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This paper provides a solution for the trajectory tracking control of a hypersonic flight vehicle (HFV), which is encountered
performance constraints, actuator faults, external disturbances, and system uncertainties. For the altitude and velocity control
subsystems, the backstepping-based dynamic surface control (DSC) strategy is constructed to guarantee the predefined
constraint of tracking errors. The introduction of first-order low-pass filters effectively remedies the problem of “complexity
explosion” existing in high-order backstepping design. Simultaneously, radial basis function neural networks (RBFNNs) are
adopted for approximating the unavailable dynamics, in which the minimum learning parameter (MLP) algorithm brilliantly
alleviates the excessive occupation of the computational resource. Specially, in consideration of the unknown actuator failures,
the adaptive signals are designed to enhance the reliability of the closed-loop system. Finally, according to rigorous theoretical
analysis and simulation experiment, the stability of the proposed controller is verified, and its superiority is exhibited intuitively.

1. Introduction

The recent few years have witnessed the burgeoning interest
in hypersonic flight vehicles (HFVs) from researchers owing
to its unique advantages like rapid maneuver and high effi-
ciency. In light of these inherent characteristics, HFVs have
been extensively applied in both military and civilian fields.
However, there are still many obstructions in constructing
controllers for HFVs, involving the harsh flight environment,
the uncertainty of aerodynamics, and the strong nonlinearity
and coupling. In order to surmount these challenges, numer-
ous control frameworks have been examined, just to name a
few, sliding mode control (SMC) [1–4], backstepping control
[5–8], dynamic surface control (DSC) [9, 10], adaptive con-
trol [11, 12], and so forth.

As a classical nonlinear control approach, SMC is cele-
brated for its antidisturbance capability, easy implementa-
tion, and excellent robustness [13–16]. In [1], SMC-based
architecture was established to achieve the trajectory tracking
control for HFV, while it comes with the undesired phenom-
enon of chattering. This defect will undoubtedly generate a

heavy burden on actuators and shorten their service lives.
Fortunately, [2] provided a continuous antichattering sliding
mode controller for the flexible HFVs. Besides the SMC
methods, the backstepping-based procedure design possesses
a high application value in high-order nonlinear systems.
The disadvantage of traditional backstepping methods lies
in the issue of “complexity explosion,” which always leads
to waste of computational resources and excessive hardware
requirements. Therefore, the DSC-based solution was devel-
oped in [9] so that the above problem could be relaxed by
resorting to the introduction of low-pass filters. In addition,
complicated aerodynamics is another threat for trajectory
tracking of HFVs. Inaccurate dynamics makes model-
dependent control schemes uncapable for practical engineer-
ing. Inspired by this condition, a neural adaptive sliding
mode control algorithm was proposed in [17], where the
radial basis function neural networks (RBFNNs) were uti-
lized to approximate the available dynamics with an exacting
precision.

At the same time, while accounting for the uncertainties
of HFV models, great demands were placed on the
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convergence rate and tracking accuracy of control systems
[18]. From this view of point, most of the aforementioned
controllers possess satisfactory steady-state characteristics
but lack specific constraints on transient performances.
Under this urgent requirement, the prescribed performance
control (PPC) technology is introduced to restrict certain
states within a predefined region globally [19–24], such that
the system transient indicators can be flexibly specified by
the designers. Therefore, Shao et al. imposed time perfor-
mance constraints in event-triggered robust control for
quadrotors, which apparently optimized the stable rate of
the closed-loop system [19]. As for the PPC strategy in vehi-
cle control field, Bu constructed a RBFNN-based robust algo-
rithm for air-breathing hypersonic vehicles (AHVs) with
unknown dead-zone input nonlinearity, where the trajectory
tracking errors are effectively suppressed within a predeter-
mined range [21].

However, the controllers mentioned above are all
designed on basis of the assumption that actuators of HFVs
work normally. Obviously, it is of impractical conceit for
HFV servicing in ideal environments. To prevent the result-
ing performance degradation and instable phenomenon,
the actuator faults must be taken into account while formu-
lating the trajectory tracking control strategies with sufficient
applicability and reliability [25–27]. In [26], a quasi-
continuous high-order sliding mode framework was pre-
sented, in which the neural network observer is introduced
to ensure the convergence of estimation errors. Further in
[28], an adaptive fault-tolerant control scheme was derived
in the presence of actuator saturation to improve system
reliability and robustness. By the utilization of PPC, a fault-
tolerant protocol was designed to achieve the accurate trajec-
tory tracking for HFVs.

Driven by the aforementioned observations, this paper
aims at the prescribed performance fault-tolerant control
for HFV suffering from system uncertainties and actuator
failures. The backstepping-based dynamic surface design is
conducted to guarantee the finite-time convergence of alti-
tude and velocity tracking errors. Unknown multiplicative
and additive faults of actuators are handled by resorting to
the construction of adaptive architectures. On the other
hand, unmodeled dynamics are approximated via RBFNNs;
especially, the minimum learning parameter (MLP) algo-
rithm requires less computational resource. Finally, the
stability and superiority of the proposed controller will be
corroborated by theoretical analysis and simulation experi-
ments. It will be elaborated that the transient and steady-
state performance constraints are always satisfied. Contribu-
tions of this article are presented as follows:

(1) Different from the traditional approximation of
RBFNN [12, 17], MLP algorithm is utilized to cope
with the uncertain dynamics in this paper. In this
way, it is no longer necessary to estimate the entire
weight matrix, but the upper bound of its norm is
taken as the object of online updating. Therefore,
the computational complexity is considerably
degraded, and the hardware requirement is reduced
significantly

(2) In [23, 24], PPC control methods were presented for
MEMS Gyroscopes and Networked Uncertain Quad-
rotors, respectively, which cannot be directly applied
for hypersonic vehicles. Considering this point, the
PPC-based dynamic surface controller is synthesized
for hypersonic vehicles in the presence of uncer-
tainties, actuator faults, and disturbances. The results
of this paper could be treated as an application of
PPC for hypersonic vehicles

(3) Instead of restricting the time performance [19, 20],
the PPC-based amplitude constraints [23, 24] of
HFVs’ trajectory tracking errors are addressed in this
paper. In virtue of the hyperbolic tangent function,
the open-loop tracking error dynamics with certain
designer-specified index constraints is transformed
into an equivalent “state-constrained” system, in
which both transient and steady-state responses
obtain the satisfactory performance

The remainder of this paper is organized as follows. Sec-
tion 2 gives a longitudinal model of HFVs and the relative
preliminaries. The altitude and velocity controllers are
designed in Section 3 and Section 4, respectively. In Section
5, the validity of the controllers is verified through a simula-
tion experiment. Finally, Section 6 shows the conclusion of
this work.

2. Problem Formulation

2.1. Longitudinal Model of HFV. The trajectory tracking con-
trol problem for a HFV is considered in this paper. Accord-
ing to [29], the longitudinal model of the HFV can be
expressed as:

_V =
T cos α −D

m
−
μ sin γ

r2
, ð1Þ

_γ =
L + T sin α

mV
−

μ −V2r
� �

cos γ
Vr2

, ð2Þ

_h =V sin γ, ð3Þ
_α = q − _γ, ð4Þ

_q =
Myy

Iyy
: ð5Þ

The corresponding dynamics are given as:

L = �qSCL, ð6Þ

D = �qSCD, ð7Þ
T = �qSCT , ð8Þ

Myy = �qS�c CM αð Þ + CM δð Þ + CM qð Þ½ �, ð9Þ
r = h + re, ð10Þ

CL = 0:6203α, ð11Þ
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CD = 0:6450α2 + 0:0043378α + 0:003772, ð12Þ

CT =
0:022576β β < 1

0:0224 + 0:00336β β > 1
,

(
ð13Þ

CM αð Þ = −0:035α2 + 0:036117α + 5:3261 × 10−6, ð14Þ

CM qð Þ = �cq −0:6796α2 + 0:3015α − 0:2289
� �

2V
, ð15Þ

CM δeð Þ = ce δe − αð Þ, ð16Þ

ce = 0:0292, ð17Þ
where �c and ce denote constants; �q denotes the dynamic pres-
sure satisfying �q = ð1/2ÞρV2; V , h, γ, α, and q denote velocity,
altitude, flight path angle, angle of attack, and pitch rate of
HFV, respectively [30]; T , D, L, and Myy denote the thrust
of the engine, drag force, lift force, and pitching moment,
respectively [31]; and S, m, ρ, Iyy , μ, and re denote the refer-
ence area, mass, density of air, moment of inertia, the gravi-
tational constant, and radius of the Earth, respectively [32].

As a matter of fact, various unexpected failures occur to
the actuators frequently in practical engineering, which will
cause severe performance degradation and even collapse for
whole close-loop system. Therefore, it is necessary to take
the actuator faults into consideration while designing the
trajectory tracking controllers. With the introduction of
multiplicative and additive faults, the actual input signal is
described as:

δe = ρiuc + di tð Þ + Δi, ð18Þ

where ρi denotes the unknown effectiveness factor of actua-
tor and satisfies 0 < ιi ≤ ρi ≤ 1, ιi ≤ 1 represents the minimum
value of ρi, diðtÞ denotes the unknown external disturbance,
and Δi is the additive fault with i = 1, 2.

2.2. Fundamental of RBFNNs. RBFNN is an effective tool to
obtain the approximation of unknown system dynamics.
The following lemma sketches the basic principle of
RBFNNs.

f xð Þ =W∗TH xð Þ + r, 0 < rj j ≤O: ð19Þ

Lemma 1 [33]. An arbitrary continuous smooth function f ðxÞ
can be described as the following form by defining a basis func-
tion HðxÞ.

Here, W∗ = ½Wa1,Wa2,⋯,Wap�T is the ideal weight
matrix, and x = ½xa1, xa2,⋯, xam� represents the input vector.
r and O are the additional approximation error and its upper
bound; HðxÞ = ½Ha1ðxÞ,Ha2ðxÞ,⋯,HamðxÞ�T is selected as
the Gaussian basis function, which can be expressed as:

Hai xð Þ = exp −
x − cik k22
2b2i

� �
, i = 1,⋯, p, ð20Þ

with ci ∈ Rm and b ∈ Rp denoting the center vector and the
width of Gaussian basis function, respectively.

2.3. Other Preliminaries

Lemma 2 [33]. For arbitrary scalar x ∈ R and μ > 0, the
inequation about hyperbolic tangent function is shown as:

0 < xj j − x tanh μxð Þ ≤ κ

μ
, ð21Þ

in which the constant κ = 0:2785.

Assumption 3. The additive actuator fault and external
disturbances are both unknown but bounded, which are
supposed to satisfy jdiðtÞ + Δij ≤ λiði = 1, 2Þ with λi being
positive constants.

3. Altitude Controller Design

Aiming towards the altitude and velocity tracking missions,
two subsystems are formulated on basis of the longitudinal
model of HFV. In this section, a DSC-based adaptive fault-
tolerant controller is constructed for the altitude tracking
subsystem. Due to the high-order characteristic of the
dynamics, traditional backstepping design is inevitably
accompanied by the phenomenon of “complexity explosion,”
which is arising from the frequent differential to virtual com-
mands. Therefore, low-pass filters are introduced to solve
this problem, while system uncertainties are handled via
RBFNN. Finally, it is validated via Lyapunov-based analysis
that altitude tracking errors exponentially converge to a tiny
region containing the origin.

In altitude tracking control subsystem, three states are
selected as γ, ϑp, and q. To facilitate the subsequent design,
a state vector is defined as:

x = x1, x2, x3½ �T = γ, ϑp, q
� �T , ð22Þ

where ϑp = α + γ. Thus, the altitude dynamics can be
described as [30]:

_x1 = f1 x1, Vð Þ + g1 Vð Þx2,
_x2 = f2 + g2x3,

_x3 = f3 x1, x2, x3, Vð Þ + g3 Vð Þδe = f3 x1, x2, x3, Vð Þ
+ g3 Vð Þ ρ1uc1 + d1 tð Þ + Δ1ð Þ,

ð23Þ

with
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g1 Vð Þ = 0:31015ρVS
m

,

f1 x1, Vð Þ = T sin α

mV
−

μ‐V2r
� �

cos γ
Vr2

,

f2 = 0, g2 = 1,

f3 x1, x2, x3, Vð Þ = 0:5ρV2S CM αð Þ + CM qð Þ − ceαð Þ
Iyy

,

g3 Vð Þ = �qS�cce
Iyy

:

ð24Þ

Assumption 4. The uncertain term giðVÞ possesses an upper
bound �gi, which satisfies 0 < jgiðVÞj ≤ �gi, i = 1, 3.

At this moment, the control objective has been trans-
formed into forcing xiði = 0, 1, 2, 3Þ to track the desired tra-
jectories, where x0 = h. For this purpose, the tracking error
variables are introduced as xei = xi − xid with x0d = hd , x1d =
γd , x2d = ϑpd , and x3d = qd denoting reference states.

To ensure the prescribed performance, the boundary of
variable xei is defined as:

xei ≤ xei ≤ �xei: ð25Þ

The error transformation is designed as:

xei =
�xei − xei

2
tanh sið Þ + �xei + xei

2
, ð26Þ

si = atanh
2xei − �xei − xei

�xei − xei

� �
, ð27Þ

in which si is the transformed tracking error. It indicates that
the transformed error increases monotonically with the orig-
inal variable.

Note additionally that there exist limits as:

lim
si→−∞

xei = xei, lim
si→+∞

xei = �xei: ð28Þ

Necessarily, the time derivative of si is derived as:

_si =mi _xei + ni, ð29Þ

in which mi = ∂si/∂xei, ni = ð∂si/∂�xeiÞ _�xei + ð∂si/∂x−eiÞ _x−ei with
i = 1, 2, 3.

Step 1. According to Equation (29), the derivative of s0 sat-
isfies the following equation:

_s0 =m0 _xe0 + n0 =m0V sin x1ð Þ + n0: ð30Þ

Based on the similar analysis in [34], the asymptotic sta-
bility of the altitude tracking error xe0 is ensured if the virtual
command is designed as:

x1d = arcsin
−khs0 − khhs0 + _hd + n0

m0V

 !
, ð31Þ

with kh > 0, khh > 0. For the purpose of stabilizing xe1, the fol-
lowing equations are firstly presented by utilizing Equations
(24) and (26)–(29):

_xe1 = f1 + g1x2 − _x1d ,

_s1 =m1 _xe1 + n1

=m1 f1 + g1x2 − _x1dð Þ + n1:

ð32Þ

A first-order low-pass filter is introduced as:

ε2 _x2d + x2d = x2c, x2d 0ð Þ = x2c 0ð Þ, ð33Þ

where the variable x2c represents the filtered signal and
ε2 > 0 is a constant.

To cope with the unavailable dynamic m1 f1, Lemma 1 is
applied here. Then, one has:

m1 f1 =W∗T
a1 Ha1 xð Þ + r1, 0 < r1j j ≤O1,

W∗T
a1 Ha1

�� �� ≤ W∗T
a1

�� �� Ha1k k ≤w1h1,
ð34Þ

where h1 = kHa1k and w1 ≥ kW∗T
a1 k.

By defining that R1 =O1, the virtual control input and the
relevant adaptive laws are designed as:

x2c =
1
g1

_x1d − g1xe2 +
1
m1

−ŵ1h1 tanh
s1
μ1

� ��	
−R̂1 tanh

s1
μ2

� �
− k1s1 − k2 tanh s1ð Þ − n1Þ



,

ð35Þ

_̂w1 = α1 s1j jh1 tanh
s1j j
μ1

� �
− c1ŵ1

	 

, ð36Þ

_̂R1 = β1 s1j j tanh s1j j
μ2

� �
− c2R̂1

	 

, ð37Þ

where ŵ1 and R̂1 are the estimation values of w1 and R1,
respectively, and k1 and k2 are the positive constants.

Step 2. As for x2, according to Equations (24) and (26)–(29),
one has:

_xe2 = _x2 − _x2d = x3 − _x2d ,

_s2 =m2 _xe2 + n2

=m2 x3 − _x2dð Þ + n2:

ð38Þ

A first-order filter is given as:

ε3 _x3d + x3d = x3c, x3d 0ð Þ = x3c 0ð Þ, ð39Þ

where ε3 > 0 is a positive constant.

4 International Journal of Aerospace Engineering



Introduce the virtual command x3c, which is taken as:

x3c =
1
m2

−k3s2 − k4 tanh s2ð Þ − n2½ � + _x2d − xe3, ð40Þ

where k3 and k4 are the positive constants.

Step 3. To ensure the convergence of xe3, Equations (24) and
(26)–(29) are combined, and the following equations are
obtained:

_xe3 = _x3 − _x3d = f3 + g3 ρ1uc1 + d1 tð Þ + Δ1ð Þ − _x3d , ð41Þ

_s3 =m3 _xe3 + n3

=m3 f3 + g3 ρ1uc1 + d1 tð Þ + Δ1ð Þ − _x3dð Þ + n3:
ð42Þ

By taking the unavailable dynamic m3 f3 into consider-
ation and according to Lemma 1, one can obtain:

m3 f3 =W∗T
a3 Ha3 xð Þ + r3, 0 < r3j j ≤O3, ð43Þ

W∗T
a3 Ha3

�� �� ≤ W∗T
a3

�� �� Ha3k k ≤w3h3, ð44Þ

where h3 = kHa3k and w3 ≥ kW∗T
a3 k.

With the definitions of R3 =m3�g3λ1 +O3 and η1 = ðð1
− ρ1Þm3Þ/ρ1, the control input and corresponding adaptive
laws are designed as:

u1 = −g−1
3 unom1 + un1ð Þ, ð45Þ

unom1 =
1
m3

ŵ3h3 tanh
s3
μ3

� �
+ R̂3 tanh

s3
μ4

� �
+ k5s3 + k6 tanh s3ð Þ + n3

	 

− _x3d ,

ð46Þ

un1 =
1
m3
bη1 unom1j j tanh unom1j js3

μ5

� �
, ð47Þ

_bη1 = k7 unom1j j s3j j tanh unom1j j s3j j
μ5

� �
− k8bη1	 


, ð48Þ

_̂w3 = α3 s3j jh3 tanh
s3j j
μ3

� �
− c5ŵ3

	 

, ð49Þ

_̂R3 = β3 s3j j tanh s3j j
μ4

� �
− c6R̂3

	 

, ð50Þ

where bη1, ŵ3, and R̂3 are estimations of η1, w3, and R3,
respectively, and k5, k6,k7, k8, α3, β3, c5, c6, μ3, and μ4 are
all positive constants.

Theorem 5. For the HFV system (24), if the virtual commands
are designed as Equations (31), (35), and (40), control signals
are designed as Equations (45)–(47); it can be concluded that
the tracking errors satisfy exponential convergence, and the
prescribed performance constraints are guaranteed.

Proof. Lyapunov function candidate is selected as:

φ0 = 〠
3

i=1
φi, ð51Þ

where φi are defined as:

φ1 =
1
2
s21 +

1
2
y22 +

1
2α1

~w2
1 +

1
2β1

~R
2
1,

φ2 =
1
2
s22 +

1
2
y23,

φ3 =
1
2
s23 +

ρ1
2k7

~η21 +
1
2α3

~w2
3 +

1
2β3

~R
2
3:

ð52Þ

The differential of yi, i = 2, 3, can be expressed as:

_yi = _xid − _xic = −
yi
εi

+ Bi ⋅ð Þ,

Bi ⋅ð Þ = − _xic:
ð53Þ

It is worthy to point that there must exist constants οi > 0,
i = 2, 3, satisfying the inequality [32]:

Bi ⋅ð Þj j ≤ οi, ð54Þ

in which o1 are unknown positive constants.
Therefore, the time derivative of φi can be developed as:

_φ1 = s1 m1½ f 1 + g1x2 − _x1dð Þ + n1� + y2 _y2 −
1
α1

~w1 _̂w1 −
1
β1

~R1
_̂R1

= s1 m1 f1 +m1g1xe2 +m1g1y2 − ŵ1h1 tanh
s1
μ1

� �	
− R̂1 tanh

s1
μ2

� �
+m1 _x1d −m1g1xe2 − k1s1 − k2 tanh s1ð Þ

−n1 −m1 _x1d + n1



+ y2 _y2 −

1
α1

~w1 _̂w1 −
1
β1

~R1
_̂R1

≤ s1j j w1h1 + R1ð Þ + m1j j�g1
s21 + y22

2

� �
− ŵ1h1 s1j j + μ1ŵ1h1κ

− R̂1 s1j j + μ2R̂1κ − k1s1
2 − k2 s1j j + k2κ −

1
ε2

−
1
2

� �
y22

+
ο22
2

−
1
α1

~w1α1 s1j jh1 tanh
s1j j
μ1

� �
− c1ŵ1

	 

−

1
β1

~R1β1

� s1j j tanh s1j j
μ2

� �
− c2R̂1

	 

,
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≤− k1 −
m1j j�g1
2

� �
s1

2 −
1
ε2

−
m1j j�g1
2

−
1
2

� �
y22 +

ο22
2

+ c1 ~w1ŵ1

+ c2~R1R̂1 + μ1w1h1κ + μ2R1κ + k2κ ≤ − k1 −
m1j j�g1
2

� �
s1

2

−
1
ε2

−
m1j j�g1
2

−
1
2

� �
y22 −

c1
2
~w2

1 −
c2
2
~R
2
1 +

c1
2
w2

1 +
c2
2
R2
1

+
ο22
2

+ μ1w1h1κ + μ2R1κ + k2κ = −θ1φ1 + ζ1,

ð55Þ

where θ1 = min ð2k1 − jm1j�g1, ð2/ε2Þ − jm1j�g1 − 1, α1c1, β1c2Þ
, ζ1 = ðc1/2Þw2

1 + ðc2/2ÞR2
1 + ðο22/2Þ + μ1w1h1κ + μ2R1κ + k2κ.

With the application of Equations (41)–(44), the time
derivative of φ2 can be expressed as:

_φ2 = s2 m2 x3 − _x2dð Þ + n2½ � + y3 _y3 = s2 m2 xe3 + y3 + x3c − _x2dð Þ + n2½ � + y3 _y3
= s2 m2xe3 +m2y3 +m2 _x2d − k3s2 − k4 tanh s2ð Þ½ −m2xe3

− n2 −m2 _x2d + n2� + y3 _y3 ≤ s2 m2y3 − k3s2 − k4 tanh s2ð Þ½ �

−
y23
ε3

+ y3j j ο3j j ≤ m2j js2y3 − k3s2
2 − k4 s2j j + k4κ −

y23
ε3

+ y3j j ο3j j

≤ − k3 −
m2j j
2

� �
s2

2 −
1
ε3

−
m2j j
2

−
1
2

� �
y23 +

ο23
2

+ k4κ

= −θ2φ2 + ζ2,

ð56Þ

where θ2 = min ð2k3 − jm2j, ð2/ε3Þ − jm2j − 1,Þ, ζ2 = ðο23/2Þ
+ k4κ.

With the substitution of Equations (47)–(50), the time
derivative of φ3 is written as:

_φ3 = s3 m3 f3 + g3 ρ1uc1 + d1 tð Þ + Δ1ð Þ − _x3dð Þ + n3½ �
−
ρ1
k7

~η1
_bη1 −

1
α3

~w3 _̂w3 −
1
β3

~R3
_̂R3 ≤ s3j j w3h3 + r3ð Þ

+m3s3 1 − ρ1ð Þunom1 − unom1 − ρ1un1 − _x3d½ � + n3s3

+ m3j j �g3λ1 s3j j − ρ1
k7

~η1k7 unom1j j s3j j tanh unom1j j s3j j
μ5

� �
− k8bη1

	 

−

1
α3

~w3 _̂w3 −
1
β3

~R3
_̂R3 ≤ s3j j~w3h3 + s3j j~R3 − k5s

2
3 − k6 s3j j

+ m3j j s3j j 1 − ρ1ð Þ unom1j j − ρ1κbη1 unom1j j s3j j + κ μ3ŵ3ð h3
+ μ4R̂3 + k6 + μ5ρ1η1

�
− ρ1κ~η1 unom1j j s3j j + ρ1k8~η1bη1

−
1
α3

~w3 _̂w3 −
1
β3

~R3
_̂R3:

ð57Þ

By utilizing Equations (51) and (52), the above inequality
can be rewritten as:

_φ3 ≤ s3j j~w3h3 + s3j j~R3 − k5s
2
3 − k6 s3j j + m3j j s3j j 1 − ρ1ð Þ unom1j j

− ρ1κbη1 unom1j j s3j j + κ μ3ŵ3ð h3 + μ4R̂3 + k6 + μ5ρ1η1
�

− ρ1κ~η1 unom1j j s3j j + ρ1k8~η1bη1 −
1
α3

~w3α3

� s3j jh3 tanh
s3j j
μ3

� �
− c5ŵ3

	 

,

−
1
β3

~R3β3 s3j j tanh s3j j
μ4

� �
− c6R̂3

	 

≤ −k5s

2
3 + ρ1k8~η1bη1

+ c5 ~w3ŵ3 + c6~R3R̂3 + κ μ3w3ð h3 + μ4R3 + k6 + μ5ρ1η1Þ
≤ −k5s

2
3 −

ρ1k8
2

~η21 −
c5
2
~w2
3 −

c6
2
~R
2
3 +

ρ1k8
2

η21 +
c5
2
w2

3

+
c6
2
R2
3 + κ μ3w3ð h3 + μ4R3 + k6 + μ5ρ1η1Þ = −θ3φ3 + ζ3,

ð58Þ

where θ3 = min ð2k5, k7k8, α3c5, β3c6Þ, ζ3 = κðμ3w3h3 + μ4R3
+ k6 + μ5ρ1η1Þ + ðρ1k8/2Þη21 + ðc5/2Þw2

3 + ðc6/2ÞR2
3.

Consequently, the differential of φ0 can be calculated as:

_φ0 ≤ − k1 −
m1j j�g1
2

� �
s1

2 −
1
ε2

−
m1j j�g1
2

−
1
2

� �
y22 −

c1
2
~w2

1

−
c2
2
~R
2
1 − k3 −

m2j j
2

� �
s2

2 −
1
ε3

−
m2j j
2

−
1
2

� �
y23 − k5s

2
3

−
ρ1k8
2

~η21 −
c5
2
~w2
3 −

c6
2
~R
2
3 +

c1
2
w2

1 +
c2
2
R2
1 +

ο22
2

+ μ1w1h1κ + μ2R1κ + k2κ +
ο23
2

+ k4κ +
ρ1k8
2

η21

+
c5
2
w2

3 +
c6
2
R2
3 + κ μ3w3ð h3 + μ4R3 + k6 + μ5ρ1η1Þ

≤ −θ0φ0 + ζ0,
ð59Þ

with

θ0 = min 2k1 − m1j j�g1,
2
ε2

− m1j j�g1 − 1, α1c1, β1c2, 2k3
�

− m2j j�g2,
2
ε3

− m2j j�g2 − 1, 2k5, k7k8, α3c5, β3c6
�
,

ð60Þ

ζ0 =
c1
2
w2

1 +
c2
2
R2
1 +

ο22
2

+ μ1w1h1κ + μ2R1κ + k2κ +
ο23
2

+ k4κ

+ ρ1k8
2

η21 +
c6
2
R2
3 +

c5
2
w2

3 + κ μ3w3ð h3 + μ4R3 + k6 + μ5ρ1η1Þ:
ð61Þ

To conclude, s1, s2, and s3 exponentially converge to a
neighborhood around the origin, only if the designed param-
eters k1, k2, k3, k4, k5, k6, k7, k8, α1, α3, β1, β3, c1, c2, c3, c4, c5,

Table 1: Initial values of states.

Item Value Unit

V 15060 ft/s

h 110000 ft

γ 0 rad

α 1:6325π/180 rad

q 0 rad/s
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c6, μ1, μ2, μ3, μ4, and μ5 are chosen to satisfy θ0 > 0. Accord-
ing to the transformation Equation (26), the stabilization of
tracking errors xei is guaranteed, while their trajectories
always remain within the predefined region. The proof of
Theorem 5 is completed.

4. Velocity Controller Design

The velocity tracking control subsystem for HFVs is estab-
lished as:

_V = f v + ρ2uc2 + d2 tð Þ + Δ2: ð62Þ

The definition of velocity tracking error Ve and its time
derivative are given as:

Ve =V −Vd ,
_Ve = _V − _Vd = f v + ρ2uc2 + d2 tð Þ + Δ2 − _Vd:

ð63Þ

The predesigned boundary of variable Ve is denoted as:

Ve ≤Ve ≤ �Ve: ð64Þ

The error transformation is redesigned as:

Ve =
�Ve + Ve

2
tanh s4ð Þ +

�Ve +Ve

2
,

s4 = atanh
2Ve − �Ve − Ve

�Ve − Ve

� �
,

ð65Þ

where s4 is the transformed velocity error. Obviously, it indi-
cates that the transformed error increases monotonically
with the original error.

Hence, there exist limits as:

lim
s4→−∞

Ve =Ve, lim
s4→+∞

Ve = �Ve: ð66Þ

Table 2: Values of control parameters.

Section Parameters

PPC

xei = �λi − λi

� �
exp −ιitð Þ + λi, i = 0, 1, 2, 3, 4, �λ0 = 105, λ0 = 3,

ι0 = 0:2, �λ1 = 0:05, λ1 = 0:04, ι1 = 0:3, �λ2 = 0:1, λ2 = 0:035,

ι2 = 0:1, �λ1 = 0:1, λ1 = 0:05, ι1 = 0:1, �λ1 = 105, λ1 = 5, ι1 = 0:1

Low-pass filter ε2 = 10, ε3 = 10
Input of MLP-NN Referring to [35]

Controller

kh = 10, khh = 1:5, k1 = 0:8, k2 = 0:2, α1 = 0:0001, c1 = 2,

β1 = 0:001, c2 = 10, k3 = 2:5, k4 = 0:01, k5 = 0:05, k6 = 0:05,

k7 = 0:05, k8 = 30, α3 = 0:001, c5 = 10, β3 = 0:05, c6 = 10,

k9 = 3, k10 = 2, k11 = 0:005, k12 = 2, α4 = 0:05, c7 = 2, β4 = 0:01, c8 = 2
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Figure 2: The velocity tracking error of HFV.
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Additionally, the time derivative of s4 is derived as:

_s4 =m4 _Ve + n4

=m4 f v + ρ2uc2 + d2 tð Þ + Δ2 − _Vd

� �
+ n4:

ð67Þ

Subsequently, the uncertain dynamic m4 f v is approxi-
mated by adopting RBFNN, which can be expressed as:

m4 f v =W∗T
v1 Hv1 xð Þ + rv , 0 < rvj j ≤Ov , ð68Þ

W∗T
v1 Hv1

�� �� ≤ W∗T
v1

�� �� Hv1k k ≤wvhv , ð69Þ

where hv = kHv1k and wv ≥ kW∗T
v1 k.

The control input and adaptive laws are given as:

uc2 = − unom2 + un2ð Þ, ð70Þ

unom2 =
1
m4

ŵvhv tanh
s4
μ6

� �
+ R̂4 tanh

s4
μ7

� �	
+ k9s4 + k10 tanh s4ð Þ + n4



− _vd ,

ð71Þ

un2 =
1
m4
bη2 unom2j j tanh unom2j js4

μ8

� �
, ð72Þ

_bη2 = k11 unom2j j s4j j tanh unom2j j s4j j
μ8

� �
− k12bη2	 


, ð73Þ

_̂wv = α4 hv s4j j tanh s4j j
μ6

� �
− c7ŵv

	 

, ð74Þ

_̂R4 = β4 s4j j tanh s4j j
μ7

� �
− c8R̂4

	 

, ð75Þ

where η2 = ðð1 − ρ2Þm4Þ/ρ2 and R4 =m4λ2 +Ov; bη2, ŵv, and
R̂4 are the estimate values of η2, wv, and R4, respectively;
and k9, k10, k11, k12, α4, β4, c7, c8, μ6, μ7, and μ8 are all positive
parameters.

Theorem 6. Noting the velocity dynamic (61) of HFV and
considering the fault tolerant controller Equations (69)–(71),
exponential convergence and prescribed performance con-
straints will be ensured for the tracking error.
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Proof. To illustrate the convergence of velocity tracking error,
the Lyapunov function is selected as:

φ4 =
1
2
s24 +

ρ2
2k11

~η22 +
1
2α4

~w2
v +

1
2β4

~R
2
4: ð76Þ

With the substitution of Equations (69)–(71), the time
derivative of φ4 is derived as:

_φ4 = s4m4 f v + ρ2uc + d2 tð Þ + Δ2 − _vd½ � + n4s4 −
ρ2
k11

~η2
_bη2

−
1
α4

~wv
_̂wv −

1
β4

~R4
_̂R4 ≤ s4j j wvhv + Rvð Þ +m4s4

� 1 − ρ2ð Þunom2 − unom2 − ρ2un2 − _vd½ � + n4s4

−
ρ2
k11

~η2
_bη2 −

1
α4

~wv
_̂wv −

1
β4

~R4
_̂R4 ≤ s4j j~wvhv + s4j j~R4

− k9s
2
4 − k10 s4j j + m4j j s4j j 1 − ρ2ð Þ unom2j j − ρ2 unom2j jbη2 s4j j

+ κ μ6ŵvhvð + μ7R̂4 + k10 + μ8ρ2η2
�
− ρ2 unom2j j~η2 s4j j

+ ρ2k12~η2bη2 − 1
α4

~wv
_̂wv −

1
β4

~R4
_̂R4:

ð77Þ

Taking Equations (71)–(73) into account, Equation (77)
can be further expressed as:

_φ4 ≤ s4j j~wvhv + s4j j~R4 − k9s
2
4 − k10 s4j j + m4j j s4j j 1 − ρ2ð Þ unom2j j

− ρ2 unom2j jbη2 s4j j + κ μ6ŵvhvð + μ7R̂4 + k10 + μ8ρ2η2
�

− ρ2 unom2j j~η2 s4j j + ρ2k12~η2bη2 −
1
α4

~wvα4

� hv s4j j tanh s4j j
μ6

� �
− c7ŵv

	 

−

1
β4

~R4β4

� s4j j tanh s4j j
μ7

� �
− c8R̂4

	 

≤ −k9s

2
4 + ρ2k12~η2bη2

+ c7 ~wvŵv + c8~R4R̂4 + κ μ6wvhvð + μ7R4 + k10 + μ8ρ2η2Þ
≤ −k9s

2
4 −

ρ2k12
2

~η22 −
c7
2
~w2

v −
c8
2
~R
2
4 +

ρ2k12
2

η22 +
c7
2
w2

v

+
c8
2
R2
4 + κ μ6wvhvð + μ7R4 + k10 + μ8ρ2η2Þ = −θ4φ4 + ζ4,

ð78Þ

where θ4 = min ð2k9, k11k12, α4c7, β4c8Þ and ζ4 = ðρ2k12/2Þη22
+ ðc7/2Þw2

v + κðμ6wvhv + μ7R4 + k10 + μ8ρ2η2Þ + ðc8/2ÞR2
4.
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Therefore, it can be concluded that s4 is asymptotically stable,
and the velocity tracking error Ve completes convergence
within the prespecified range. Theorem 6 is validated
sufficiently.

5. Simulation

To illustrate the specific performances of the proposed con-
troller, a numerical simulation is executed based on the lon-
gitudinal dynamics (1)–(17) of HFV. By giving the initial
states and reference trajectories, the tracking control objec-
tive will be achieved with predefined performance con-
straints. The initial values of states are provided in Table 1,
and the control parameters are shown in Table 2.

Meanwhile, the desired trajectories, environmental dis-
turbances, and actuator effectiveness parameters are defined
as:

Vd = 15160ft/s, hd = 110100ft,

d1 = 0:01 × sin 0:05tð Þ, d2 = 0:01 × cos 0:05tð Þ,

ρ1 =
1, t < 100s

0:7, t ≥ 100s

(
, Δ1 = 0:001 × sin 0:05tð Þ,

ρ2 =
1, t < 100s

0:8,  t ≥ 100s

(
, Δ2 = 0:001 × cos 0:05tð Þ:

ð79Þ

Consequently, the main results are exhibited in
Figures 1–10. Firstly, the curves of tracking errors are shown
in Figures 1 and 2. It follows from these two pictures that the
altitude tracking error and velocity tracking error are stabi-
lized into a tiny neighborhood around origin within 30 s
and 50 s, respectively. Obviously, not only the transient per-
formance constraint is guaranteed but also the steady-state
errors are maintained within ranges of 5m and 5m/s, which
means undoubtedly a very high accuracy for hypersonic

flight. What is subsequently given in Figures 3 and 4 is the
curves of control inputs. In particular, even if there is an
unknown actuator failure occurring at 100 s, the control sig-
nal is capable of returning to a constant within an extremely
short time. Figures 5 and 6 show the curves of adaptive esti-
mates R̂3 and R̂4, which always remain bounded under the
designed algorithm. The estimations about weight matrixes
of RBFNNs are provided in Figures 7 and 8, and the adaptive
learning parameters for actuator failure are settled in
Figures 9 and 10. As is shown in figures, all the estimations
finally converge to constants. Thus, the proposed controller
is capable of tracking the desired trajectory in case of actuator
faults.

For better illustration of the merits PPC, simulation
results without performance constraints are presented in
Figures 11 and 12. Observing the tracking errors of altitude
and velocity, one can conclude that the performance con-
straints will be violated before the system’s stabilization.
From this aspect, it deduces that the PPC control strategies
are necessary for hypersonic vehicles’ tracking control.

6. Conclusion

This study concentrates on the robust prescribed perfor-
mance tracking control for HFV in the presence of system
uncertainties and unknown actuator faults. On the basis of
longitudinal model of HFV, an antidisturbance neural adap-
tive control strategy is constructed, in which MLP algorithm
is employed to approximate the unavailable dynamics with a
reduced computational burden. In addition, the multiplica-
tive and additive failures of actuator are taken into account
simultaneously. Finally, the stability and effectiveness of pro-
posed controller are elaborated by rigorous theoretical analy-
sis. The results of simulation example further indicate that
the altitude and velocity tracking errors satisfy the prescribed
performance constraints.
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