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Hypersonic vehicle has gained increasing attention due to its high cruise speed and long voyage. In this paper, an enhanced
Sequential Approximate Optimization method is proposed for aerodynamic optimization of a hypersonic vehicle. In this
method, a constrained design of experiment method is adopted to generate the initial sampling set with adequate number of
feasible points. A field metamodel is proposed to surrogate the aerodynamic parameters distributions in the flow field obtained
by the aerodynamic simulation. A hybrid metamodel combing radial basis functions and polynomial chaos expansion is applied
to construct the field metamodel with good approximate performance. A robust mesh morphing scheme based on radial basis
functions is developed to generate high-quality meshes for the sequential optimization scheme. The hypersonic vehicle
aerodynamic optimization problem is performed using the proposed optimization framework and satisfactory results are
obtained with limited computational budgets. Results show that the proposed field metamodel-enhanced Sequential
Approximate Optimization method possesses powerful optimization performance and promising prospects in the field of
hypersonic vehicle optimization design.

1. Introduction

Over recent decades, hypersonic vehicles have generally
gained increasing attention because of potentially significant
increases in range capabilities provided by their high lift-to-
drag ratio and superior break-defense capabilities provided
by their high cruise speeds [1]. The overall performance of
hypersonic vehicles, especially the aerodynamic properties,
largely depends on their geometric configuration.

Various design methods have been studied to obtain sat-
isfactory hypersonic configurations. In the early stage, just
like other aircraft design problems, cut-and-try methods
were widely studied in the design problems of hypersonic
vehicles. In 1965, Küchemann [2] proposed the aerodynamic
design problem of hypersonic vehicle firstly. A conical-
derived design-based approach is introduced by Rasmussen
[3] in 1990. A few years later, in 1999, Sobieczky et al. [4]
developed a characteristic inverse-based method using oscu-
lating cones. The traditional cut-and-try approaches are
based on the experience of the designers, which, however,
are not always available for newly developed and unconven-

tional aircrafts such as hypersonic vehicles. Moreover, the
cut-and-try methods are only capable of identifying some
feasible candidates rather than locating the optimal solution.

For these circumstances, recent efforts in the field of
hypersonic vehicles focus on methods that are aimed at get-
ting the optimum. Many researchers have chosen to combine
evolutionary or gradient-based optimization algorithms with
semiempirical estimation models to optimize hypersonic
vehicles. Kinney utilized the Newtonian Tangent Cone and
Tangent Wedge method and a conjugate gradient approach
to search for an optimal hypersonic design [5]. Theisinger
and Braun employed Newtonian flow theory to rapidly assess
the hypersonic aerodynamic performance of candidate aero-
shells and utilized the refined Nondominated Sorting Genetic
Algorithm (NSGA-II [6]) to conduct a multiobjective opti-
mization [7]. Su et al. utilized local-inclination methods for
aerodynamic estimation analysis and SNOPT [8] as an opti-
mization algorithm solver [9]. Zhang et al. further extended
Su et al.’s research by combining local-inclination methods
with a panel method [10]. In Shen et al.’s documented
research, a panel method was applied to numerically
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investigate the aerodynamic characteristics and combined
with the Multi-Island Genetic Algorithm (MIGA) in the
aerodynamic optimization of EXPERT configuration [11].

In modern aerodynamic design optimization applications,
the high-fidelity computational fluid dynamic (CFD) simula-
tion models have been widely used to improve the confidence
and accuracy of analysis [12]. The modelling quality and solu-
tion accuracy are improved via the high-fidelity CFD models,
which usually require meshes composed of a large number of
cells and numerous convergence iterations [13]. Thus, the
conventional numerical optimization techniques such as evo-
lutionary algorithms, which normally require thousands of
model evaluations to yield an optimized design [14], are prac-
tically unacceptable in high-fidelity CFD simulation model-
driven aerodynamic optimization problems, especially for
hypersonic vehicle optimization design problems, since that
the CFD simulations of high-Mach number are particularly
time-consuming [15, 16].

To address the challenge of computation-intensive opti-
mization problems with high-fidelity simulation models,
metamodels, also known as surrogate methods, have gain
intensive attention in the past decade [17–21]. Metamodel-
based optimization uses computationally cheap surrogate
models as substitutes to the high-fidelity simulation models
to reduce the number of evaluations of computationally more
expensive true models, thereby achieving the computation-
intensive optimization problems with high-fidelity simula-
tion models at much reduced computational cost [22, 23].
Based on the metamodels, the Sequential Approximate Opti-
mization (SAO) [24, 25] method is proposed and has been
regarded as one of the most practical methods for engineer-
ing optimization problems and successfully used in various
high-fidelity CFD simulation model-driven optimization
problems [26–28]. A common SAO includes three stages:
design of experiment (DoE), metamodeling, and infilling.
DoE is applied to generate a limited number of space-filling
sampling points, which are simulated using the high-fidelity
simulation model. The metamodels are constructed using
existing sampling points by surrogating the relationships
between the design variables and the simulations outputs,
using specific metamodels, such as the radial basis functions
(RBF) [29], the Kriging method [30], and the Response Sur-
face Method (RSM) [31]. The metamodels are then gradually
updated through a certain adaptive infilling mechanism dur-
ing the optimization process to improve the efficiency and
convergence performance.

The same as evolutionary algorithms, SAO can be used in
any formulated optimization problem for the sake of its high
generality and flexibility, where the metamodels are often
treated as external modules and the simulation models are
often treated as “black-box” functions. The metamodels are
only coupled with the input and the output of the simulation,
which is the most superficial information of the black-box
computation-intensive simulation model [32, 33]. This crude
metamodel fails to capture the essence of the true model and
cannot make full use of the simulation results sufficiently,
which limits the further improvement of optimization effi-
ciency. Apparently, the effectiveness and efficiency of SAO
can be further improved in the sense that the coupling

between the metamodel and the high-fidelity model can be
further enhanced.

In this present paper, a field metamodel-enhanced SAO
method is proposed for a hypersonic vehicle aerodynamic
optimization design problem. This paper is organized as fol-
lows: in Section 2, a conceptual lifting-body hypersonic vehi-
cle is developed and the corresponding aerodynamic
optimization problem is formulated. Section 3 elaborates on
the key techniques and the overall framework of the pro-
posed optimization method. In Section 4, the optimization
design of the hypersonic vehicle is performed using the pro-
posed optimization approach and the results are analyzed
and discussed in detail. Finally, a brief conclusion of this
research study is summarized in Section 5.

2. Aerodynamic Optimization Design
Problem Formulation

The parameterization of the hypersonic vehicle considered in
this paper is based on the shape of the after-body section gen-
erated using the B-spline method [34]. The preliminary con-
figuration of the baseline is shown in Figure 1(a), and the
parameterization of the after-body section is demonstrated
in Figure 1(b). The geometric configuration of the considered
hypersonic vehicle is constructed by an upper part and a
lower part, which are both parameterized using three param-
eters: the height of the symmetrical plane H, the curvature
radius at the symmetry axis R, and the slope at the connec-
tion of the curve and the fillet θ. The fillet radius of the nose
and edge is fixed during the optimization design process in
consideration of practical feasibility of structural strength
and thermal protection [35].

The nonlinear aerodynamic optimization design problem
can be formulated as follows:

min
x

f xð Þ
s:t: gc xð Þ ≤ 0

ge xð Þ ≤ 0,

ð1Þ

where x is the design variable, whose variable type and range
are determined by the parameterization method; f ðxÞ is the
objective function of the aerodynamic optimization problem,
e.g., the drag coefficient, heat flux, lift coefficient, and lift-to-
drag ratio; and gc refers to the computationally cheap con-
straints, which can be obtained without time-consuming
simulation calculations, such as the airfoil thickness and vol-
ume of vehicle, whereas ge refers to the computationally
expensive constraints, which must be obtained through run-
ning simulations, such as heat flux, stagnation temperature,
and pitching moment.

The objective of the hypersonic vehicle optimization
design problem considered in this paper is to maximize the
lift-to-drag ratio in light of the long-range flight capability
of hypersonic vehicles. An aerodynamic thermal problem is
another concern for hypersonic vehicle performance. Stagna-
tion temperature and heat flux are the two most commonly
used reference quantities in the study of aerodynamic
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thermal problems. In the optimization problem considered
in this paper, the stagnation temperature is set as a con-
straint. A reasonable volumetric efficiency should be main-
tained for the payload, which should be considered a
constraint. Therefore, the hypersonic vehicle optimization
design problem can be formulated as follows:

max
x

CL

CD

s:t: TS < TSbl

V ≥Vbl,

ð2Þ

where CL and CD are the lift and drag coefficients, respec-
tively. Thus, CL/CD is the lift-to-drag ratio. TS and V are
the stagnation temperature and volume, respectively. The
subscript bl refers to the baseline.

3. Field Metamodel-Enhanced Sequential
Approximate Optimization

In this section, a field metamodel-enhanced SAO method is
proposed and the optimization framework is elaborated in
detail. The general framework of the field metamodel-
enhanced SAO method is shown in Figure 2.

3.1. Constrained OLHD. SAO applies DoE to get a limited
number of space-filling sampling points that are performed
using the high-fidelity simulation model to obtain the corre-
sponding outputs. The sampling points with corresponding
outputs are then employed to initialize the surrogate models.
For optimization problems with constraints, the basic idea of
DoE is to sample uniformly in the feasible area of a design
space. Optimal Latin Hypercube design (OLHD) is widely
applied to generate the sampling set in design space without
constraints. However, constraints commonly exist in most
real-world design problems like aerodynamic optimization
design, which divide the initial n-dimensional hypercube
design space into a feasible area and an infeasible area. Inev-
itably, infeasible points would exist when constraints are
imposed on the design space. If the infeasible points are
regarded as the feasible points equally, lots of unnecessary

and invalid computational cost would be wasted, while sim-
ply removing the infeasible points will result in insufficient
and ununiform sampling points. An effective approach to
overcome this shortcoming is to generate enough points
directly in the feasible region.

In this paper, a modified OLHD for constrained regions
proposed in Wu et al.’s research [36] is adopted in the
aerodynamic optimization design of the hypersonic vehicle.
The adopted method is based on the common OLHD, in
which the sampling points are generated by minimizing the
ϕp-criterion [37]. The modified OLHD for constrained
regions distinguishes feasible points and infeasible points by
weighting to change the uniformity index of all sampling
points to that of feasible points. Moreover, to generate an
adequate number of feasible points, the number of feasible
points is added to the optimality criterion of modified
OLHD. To further ensure that a specified number of feasible
points can be generated, a sequential adjustment for the size
of the sampling set is developed.

It is worth to mention that the modified OLHD for con-
strained regions works only for the computationally cheap
constraints, i.e., the volume constraint in the optimization
problem of this paper. Although the computationally
expensive constraints that need to be obtained through
high-fidelity CFD simulations are not in consideration, the
method still improves the quality of sampling points by elim-
inating the infeasible points. In this manner, a large number
of infeasible points that do not meet the volume constraint
can be eliminated in advance, and the corresponding invalid
high-precision simulation calculations can be avoided.

3.2. Field Metamodel. Instead of only focusing on the meta-
models of objectives and constraints in general SAO, the field
metamodel-enhanced SAO focuses on the metamodel of the
distribution of flow field parameters. The flow field distribu-
tions are obtained in the aerodynamic analysis stage using
the high-fidelity CFD simulation, and then the objective
and constraints values can be calculated using the flow field
distributions in a postprocessing stage. Apparently, the flow
field distribution contains much more detailed information
of the high-fidelity CFD simulation models compared with
only the objectives and the constraints.

(a)

𝜃u

Ru

Rl

Hu

Hl

𝜃l

(b)

Figure 1: The baseline: (a) configuration and (b) after-body section.
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A CFD simulation process incorporates a mesh-
generating stage, numerical-solving stage, and postproces-
sing stage. Generally speaking, a numerical solving stage
and postprocessing stage are collectively called the aerody-
namic analysis process. The postprocessing stage can be sep-
arated from the aerodynamic analysis process analytically;
thus, the complexity of the numerical analysis that needs to
be surrogated by the metamodel can be reduced. Since the
coverage of the metamodel on the black-box simulation
model is reduced and more CFD simulation results can be
stored and utilized in the approximate process, the prediction
accuracy of the metamodel would be increased and the opti-
mization convergence would be sped up. Evidently, the opti-
mization efficiency of the enhanced SAO can be increased
through using the field metamodel.

The surface mesh of the hypersonic vehicle is displayed in
Figure 3, and local surface mesh nodes are enlarged to better
display. The numerical stage obtains the flow field distribu-
tion including wall pressure p, shear stress τ, and tempera-
ture T on the mesh nodes, which are utilized to describe
the flow field as shown in Figure 3. In the hypersonic vehicle
optimization problem considered in this paper, the flow field
is described by the wall pressure p, shear stress τ, and temper-
ature T on the surface mesh nodes and can be represented by
the field vector as follows:

Field xð Þ = pr xð Þ τr xð ÞTr xð Þ½ �
= pr1 xð Þpr2 xð Þ⋯ pri xð Þτr1 xð Þτr2 xð Þ⋯ τri xð ÞTr1 xð ÞTr2 xð Þ⋯ Tri xð Þ½ �,

ð3Þ

where priðxÞ, τriðxÞ, and TriðxÞ are the wall pressure, the
shear stress, and the temperature of the ith representation
point, respectively, and x is the vector of design variables that

control the curvature of the upper and lower surfaces of the
hypersonic vehicle.

3.3. Hybrid Metamodel of RBF and PCE. RBF was originally
proposed by Hardy [38] to fit irregular topographic contours
of geographical data. Since proposed, the RBF metamodel
has been utilized for various regression purposes, but it has
also been proved inefficient for fitting low-dimensional linear
models. Polynomial chaos expansion (PCE) proposed by
Wiener provides a framework to approximate the solution
of a stochastic system by projecting it onto a basis of polyno-
mials of random inputs [39]. PCE is not ideal for the predic-
tion of the nonlinear problems with high degree of
nonlinearity, and it is prone to overfitting when polynomial
orders are higher. To give more accurate predictions for the
complex hypersonic aerodynamic model, a hybrid metamo-
del combining the RBF basis and PCE basis proposed by
Wu et al. [40] is adopted in this paper. The hybrid metamo-
del first utilizes PCE for global fitting and then uses RBF for
local interpolation. The mathematical formulation is showed
as follows:

f̂ xð Þ = 〠
n

i=1
ωiRi xð Þ + 〠

m

j=1
λjP j xð Þ, ð4Þ

where the first item is used to capture the local details by RBF
and the second item provides a low-order global prediction
by PCE. It is obvious that Equation (4) has n +m unknown
coefficients ωi ði = 1, 2,⋯,nÞ and λ j ðj = 1, 2,⋯,mÞ.

The undetermined coefficients ωi ði = 1, 2,⋯,nÞ and
λ j ðj = 1, 2,⋯,mÞ can be solved using interpolation condi-
tions and orthogonal conditions.

3.4. RBF Based Mesh Morphing Scheme. In the iterative pro-
cess of an optimization design, the numerical simulation for
a new configuration requires a newmesh in every design iter-
ation. It is practically infeasible to regenerate new meshes
automatically during each iteration for the reason that the
mesh generating process usually needs to be artificially
adjusted to ensure adequate mesh quality for the numerical
simulation. Alternatively, the mesh morphing technique
can morph the existing mesh to match the new geometry
without any human intervention. There are many mature
mesh morphing deformation techniques that can ensure rea-
sonable mesh continuity and sensitivity, which can meet the
requirements of simulation solution. RBF was firstly applied
in the mesh morphing field by Boer et al. in 2007 [41] and
has received wide attention and application since then.When
the RBF-based mesh morphing techniques are applied in 3D
configurations, a considerable number of control points
bring expensive computational costs and high memory foot-
print. In this section, the RBF-based mesh morphing
approach is modified by reducing the number of RBF control
points using a greedy algorithm.

The mesh of the baseline on the symmetric plane is
shown in Figure 4, and the local boundary layer meshes are
enlarged. The whole flow field domain of the aerodynamic
simulation is defined as the deformable domain Ω. There

Constrained OLHD

Optimization

End

Yes

Resampling No

Design
variables

Post processing

Objective & constraints

CST parameterization
Field

metamodel

(Flow field)

Input (Initial sampling set)

Output

Computational domain 
discretization

Flow field iterative solution

Aerodynamic
analysis

Add new
sampling point

Termination
criteria satisfied?

Figure 2: Framework of the fieldmetamodel-enhanced SAOmethod.
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are two types of mesh points in Ω: the volume mesh points
fxvig and the surface mesh points fxsig. The numbers of
the volume and the surface mesh points are defined as Nυ
and Ns, respectively. Because only a small size of surface
points are chosen to be control points, the set of RBF control
points fxrjg

Nr

j=1
⊂ fxsjg

Ns

j=1
.

The RBF interpolating function can be described as

υ = 〠
n

i=1
ωiφi xð Þ, ð5Þ

where the RBF interpolated vector υ refers to the displace-
ment for any mesh point x. φiðxÞ is the radial basis function
φðriÞ with respect to the design variables x, which is defined
as follows:

φ ξð Þ = 1 − ξð Þ4 4ξ + 1ð Þ, ξ < 1,
0, ξ ≥ 1,

(
ð6Þ

in which ξ = kx − xik/SR and SR refers to the support radius.
The support radius is usually set to be much larger than the

(x
r–1, yr–1, zr–1)

(x
r
, y

r
, z

r
) (x

r+1, yr+1, zr+1)

Figure 3: The representation points of the field metamodel.

Figure 4: Mesh of the baseline.
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largest mesh point displacement in order to ensure the mesh
continuity and sensitivity.

A relatively small size of control points is screened from
all the surface mesh points via a greedy algorithm, which
selected the mesh points with the big geometric displace-
ments. The number of the control points is not fixed and will
increase until the Root Mean Square Error (RMSE) between
deformedmesh and geometry decreases to a certain criterion.
Each control point corresponds to a radial basis function,
whose undetermined coefficients ωi are solved by interpolat-
ing the control points. The interpolating schemes can be for-
mulated considering all the control points as follows:

υr xrð Þ = 〠
n

i=1
ωiφi xrð Þ =Mω, ð7Þ

where υr refers to the given displacements of the control
points, and

M =
φr1r1

φr1r2
⋯

φr2r1

⋮ ⋱

0
BB@

1
CCA

Nr×Nr

: ð8Þ

The displacements to be solved, including all volume
mesh points and the remaining surface mesh points except
the control points, can be expressed as follows:

υs = Asω = AsM
−1ω,

υv = Avω = AvM
−1ω,

ð9Þ

in which

As =
φs1r1

φs1r2
⋯

φs2r1

⋮ ⋱

0
BB@

1
CCA

Ns×Nr

,

Av =
φv1r1

φv1r2
⋯

φv2r1

⋮ ⋱

0
BB@

1
CCA

Nv×Nr

:

ð10Þ

φsir j
and φvir j

represent φðkxsi − xr jk/SRÞ and φðkxvi −
xr jk/SRÞ. φsir j

is the basis function between surface points

xsi and RBF control points xr j , and φvir j
is the basis function

between volume points xvi and RBF control points xr j .

4. Results and Discussions

The aerodynamic optimization design problem of the
hypersonic vehicle is carried out using the field metamodel-
enhanced SAO introduced in this paper. The CFD simulation
is performed using the ICEM 16.0 for initial meshing and the
Spalart-Allmaras (S-A) turbulence model included in
FLUENT 16.0 for numerical solving. The simulation condi-

tions are Mach number 6, a turbulent viscosity ratio of 10,
and an angle of attack of 5.71°. The pressure-far-field bound-
ary condition is adopted using the atmospheric parameters of
20 km altitude, where the static pressure is 5529.31 Pa and the
background temperature is 216.65K. The boundary condi-
tion of the vehicle surface is modelled as the nonslip and adi-
abatic wall. Since the vehicle is symmetric about plane z = 0
because of 0° side slip angle, half of the flow field is modelled
to reduce the computational cost. It is worth mentioning
that, since there is no project background in this paper, the
lifting body optimization design problems, including the lift-
ing body shape, the objective function, and the constraints,
are all built by the authors to verify the field metamodel
and its enhanced SAO optimization framework proposed in
this paper. The setting of working condition and objective
function of the optimization case refers to the similar lifting
body cases in other papers, and the values of the constraints
are determined by the results of unconstrained DoE.

4.1. DoE Results. DoE without considering any constraint is
first run using ordinary OLHD, and 20 sampling points
evenly distributed in the whole design space are obtained.
All 20 sampling points are performed using high-fidelity
CFD simulation, and the results are displayed in Figure 5 as
circles, whose coordinates are volume, temperature, and
lift-to-drag ratio. The volume and the temperature con-
straints are presented as two translucent faces to distinguish
feasible and infeasible points. The volume constraint is set
to not less than 0.01, so that half of the ordinary OLHD sam-
pling points are on the left side of volume = 0:01 and cannot
meet the volume constraint according to the results of ordi-
nary OLHD. As for stagnation temperature constraint, the
average stagnation temperature of all 20 sampling points,
1825.91K, is set as an upper bound. As shown in Figure 5,
nine sampling points on the right of T = 1825:91K do not
meet the stagnation temperature constraint, while the

2.4
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C
L
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3.0
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Figure 5: Comparison of DoE results.
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remaining 11 sampling points meet the stagnation tempera-
ture constraint. As a result, only 8 of the 20 sampling points
generated by ordinary OLHD satisfy both volume and stag-
nation temperature constraints, which makes them feasible
sampling points and marked as green circles. The configura-
tion showed in Figure 6 is a typical configuration with a high
lift-to-drag ratio of 2.9516 but not satisfying both volume and
stagnation temperature constraints with 0.008189 volume
and 2040.45K stagnation temperature. The after-body sec-
tion of the baseline is also displayed in the black line for com-
parison, and one can observe that the area of the typical
configuration’s after-body section is much smaller than that
of the baseline. Aside from the small after-body section, the
concave upper surface is also one of the reasons for violating
the volume constraint.

As a comparison, the sampling points generated by the
constrained OLHD are also displayed in Figure 5 as dia-
monds. As demonstrated in Section 3.1, the constrained
OLHD locates the sampling points through minimizing

ϕp-criterion and maximizing the number of feasible points
at the same time. To further ensure that 20 feasible points
can be generated, sequential adjustments for size of the
sampling set are performed, which is shown in Figure 7.
In the first run of the constrained OLHD, only 12 of all
20 sampling points are feasible considering volume con-
straints, which is still more than 10 volume-feasible points

(a) (b)

Figure 6: Typical configuration with high lift-to-drag ratio: (a) configuration and (b) after-body section compared with the baseline
(black line).
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Figure 8: Optimization process.
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Figure 7: Sequential adjustments of the constrained OLHD. Table 1: Design variables of the optimum.

Design variables Values

Hu

L
0.112239

Hl

L
0.063407

Ru 0.726667

Rl 0.256758

arctan θuð Þ 0.314544

arctan θlð Þ 0.529636
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generated by ordinary OLHD, because the number of fea-
sible sampling points is added to the sampling criteria of
the constrained OLHD. After 10 iterations of adjustment,
20 feasible sampling points are obtained among all 30
sampling points. In this case, an adequate number of fea-
sible sampling points concerning volume constraint are
generated and the computational costs of all infeasible
points that violate the volume constraint are saved.

4.2. Optimization Iterative Process.With the 20 feasible sam-
pling points generated using the constrained OLHD, the
optimization design of the hypersonic vehicle is carried out
considering the lift-to-drag ratio as the objective and volume
and stagnation temperature as constraints. Based on the
metamodel constructed using the sampling points of DoE,

the loop of enhanced SAO iterates to locate the optimum.
30 independent runs are performed using the field
metamodel-enhanced SAO method to eliminate randomness.
The iterative process of the lift-to-drag ratio is presented in
Figure 8. The lift-to-drag ratio of the first candidate in the opti-
mization process is 2.724, which is close to the optimal value of
DoE with a lift-to-drag ratio of 2.751. The optimization con-
verged after 30 iterations, and the whole process of the modi-
fied SAO costs 50 times of high-fidelity CFD simulation calls.
The located optimum has a lift-to-drag ratio of 2.874, which
is improved by 27.17% compared with the baseline of 2.260.
In the process of iterative optimization, only 2 candidates (indi-
cated by hollow diamonds) violate the stagnation temperature
constraint, and no candidate violates the volume constraint,
which is attributed to preprocessing of the computationally

0 1E-05 0.0001 0.001 0.01 0.1 1 2

(a)

0 1E-05 0.0001 0.001 0.01 0.1 1 2

(b)

Figure 10: Pressure coefficient distribution on the surface: (a) the baseline and (b) the optimum.

100 200 300 400 500 600 700 800 900 1000 1100

(a)

100 200 300 400 500 600 700 800 900 1000 1100

(b)

Figure 11: Shear stress distribution on the surface: (a) the baseline and (b) the optimum.

(a) (b)

Figure 9: The optimum: (a) configuration and (b) after-body section compared with the baseline (black line) and the typical configuration
(red line).
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cheap constraint and the reasonable DoE sampling point set
obtained by the constrained OLHD. The 6 design variables of
the obtained optimum are listed in Table 1.

4.3. Results Analysis. The geometry shape of the optimum is
displayed in Figure 9, and the after-body section of the base-

line is also showed in black line for comparison. It can be
observed that there are great differences between the opti-
mized geometry and the baseline geometry, and the same sit-
uation also occurs between the optimized and the typical
configurations, whose after-body section is showed in the
red line. The upper half of the baseline is much larger than

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

(a)

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

(b)

Figure 12: Temperature distribution on the surface: (a) the baseline and (b) the optimum.

1 2 3 4 5 5.999

(a)

1 2 3 4 5 5.999

(b)

Figure 13: Mach number distribution on the symmetric plane: (a) the baseline and (b) the optimum.
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the lower half, while the optimum is completely opposite.
And conversely, the height of lower halfHl of the typical con-
figuration is much bigger than its height of upper half Hu.
The short upper part height results in the volume constraint
being violated, and the tall lower part results in the stagnation
temperature constraint not being satisfied. The heights of the
upper and lower parts of the baseline and the optimum are
completely different, which is the main reason for their dif-
ferences in aerodynamic performance.

The wall pressure coefficient distributions of the baseline
and the optimum are exhibited below in Figures 10(a) and
10(b) for comparison. The baseline and the optimum are pre-
sented from different angles to better show their respective
surfaces with more complex pressure coefficient distribu-
tions. As can be seen from Figure 10, the pressure coefficient
distributed on the upper surface of the optimum is far less
than that of the baseline, while the distribution on the lower
surface of the optimum is a bit higher than that of the
baseline. Since less pressure acts on the upper surface of
the optimum and more pressure acts on its lower surface,
the lift force of the optimum is much higher compared
with the baseline.

The wall shear stress distributions of the baseline and the
optimum are exhibited in Figure 11. It can be seen that the
head has very obvious stress concentration in both the base-
line and the optimum, which brings extremely high stagna-
tion point temperature and further poses great challenges
to the head material. The wall shear stress distribution on
the upper surface of the optimum is relatively smaller than
that of the baseline, while the wall shear stress distribution
on the lower surface shows the opposite performance, which
can also be explained by the pressure coefficient distribution
displayed in Figure 10. The higher lift of the optimum results
from the higher pressure distribution on the lower surface,
which also results in higher shear stress distribution.

The wall temperature distributions of the baseline and the
optimum are displayed in Figure 12. During the flight, the
stagnation point will appear in the aircraft head area, which
can be seen in the temperature distribution of both the opti-
mum and the baseline. The stagnation temperatures of both
the optimum and the baseline are both higher than 1700K
but lower than 1825.91K; thus, both meet the stagnation tem-
perature constraint. One can observe that the temperature dis-
tribution of the optimum is less uniform than that of the
baseline, and the wall temperature on the after-body section
of the optimum is higher than that of the baseline.

The Mach number distribution on the symmetric plane
of the optimum and the baseline is exhibited in Figure 13.
The gradient in the region near the upper surface has little
difference between the baseline and the optimum, but it still
can be seen from the local enlarged view of the vehicle tail
that the upper surface of the basic configuration com-
presses the nearby flow field more than the optimum. It
can also be seen from the figure that the flow field area
affected by the lower surface of the optimum is larger than
that of the basic shape. The differences between the Mach
number distributions of the baseline and the optimum
correspond well to the differences of their pressure coeffi-
cient distributions.

5. Conclusions

In this paper, a field metamodel-enhanced sequence approx-
imation optimization method is proposed and an optimiza-
tion framework for hypersonic vehicles is built. A specific
hypersonic lift body is constructed and parameterized to
demonstrate and verified the enhanced SAO method and
optimization framework proposed in this paper.

The corresponding optimization problem is formulated
firstly in Section 2. The lift-to-drag ratio is chosen as the
objection function, and volume and stagnation temperature
are set as constraints. An OLHD method for the constrained
design space is adopted, which is available for computation-
ally cheap constraints, such as volume constraint in the opti-
mization problem in this paper. With the constrained
OLHD, the sampling point that does not meet the volume
constraint is discarded before its high-fidelity CFD simula-
tion is performed, so that the computational costs of those
points are saved and the overall optimization efficiency is
improved. The field metamodel is proposed to surrogate
the flow field distribution instead of only objectives and con-
straints of the optimization problem so that the complexity of
the surrogated part of CFD simulation is decreased. Conse-
quently, the difficulty of metamodeling is decreased, which
means that a more accurate metamodel can be built with
the same number of sample points and thus the efficiency is
improved. A hybrid metamodel combing RBF and PCE is
applied to construct the field metamodel, which can provide
good approximate performance for different types of engi-
neering models when the method proposed in this paper is
applied to other optimization problems. An RBF-based mesh
morphing scheme is utilized to morph the existing mesh to
match the new geometries during the optimization process.

In Section 4, the optimization results of the hypersonic
lift body are shown in detail and discussed in depth. The pro-
cess data of the experimental design is displayed, which can
help to better understand the implementation process of
the constrained OLHD. The values of volume and stagnation
temperature constraints are set according to the results of the
constrained OLHD. Enhanced by the field metamodel, the
performance of SAO is greatly improved and the optimum
is located with very limited CFD evaluations. The optimiza-
tion results are carefully analyzed, and the obtained optimum
is compared with the baseline. The lift-to-drag ratio of the
optimum is improved by 27.17% compared with the baseline.
The geometries and the flow field distributions of both the
optimum and the baseline are exhibited and discussed, whose
wall pressure coefficient distribution, wall shear stress distri-
bution, wall temperature distribution on the surface, and the
Mach number distribution on the symmetric plane are all
displayed in detail. The differences between the flow field
distributions of the baseline and the optimum are analyzed
in depth.

The optimization design framework of the field
metamodel-enhanced SAO introduced in this paper proves
to be powerful and flexible and can be modified to the opti-
mization design of other hypersonic vehicles for drag reduc-
tion and thermal protection, which can be helpful to
researchers in this field.
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