN is obviously not as high as the method
proposed in this article. From Table 3, the computation time
of CNN is 313 s, and the computation time of IPGSE+CNN is
256s. This shows that IPGSE that we introduce successfully
reduces the computational load and computation time of
CNN. This is because IPGSE converts one-dimensional sig-
nals into spectral entropy graphs as input to CNN to refine
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TaBLE 4: Network parameters.

Mean
Sensor data Accuracy rate computation
time
IPGSE+CNN
Training data 97.3%
Short-circuit fault test set 97.5%
Open-circuit fault test set 96.7%
Spike fault test set 97.09% )56
Bias fault test set 98.02%
Drift fault test set 98.58%
Normal fault test set 96.86%
Periodic disturbance fault test set 99.6%
IPGSE+BP
Training data 93.3%
Short-circuit fault test set 93.5%
Open-circuit fault test set 95.65%
Spike fault test set 93.07% ur
Bias fault test set 95.2%
Drift fault test set 94.56%
Normal fault test set 94.7%
Periodic disturbance fault test set 93.8%
CNN
Training data 90.5%
Short-circuit fault test set 90.7%
Open-circuit fault test set 93.6%
Spike fault test set 91.97% 213
Bias fault test set 87.02%
Drift fault test set 85.9%
Normal fault test set 93.4%
Periodic disturbance fault test set 85.2%

and summarize the morphological features of faults at multi-
ple levels while retaining details, and the PSO algorithm fur-
ther matches the CNN classification and makes accurate
CNN diagnosis possible. Data-driven fault diagnosis schemes
are generally offline training and online running. The greatly
reduced training time is conducive to improving the ability of
the scheme to be used for onboard fault diagnosis.

We also compared our method against other classifica-
tion methods to further test its effectiveness. We applied a
BP network composed of an input layer, a hidden layer,
and an output layer to the same training samples and test
samples, with a sigmoid activation function in the hidden
layer. The input of the BP neural network in this case was
the entropy value of the signal processed via IPGSE, and
the output layer size was set to 7 neurons. We used classifica-
tion accuracy as a metric of the diagnostic performance of the
different methods. Table 4 shows the results. We found that
the recognition accuracy of PGSE and BP fault diagnosis
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algorithms was lower than that of the joint IPGSE and
CNN fault diagnosis method we established in this study.
The accuracy of the former algorithms was between 93.3%
and 95.65%, while ours reached 96.7%-99.6%. On the other
hand, the computation time of BP seems to be shorter than
that of CNN. The application of IPGSE reduces the training
time of CNN and makes up for this shortcoming. Compared
to the small tolerable difference in time, the larger difference
in accuracy is more important.

In a sense, fault diagnosis is a pattern recognition prob-
lem. The CNN we used in this study is a valuable classifier
with good pattern recognition effects. The traditional BP net-
work’s diagnostic performance is not as good as that of the
CNN. The traditional BP network is limited in its ability to
express complex functions and has limitations in the general-
ization of model results. This defect is passed down to the
optimization algorithm for parameter selection and the sta-
tistical measure for model selection in the neural network.
Our experimental results show that the proposed method
outperforms IPGSE and BP in terms of accuracy as well as
efficiency. The classification accuracy of the combined IPGSE
and CNN scheme was found to be over 96%.

Our experimental results show that this method is better
than directly constructed CNN in accuracy and efficiency.
This shows that our proposed scheme is useful IPGSE as a
supplement to CNN. In addition, we also compared the
method in this article with other classification methods
(BP), which proved the superiority of the CNN we selected.
Our approach remits the advantages of both IPGSE and
CNN methods, making it a good choice for aeroengine fault
diagnosis.

4. Conclusion

This paper proposed an intelligent scheme for fault diagnosis
called joint IPGSE and CNN for aeroengine control system
sensors. Our approach remits the advantages of both IPGSE
and CNN methods. It does not need to build an engine
model, but makes full use of process data to mine fault infor-
mation for fault diagnosis. CNN provides automatic selection
of representative features and automatic pattern recognition
without threshold design. Pattern gradient spectral entropy
is a good complement to CNN. It is not only simple to calcu-
late, easy to implement on-line by hardware, but also has
antinoise characteristics. It also converts one-dimensional
signals into spectral entropy graphs as input to CNN to refine
and summarize the morphological features of faults at multi-
ple levels while retaining details. This greatly reduces the cal-
culation and training time of CNN and makes accurate CNN
online diagnosis possible. Besides, with the aim to solve the
problem of traditional PGSE selecting parameters through
experience, we improved PGSE to use particle swarm optimi-
zation algorithm to adaptively optimize the influencing
parameters to better match CNN’s pattern classification,
and provide more reliable fault diagnosis. The fault diagnosis
scheme was further improved to enhance its comprehensive-
ness as well. Experimental results show that the proposed
intelligent fault diagnosis method is applicable to the online
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automatic fault diagnosis of aeroengine control system
Sensors.

Though preliminary results reflect the practicability of
the proposed method, it does show room for further
improvement. For example, its performance in multiple fault
diagnosis is unknown. The fault signal may be rebuilt by a
deep learning algorithm, because obtaining information such
as fault occurrence time and fault size is necessary to recover
engine performance. These problems will be addressed in the
future.

It does not need to build an engine model, but makes full
use of process data to mine fault information for fault diag-
nosis. CNN provides automatic selection of representative
features and automatic pattern recognition without threshold
design.
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