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The platform inertial-stellar composite guidance is a composite guidance method supplemented by stellar correction on the basis
of inertial navigation, which can effectively improve the accuracy of responsive launch vehicles. In order to solve the problem of
rapid determining the optimal navigation star in the system, this paper proposes an algorithm based on the equivalent
information compression theory. At first, this paper explains why the single-star scheme can achieve the same accuracy as the
dual-star scheme. At the same time, the analytical expression of the optimal navigation star with significant initial error is
derived. In addition, the available optimal navigation star determination strategy is also designed according to the arrow-borne
navigation star database. The proposed algorithm is evaluated by two representative responsive launch vehicle trajectory
simulations. The simulation results demonstrate that the proposed algorithm can determine the optimal navigation star
quickly, which greatly shorten the preparation time before the rapid launch of vehicles and improve the composite guidance
accuracy.

1. Introduction

Inertial-stellar composite guidance is a composite guidance
method based on inertial guidance supplemented by stellar
guidance. It utilizes the inertial space azimuth datum pro-
vided by the star to calibrate the error angle between the
platform coordinate system and the launch inertial coordi-
nate system and corrects the impact point deviation caused
by the platform pointing error [1]. Inertial-stellar composite
guidance system corrects the drift error of inertial platform
according to the star sensor information, which can not only
improve the guidance accuracy and rapid launch ability [2]
but also reduce the cost. Moreover, the motion parameters
of spacecraft in space can be determined [3–5], and it has
strong environmental adaptability.

Inertial-stellar guidance is essentially a problem of deter-
mining attitude through vector observation. This problem
was first proposed by Wahba [6], and various attitude deter-

mination algorithms were developed, such as TRIAD [7],
QUEST [8, 9], SVD [10], FOAM [11], Euler-q [12], and fast
linear attitude estimator method [13–15]. In order to solve
the case that there are a large number of outliers, Yang
and Carlone formulated the Wahba problem by truncated
least squares [16]. Ghadiri et al. [17] proposed a robust
multi-objective optimization method to overcome the static
attitude determination with bounded uncertainty. These
algorithms need at least two vector information to calculate
the attitude. However, in some cases, long-term observation
of one vector is enough [18]. Reference [19] proposed an
attitude determination algorithm based on the minimum
squares sum of image point coordinate residuals. The algo-
rithm can still determine the attitude when only one star is
observed. Reference [20] derived the attitude analytical solu-
tion when only one sensor is used for observation. The ana-
lytical solution can be expressed by the combination of two
limiting quaternions, and the covariance and singularity
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analyses were carried out. However, it did not determine the
optimal attitude solution. Similarly, according to the number
of observation vectors, the inertial-stellar composite guid-
ance can also be divided into single vector observation and
double vectors observation, that is, single-star scheme and
double-star scheme. For the platform inertial navigation sys-
tem, the star sensor is usually fixedly installed on the
platform. Because the direction of the platform in the inertial
space cannot be adjusted after launch, the double-star
scheme needs to install two star sensors on the platform,
which will greatly complicate the structure. It is found that
observing the specific direction star, the single-star scheme
can achieve the same accuracy as the double-star scheme
[21, 22]. Zhang et al. have proved it theoretically [23]. As
it is known, the only practical application is the single-star
scheme, such as the American “Trident” submarine long-
range ballistic missile. However, the single-star scheme
needs to determine the optimal navigation star before the
vehicle launch. At present, the optimal navigation star is
determined by numerical method [24, 25], which increases
the preparation time and limits the wide application.

Motivated by the work of Zhang et al., this paper proposes
a fast algorithm to determine the optimal navigation star for
responsive launch vehicles. Firstly, the relationship equations
between the initial error and the impact point deviation and
the star sensor measurement are established. Then, our algo-
rithm exploits the equivalent information compression theory
[23] to explain why the single-star scheme can achieve the
accuracy as the double-star scheme and deduces the optimal
navigation star under the condition of significant initial error.
The deduced analytical solution can greatly shorten the pre-
launch preparation time. On this basis, the local navigation
star database is determined according to the deviation angle,
and the available optimal navigation star can be determined.

The structure of this paper is as follows. Section 2 pre-
sents the definitions of various coordinate system and the
derivations of inertial platform system and star sensor
model. Section 3 shows the analytical expression of the opti-
mal navigation star. In Section 4, the available optimal nav-
igation star is determined based on the arrow-borne
navigation star database. The simulation results and conclu-
sions are given in Section 5 and Section 6. The contribution
of this paper is to provide an analytical solution of optimal
navigation star to shorten the prelaunch preparation time
and enhance the performance for responsive launch vehicles.

2. Inertial Platform System and Star
Sensor Modeling

2.1. Definitions of Various Coordinate System

2.1.1. Geocentric Inertial Coordinate System oE − xIyIzI . The
coordinate system origin oE is the earth centroid, and the
basic plane is the J2000 earth equatorial plane. The oExI axis
points from the earth centroid to the J2000 mean equinox in
the basic plane. The oEzI axis points to the north pole along
the normal of the basic plane. The oEyI axis and the other
two axes constitute the right hand system. This coordinate
system is abbreviated as the i-system.

2.1.2. Launch Coordinate System o − xyz. The system mainly
describes the motion of responsive launch vehicle relative to
the earth. The launch coordinate system is fixedly connected
with the earth, and the origin is taken as the launch point o.
In the system, the ox axis points to the launch aiming direc-
tion in the launch horizontal plane, the oy axis points
upward perpendicular to the launch point horizontal plane,
and the oz axis is perpendicular to the xoy plane. The axes
ox, oy, and oz form the right hand coordinate system. This
coordinate system is abbreviated as the g-system (Figure 1).

2.1.3. Launch Inertial Coordinate System oA − xAyAzA. The
launch inertial coordinate system coincides with the launch
coordinate system at the launch time. But after launching
the vehicle, the origin and the direction of each axis remain
stationary in the inertial space. The coordinate system is
used to establish the vehicle motion equation in inertial
space. This coordinate system is abbreviated as the A
-system.

2.1.4. Ideal Inertial Platform Coordinate System oP′ − xP′yP′
zP′. The coordinate system origin op′ is located at the plat-
form datum, and the coordinate axis is defined by the plat-
form frame axis or the gyro-sensitive axis. After pre-launch
alignment and leveling, each coordinate axis shall be parallel
to each coordinate axis of the launch inertial coordinate sys-
tem. This coordinate system is abbreviated as the p′-system.

2.1.5. Inertial Platform Coordinate System oP − xPyPzP. Due
to the platform misalignment angle, there is a deviation
between the inertial platform coordinate system and the
ideal inertial platform coordinate system. This coordinate
system is abbreviated as the p-system.

2.1.6. Star Sensor Coordinate System os − xsyszs. The coordi-
nate system mainly describes the star sensor measurement.
In the system, the coordinate system origin os is at the centre
of the star sensor imaging device (charge couple device,
complementary metal oxide semiconductor, etc.). The osxs
axis is consistent with the axis of the optical lens, the osys
axis is the vertical to the pixel readout direction, and the os
zs axis is the horizontal to the pixel readout direction. The
ysoszs plane is consistent with the imaging device plane.
The transformation matrix between the star sensor coordi-
nate system and the vehicle body coordinate system is deter-
mined by the star sensor installation angle. This coordinate
system is abbreviated as the s-system.

2.2. Relationship between Impact Point Deviation and
Platform Misalignment Angle. The platform misalignment
angle represents the inertial reference deviation, that is, the
error angle between the inertial platform and the launch
inertial coordinate system. It is mainly caused by various ini-
tial errors and inertial navigation errors and affects the land-
ing point accuracy. Although the platform misalignment
angle is affected by many factors, the initial error accounts
for the main part under certain conditions. For the rapid
maneuvering launch vehicle, the accuracy of pre-launch ori-
entation and alignment may not be very high, which leads to
the significant portion of the initial error in the platform
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misalignment angle. Therefore, this paper mainly studies the
determination of the optimal navigation star under the sig-
nificant initial error condition.

The platform inertial system and the launch inertial sys-
tem can be coincident with the help of the platform initial
alignment. The initial alignment error will be caused due
to the equipment inherent error, the external interference
influence in the alignment process, and the method error.
And the platform alignment error around the y-axis will be
caused owing to the initial orientation error during launch.
Thus, the orientation error can be considered together with
the initial alignment error.

The initial alignment and orientation errors can be
expressed by the three axis misalignment angles between the
p′-system and the A-system, which are defined
as½ε0x ε0y ε0z�T. And there are two parts in ε0y: orientation
error and aiming error. It is assumed that the adjustment plat-
form adopts the method of yaw first and then pitch; there is
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where αx αy αz
� �T are misalignment angles caused by

initial alignment and orientation errors,ψr and φr are the rota-

tion angles around the y-axis and z-axis, respectively, and CP ′
A

is the transformation matrix from the A-system to the p′-
system.

The inertial guidance accuracy meets the following rela-
tionship with the initial alignment error:
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In which, nL1, nL2, and nL3 are the partial derivatives of
the longitudinal impact point deviation to the initial errors
in three directions, respectively. nH1, nH2, and nH3 are the

partial derivatives of the lateral impact point deviation to
the initial errors in three directions, respectively.

It can be obtained by combining Equation (1) and Equa-
tion (2).
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In which,

q11 = nL1 cos φr cos ψr + nL2 sin φr − nL3 cos φr sin ψr ,

q12 = −nL1 sin φr cos ψr + nL2 cos φr + nL3 sin φr sin ψr ,

q13 = nL1 sin ψr + nL3 cos ψr ,

q21 = nH1 cos φr cos ψr + nH2 sin φr − nH3 cos φr sin ψr ,

q22 = −nH1 sin φr cos ψr + nH2 cos φr + nH3 sin φr sin ψr ,

q23 = nH1 sin ψr + nH3 cos ψr:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð4Þ

2.3. Acquisition of Star Sensor Measurement. The elevation
and azimuth angle of the optimal navigation star in the A
-system are defined as es and σs, respectively. Thus, the stel-
lar direction unit vector in the A-system can be expressed as

SA = cos es cos σs sin es cos es sin σs½ �T: ð5Þ

In the s-system, the osxs axis is the optical axis. The angle
between the optical axis and the stellar vector is very small,
and its directional cosine is approximately 1. The osys and
oszs are the output axes. The stellar vector representation
in the star sensor coordinate system is shown in Figure 2.
It is assumed that the star sensor outputs are ξ and η; the
stellar vector can be expressed as

SS = 1 −ξ −η½ �T: ð6Þ

The ideal star sensor output should be Ss′ = 1 0 0½ �T;
then, there is the following equation according to the coordi-
nate transformation relationship:

SS′ = CS
PC

P ′
A SA, ð7Þ

where CS
P is the transformation matrix from the p-sys-

tem to the s-system and CP ′
A is the transformation matrix

from the A-system to the p′-system. According to the stellar
vector representation in the A-system and the s-system, the
following equation can be obtained by the transformation
matrix between different coordinate systems.

SS = CS
PC

P
P ′C

P ′
A SA, ð8Þ

where CP
P ′ is the transformation matrix from the p′
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Figure 1: Launch coordinate system.
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-system to the p-system, which can be expressed as

CP
P′ =

1 −αz αy

αz 1 −αx
−αy αx 1

2
664

3
775: ð9Þ

The stellar vector representation in the p-system is
defined as SP, and there is

SP = CP
S SS: ð10Þ

According to Equation (7), the stellar vector representa-
tion in the p′-system can be obtained as follows:

SP ′ = CP
SSS′ = CP ′

A SA: ð11Þ

Then, the following equation can be obtained from
Equations (10) and (11).

ΔSP = SP − SP ′ = CP
S SS − SS′ð Þ: ð12Þ

And ΔSp can also be represented as

ΔSP = SP ′ ⋅ a = CP
S SS′

� �
⋅ a: ð13Þ

It can be obtained from Equations (12) and (13).
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Therefore, the star sensor measurement equation can be
expressed as
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where φ0 and ψ0 are the star sensor installation angles.

3. Theoretical Optimal Navigation Star
Determination Method

For the platform inertial-stellar composite guidance scheme,
the single-star scheme for measuring a special navigation
star can achieve the same accuracy as the double-star scheme
for measuring two stars. This special star is called the opti-
mal navigation star. In terms of the difficulty and cost of
realization, the single-star scheme is definitely better than
the double-star scheme. Therefore, the single-star scheme
is adopted in the practical engineering, which requires the
determination of the optimal navigation star.

In this section, the equivalent information compression
theory is utilized to explain why the single-star scheme can
achieve the same accuracy as the double-star scheme firstly.
Then, the optimal navigation star is further determined
based on the principle. Since it is not combined with the
navigation star in the star library, it is also called the theoret-
ical optimal navigation star.

3.1. Equivalent Information Compression Theory. The
impact point deviation and platform misalignment angle
can be expressed in the matrix form

p = q ⋅ a, ð16Þ

where p = ΔL ΔH½ �T; q = q1 q2½ �T; and a =
αx αy αz

� �T. It can be seen from Equation (16) that the
rank of q is 2, so there is information compression in the
mapping from a to p. It is worth noting that a cannot be
uniquely determined by p, which indicates that Equation
(16) has numerous solutions. Although there are countless
sets of solutions in Equation (16), there is a special solution
a0, which belongs to the subspace qs = span q1 q2f g
formed by each row of vectors. Therefore, a0 can be
expressed as

a0 = α01q1 + α02q2 = qT ⋅ X: ð17Þ

Substitute Equation (17) into Equation (16), and there is

p = qqT
� �

X: ð18Þ

From Equation (17) and Equation (18), we can get

a0 = qT qqT
� �−1

p: ð19Þ

It can be seen from the above equation that a0 and p cor-
respond to each other one by one. If the inner product of
two column vectors is defined as ha ⋅ bi = aT ⋅ b, then Equa-
tion (16) can be expressed as

p = q1 ⋅ ah i q2 ⋅ ah i½ �T, ð20Þ

where hqi ⋅ ai reflects the projection of a in the qi direc-
tion. q1 and q2 are linearly independent; therefore, p = q ⋅ a
reflects the projection as of a on space qs, and the projection

Xs

S

Ys

Os

Zs

𝜉

ɳ

Figure 2: Representation of the stellar vector in the star sensor
coordinate system.
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information a⊥s of a on the orthogonal complement q⊥s of qs
is lost. Since qs is a complete subspace on Hilbert space Rn,
there is

Rn = qs + q⊥s : ð21Þ

According to the projection theorem, we can get

a = as + a⊥s : ð22Þ

It can be seen from the relationship between the impact
point deviation and the platform misalignment angle that q
is not full rank. So only the information as in the subspace
can be obtained through the impact point deviation, and
the information a⊥s in the orthogonal complement cannot
be obtained.

The star sensor measurement equation can also be
expressed in the matrix form

Z = h ⋅ a: ð23Þ

Assuming that another set of bases of qs is h1 h2f g, it
can be seen from the above analysis that Z also reflects all
the information projected by a on qs, which can be expressed
as

a0 = hT hhT
� �−1

Z: ð24Þ

Substitute Equation (24) into Equation (16), and we can
get

p = q ⋅ hT hhT
� �−1

Z: ð25Þ

Therefore, from the perspective of information compres-
sion, q and h are equal compression maps; that is, the impact
point deviation p can be uniquely determined by the single-
star observation Z.

The impact point deviation is only affected by the pro-
jection as of the misalignment angle a on the subspace Qs
= span q1 q2f g. Therefore, according to Equation (25), it
is only necessary to select h1 and h2, so that h and q are equal
information compression. Then, the observation informa-
tion Z contains all the useful information. The schematic
diagram of determining the optimal navigation star is shown
in Figure 3.

In the figure, all the information of misalignment angle a
is composed of as and a

⊥
s , but only as affects the impact point

deviation. If h and q are equal information compression
maps, the single-star scheme can measure all the informa-
tion of as. Although the double-star scheme can measure
all the information of a, only the as part is used in the cor-
rection, and a⊥s belongs to the useless information, so it
has the same accuracy as the single-star scheme. In more
popular terms, there are only two indicators ΔL and ΔH

describing the impact point deviation, which are the reflec-
tion of part of the misalignment angle a. When observing
a single star, two measurements ξ and η can be obtained,
which are also the reflection of part of the misalignment
angle a. By selecting the optimal navigation star, ξ and η
can include all the information of misalignment angle a con-
tained in ΔL and ΔH. Therefore, the single-star scheme can
achieve the same accuracy as the dual-star scheme.

3.2. Determining the Optimal Navigation Star. According to
the equivalent information compression theory, the optimal
navigation star should satisfy

h1 × h2 =
q1 × q2
q1 × q2j j or h1 × h2 = −

q1 × q2
q1 × q2j j : ð26Þ

For the left side of the above equation, it can be obtained
according to the Equation (15).

h1 × h2 = cos φ0 cos ψ0 sin φ0 cos φ0 sin ψ0½ �T:
ð27Þ

It is assumed that the star sensor is installed on the xoy
plane of the platform, and the platform is adjusted to aim
at the navigation star by first yaw and then pitch. By sub-
stitutingψ0 = 0∘ into Equation (27), we can get

h1 × h2 = cos φ0 sin φ0 0½ �T: ð28Þ

Define

Qc = Qc1 Qc2 Qc3½ � = q1 × q2, ð29Þ

where,

h1

q1

q2

h2

α

αsh1 αs

αs
⊥

αsq2

αsq1

αsh2

Figure 3: Schematic diagram of determining the optimal
navigation star.
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According to Equations (26), (27), and (28), we can get

ψr = tan−1
nH1nL2 − nH2nL1
nH3nL2 − nH2nL3

� 	
,

φr = − tan−1
nH1nL3 − nH3nL1

nH2nL3 − nH3nL2ð Þ cos ψr + nH2nL1 − nH1nL2ð Þ sin ψr

� 	
− φ0:

8>>><
>>>:

ð31Þ

The optimal navigation star and the rotation angle sat-
isfy the following relationship:

σs = −ψr ,

es = φr + φ0:

(
ð32Þ

Therefore, the orientation of the optimal navigation star
can be expressed as

σs = − tan−1
nH1nL2 − nH2nL1
nH3nL2 − nH2nL3

� 	
,

es = − tan−1
nH1nL3 − nH3nL1

nH2nL3 − nH3nL2ð Þ cos ψr + nH2nL1 − nH1nL2ð Þ sin ψr

� 	
:

8>>><
>>>:

ð33Þ

According to Equation (26), there is another solution for
the orientation of the optimal navigation star.

σ′s = σs − π,

e′s = −es:

(
ð34Þ

4. Determining the Available Optimal
Navigation Star Based on the Star Database

4.1. Angle Analysis of the Deviation from the Optimal
Navigation Star. For the single-star platform inertial-stellar
composite guidance scheme, only observing the optimal
navigation star can achieve the same accuracy as the double
star guidance scheme. However, in star database, there are
not necessarily stars in the optimal navigation star direction.
And only one real star can be selected as the navigation star
in the star library according to a certain principle. This star
is called the available optimal navigation star. In this section,
the angle that the available navigation star deviates from the
optimal navigation star is analyzed.

In the i-system, several groups of optimal navigation stars
are randomly generated, in which the elevation angles are
evenly distributed within −90°, 90°½ �, and azimuth angles
are evenly distributed within −180°, 180°½ �. Each combina-
tion of elevation angles and azimuth angles eNi, σNi½ � repre-
sents a group of possible optimal navigation star, and its

direction vector in the i-system is

VNi = cos eNi cos σNi cos eNi sin σNi sin eNi½ �T:
ð35Þ

For any star above 5.5 mag in the star database, its eleva-
tion angle and azimuth angle are eSj, σSj

� �
; then, the direc-

tion vector in the i-system can be expressed as

VSj = cos eSj cos σSj cos eSj sin σSj sin eSj
� �T

: ð36Þ

The angle between the optimal navigation star and the
available navigation star can be calculated according to the
following equation:

αij = arccos VNi ⋅ VSj

� �
: ð37Þ

By traversing j, the minimum angular distance between
the optimal navigation star and the available navigation star
can be obtained.

100000 samples are sampled, and the results are shown
in Figures 4 and 5.

Figures 4 and 5, respectively, show the statistical histo-
gram and probability density histogram of the angles that
the available navigation stars deviate from the optimal navi-
gation star. Here, each straight bar represents 0.1°, and the
sum of all the sampling times is 100000. In Figure 4, the
angular deviations are between 0 and 6° mostly, which
mainly concentrated in 1°~3° and relatively few more than
5° or less than 1°. Compared with Figure 4, the shapes of
the statistical histogram and probability density histogram
are basically the same. Figure 5 also shows the probability
density function diagram of the corresponding normal dis-
tribution. However, it is obvious that the distribution is not
quite consistent with the normal distribution.

Tables 1 and 2 provide the corresponding numerical sta-
tistical results. It can be seen from Table 1 that the maxi-
mum deviation angle is 7.4221° and the mean deviation
angle is 2.0949°. The more detailed statistical analysis results
of the available navigation star deviation from the optimal
navigation star are illustrated in Table 2. The table counts
the single probability and cumulative probability of the devi-
ation angle. It can be observed that 2° > α ≧ 1° is the most,
accounting for 33.558% and the deviation angle greater than
7° accounts for only 0.014%.

Therefore, if the upper limit of star-sensitive measure-
ment magnitude is 5.5 mag, the available navigation star
can be found within the angular distance range within 7°

from the optimal navigation star.

Qc1 = nH1nL3 − nH3nL1ð Þ sin φr + nH3nL2 − nH2nL3ð Þ cos φr cos ψr + nH1nL2 − nH2nL1ð Þ cos φr sin ψr ,

Qc2 = nH1nL3 − nH3nL1ð Þ cos φr − nH3nL2 − nH2nL3ð Þ sin φr cos ψr − nH1nL2 − nH2nL1ð Þ sin φr sin ψr ,

Qc3 = − nH1nL2 − nH2nL1ð Þ cos ψr + nH3nL2 − nH2nL3ð Þ sin ψr:

8>><
>>: ð30Þ
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In the above analysis, constraints such as occlusion of the
sun, moon, and earth have not been taken into account, and
the deviation angle will be much larger after consideration.

4.2. Determining the Available Optimal Navigation Star Based
on the Arrow-Borne Navigation Star Database. In practical
application, the navigation star must be selected in the
arrow-borne navigation star database. According to the above
analysis, within the range of 7° from the theoretical optimal
navigation star, the probability of finding the navigation star

is 100%. Therefore, a method determining the available opti-
mal navigation star based on the local navigation star database
is proposed to improve the efficiency of star selection.

4.2.1. Determining the Local Navigation Star Database.
Strong light sources should be avoided when determining
the local navigation star database (this paper takes avoiding
the sun as an example). The right ascension and declination
of the sun obtained from the ephemeris table are defined as
αsun and δsun, and the unit sun direction vector in the i
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Figure 4: Statistical histogram of the angles that the available navigation stars deviate from the optimal navigation star.
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Figure 5: Probability density histogram of the angles that the available navigation stars deviate from the optimal navigation star.

Table 1: The basic analysis results of the available navigation star deviation from the optimal navigation star.

Event Maximum Minimum Mean Square 3σ range

Value (deg) 7.4221 0.0041 2.0949 1.1139 [-1.2467, 5.4365]
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-system can be expressed as

iI =

cos δsun cos αsun
cos δsun sin αsun

sin αsun

2
664

3
775, ð38Þ

where iI is the unit sun direction vector in the i-system.
Then, the unit sun direction vector in the A-system can

be further obtained:

isun = CA
I ⋅ iI , ð39Þ

where isun is the unit sun direction vector in the A-sys-
tem and CA

I is the transformation matrix from the i-system
to the A-system.

Therefore, the angular distance θs between the theoreti-
cal optimal navigation star and the sun can be calculated as

θs = arccos SI ⋅ isunð Þ: ð40Þ

If θs is less than the sum of the solar avoidance angle αsun
and deviation angle Δα, the deviation angle can be recalcu-
lated according to the following equation:

Δβ =
−αsun

αsun + Δα
θs + αsun + Δαð Þ, ð41Þ

where Δβ is the recalculated deviation angle.
The navigation star orientation in the star database is

defined as e0 σ0½ �, and its unit vector in the A-system

can be expressed as

i0 =

cos e0 cos σ0
sin e0

cos e0 sin σ0

2
664

3
775: ð42Þ

Then, the angular distance θI between the navigation
star and the theoretical optical navigation star and the angu-
lar distance θ0 between the navigation star and the sun can
be calculated, respectively.

θI = arccos i0 ⋅ SIð Þ,
θ0 = arccos i0 ⋅ isunð Þ:

(
ð43Þ

Therefore, the value of θI and the deviation angle can be
compared, so as θ0 and αsun.

θI < Δα, θs ≥ αsun + Δα,

θI < Δβ, θs < αsun + Δα,

θ0 > αsun:

8>><
>>: ð44Þ

If the above equation is valid, it means that the naviga-
tion star is within the deviation angle range of the optimal
navigator star and outside the sun avoidance angle range.
And the navigation star can be put into the local navigation
star database. After calculating all the navigation stars in the
star database, the local star database for determining the
available optimal navigation star can be obtained.

Table 2: statistical analysis results of the available navigation star deviation from the optimal navigation star.

Deviation angle Number Probability (%) Cumulative number Cumulative probability (%)

1° > α ≧ 0° 15449 15.449 15449 15.449

2° > α ≧ 1° 33558 33.558 49007 49.007

3° > α ≧ 2° 29392 29.392 78399 78.399

4° > α ≧ 3° 14842 14.842 93241 93.241

5° > α ≧ 4° 5216 5.216 98457 98.457

6° > α ≧ 5° 1289 1.289 99746 99.746

7° > α ≧ 6° 240 0.240 99986 99.986

α ≧ 7° 14 0.014 100000 100.000

Table 3: The value of each error in the simulation.

Error types Error symbols Value (3σ) Units

Initial orientation (alignment) error

ε0x 100

″
� �

ε0y 300

ε0z 100

Star sensor measurement error εξ, εη 0 ″
� �

Star sensor installation error Δφ0, Δψ0 0

8 International Journal of Aerospace Engineering



4.2.2. Determining the Available Optical Navigation Star.Con-
sidering that the navigation star with the smallest angular dis-
tance from the theoretical optimal navigation star is not
necessarily the available optimal navigation star, this paper
utilizes the combination of minimum angular distance and
minimum accuracy change to determine the available optimal
navigation star. Firstly, the angular distance between the stars

in the local navigation star database and the optimal naviga-
tion star is calculated, and the one with the smallest angular
distance is the first available navigation star. Secondly, esti-
mate the accuracy variation of any star in the local navigation
star database, and the smallest is the second available naviga-
tion star. The calculation method for estimating the accuracy
change caused by navigation star deviation is as follows.
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Figure 6: Composite guidance CEP variation diagram for 6000 km.
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Table 4: Optimal navigation star at different range.

Range Method es (deg) σs (deg) CEPINS (m) CEPCOM (m) t (s)

6000km

Traversing 38 0 2628.89 6.78 2963.05

Simplex 37.6011 -0.0411 2628.89 0.013 12.09

Analysis 37.6011 -0.0404 2628.89 0.001 0.001

12000km

Traversing 30 0 3198.36 4.02 2985.53

Simplex 30.0226 -0.1316 3198.36 0.015 13.22

Analysis 30.0264 -0.1318 3198.36 0.001 0.003
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The gradient can be calculated from the partial deriva-
tive of the composite guidance accuracy at the optimal nav-
igation star varying with the navigation star orientation.

d∇ =
∂CEP
∂es

i +
∂CEP
∂σs

j, ð45Þ

where CEP is the circular error probable and ∂CEP/∂es
and ∂CEP/∂σs are the partial derivative of composite
guidance CEP to elevation and azimuth angle at the optimal
navigation star. The direction perpendicular to the gradient
is the direction with the slowest change in the composite
guidance accuracy.

d⊥∇ = −
∂CEP
∂σs

i +
∂CEP
∂es

j: ð46Þ

Therefore, for any star in the local navigation star data-
base, the accuracy change ΔCEP can be estimated according
to

ΔCEP =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂CEP
∂σs

Δes

� 	2
+

∂CEP
∂es

Δσs

� 	2
s

, ð47Þ

where Δ CEP is the estimated value of the accuracy
change between the navigation star and the optimal naviga-
tion star. Δes and Δσs are the difference of elevation angle
and azimuth angle between the star in the local navigation star
database and the optimal navigation star. When the star is
smallest, it is selected as the second available navigation star.
For the first and the second available navigation star, the one
with smaller CEP is the available optimal navigation star.

5. Simulation Results

This section mainly include two parts: (1) determining the
theoretical optimal navigation star and (2) determining the
available optimal navigation star based on the star database.
The simulations are primarily aimed at verifying the effec-
tiveness of the proposed method.

In the simulation, two representative responsive launch
vehicle trajectories are adopted. The launch time is
00 : 00 : 00, 1 January 2019 (UTC). The first whole flight time
is 1300 s, and the second whole flight time is 2300 s. The initial
position is (0°N, 0°E). The star sensor works beyond the atmo-
sphere. And the star sensor installation angle is ½φ0, ψ0� = ½
20°, 0°�. The simulation parameters for the initial alignment
error and star sensor error are listed in Table 3. Two trajecto-
ries can better verify the effectiveness of the proposed method.

5.1. Determining the Optimal Navigation Star. This section is
used to evaluate the effectiveness of the algorithm in Section
3. In the simulation, the optimal navigation star is determined
by three methods, which are traversal method, simplex evolu-
tionary method, and analytical method proposed in this paper.

The traversal method searches in the full dimensional
space with −90° ≤ es ≤ 90° and −180° < σs ≤ 180°, and the
step is 1°. Taking the 6000 km trajectory (first trajectory) as

an example, when the optimal navigation star is determined
by the traversal method, the composite guidance accuracy
under different measurement orientations is shown in
Figure 6, and the composite guidance CEP contour is shown
in Figure 7.

Figure 6 shows the composite guidance CEP variation
diagram for 6000 km. It can be observed that there are two
minimum points in the composite guidance accuracy varia-
tion diagram corresponding to the single-star tuning plat-
form; that is, there are two optimal navigation stars. And
the two optimal navigation stars azimuth is approximately
on the same line as the emission point, that is, e′s = −es
and σ′s = σs − π. This is consistent with the analysis conclu-
sion of Equation (33). Besides, the composite guidance accu-
racy is approximately symmetric with respect to the line
according to Figure 7.

In the simplex evolutionary method, the initial vertex is
X0 = es0 σs0½ �T = 20° 0°½ �T. Take the distance between
vertices Δd = 10° to construct the initial simplex, and the
iteration termination condition is taken as ε = 0:1m. The
change of the simplex optimal vertex in the iteration process
is shown in Figure 8, and the convergence error is shown in
Figure 9.

It can be seen from the above figures that when utilizing
the simplex evolutionary method to determine the optimal
navigation star, the simplex converges quickly in the solu-
tion process, and the algorithm has a large search range.

Table 5: Optimal navigation stars with different star sensor
installation error.

Δφ0, Δψ0 ″, 3σ
� �

Method es (deg) σs (deg)

0
Simplex 37.6011 -0.0411

Analysis 37.6011 -0.0404

10
Simplex 37.5998 -0.0417

Analysis 37.6011 -0.0404

20
Simplex 37.5991 -0.0423

Analysis 37.6011 -0.0404

30
Simplex 37.5979 -0.0440

Analysis 37.6011 -0.0404

Table 6: Optimal navigation star with different star sensor
measurement error.

εξ, εη ″, 3σ
� �

Method es (deg) σs (deg)

0
Simplex 37.6011 -0.0411

Analysis 37.6011 -0.0404

10
Simplex 37.6011 -0.0404

Analysis 37.6011 -0.0404

20
Simplex 37.6012 -0.0403

Analysis 37.6011 -0.0404

30
Simplex 37.6012 -0.0404

Analysis 37.6011 -0.0404
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At the same time, it can achieve high accuracy by controlling
the convergence domain.

Table 4 represents the required time and the optimal
navigation stars determined by the three methods. In the
table, CEPINS is the pure inertial guidance accuracy, and
CEPCOM is the composite guidance accuracy.

The simulation results show that under the condition of
only considering the initial alignment error, the results
obtained by analytical method are consistent with those
obtained by traversal method and simplex evolutionary
method, which verify the effectiveness of the proposed
method. At the same time, the azimuth angle of the navigation
star is about 0°, which indicates that the optimal navigation
star is near the shooting plane when the star sensor is installed
on the xoy plane of the platform.

According to the results of the optimal navigation stars
and the corresponding composite guidance accuracy, the
accuracy of the traversal method is limited because the tra-
versal method is searched with a fixed step, while the ana-
lytic method and simplex evolutionary method have no
such limitation. Thus, the optimal navigation star azimuth

can achieve high accuracy. When comparing the calculation
time of the three methods, the results are calculated on PC.
By contrast, the traversal calendar takes about 50 minutes,
while the analytic method can be completed in a very short
time. And the composite guidance accuracy corresponding
to the optimal navigation star obtained by the analytical
method is 99.99% (from 6.78m to 0.001m) and 92.31%
(from 0.013m to 0.001m) higher than that obtained by the
traversal method and the simplex evolutionary method.
Moreover, the time-consuming of the traversal method is
related to the traversal step size. The smaller the step size,
the more time-consuming, but the more accurate the opti-
mal star azimuth is determined. Therefore, under the condi-
tion of significant initial error, the method proposed in this
paper can be used to help determine the optimal navigation
star quickly. Since only the initial orientation error is consid-
ered in the simulation, the stellar guidance can correct all the
effects of the error, and the corrected accuracy is close to
0m. Of course, it is impossible to achieve when all error fac-
tors are considered.

Taking the responsive launch vehicle with a range of
6000km as an example, the influence of the star sensor instal-
lation error and measurement error on the optimal navigation
star is analyzed. In the simulation, simplex evolutionary
method and analytic method are utilized to determine the
optimal navigation star. Table 5 represents the optimal naviga-
tion stars when considering the star sensor installation error,
and Table 6 represents the optimal navigation stars when con-
sidering the star sensor measurement error.

The star sensor installation error has a certain impact on
the optimal navigation star, but the impact is small. The range
of changes in elevation angle and azimuth angle is both within
0.01°. Comparing Tables 5 and 6, it can be seen that the star
sensor measurement error has less impact on the optimal nav-
igation star. Therefore, the method proposed in this paper can
determine the optimal navigation star effectively.
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Figure 10: Arrow-borne navigation star database.

Table 7: Local navigation star database.

Number es (deg) σs (deg) CEPINS (m) CEPCOM (m)

1 35.0459 -7.3824 2628.89 139.409

2 36.4093 -3.5698 2628.89 67.152

3 40.6013 -3.4893 2628.89 83.301

4 32.8418 0.9406 2628.89 79.633

5 41.2134 1.4235 2628.89 69.357

6 31.5162 2.5029 2628.89 108.593

7 38.1545 6.3915 2628.89 117.695

8 39.9243 7.9122 2628.89 150.393
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5.2. Determining the Optimal Available Navigation Star. Stars
are basically evenly distributed in the celestial coordinate sys-
tem, and the earth shielding range of in the star sensor view
field is basically fixed. Due to the physical realization of the
inertial platform frame angle, there will be some restrictions
on the azimuth and elevation angles. It is assumed that the azi-
muth angle has a limit of ±45°, and the elevation angle has a
limit of ±60°. At the same time, it is assumed that the sun’s
avoidance angle is 20°, the moon’s avoidance angle is 10°, the
horizon’s additional avoidance angle is 5°, and the large planet’s
avoidance angle is 2°. The arrow-borne navigation star database
is shown in Figure 10, and the generated local navigation star
database based on the Section 4.2.1 is shown in Table 7.

Figure 10 shows the generated arrow-borne navigation
star database when the launch time is January 1, 2019. Due
to the influence of constraints, the final number of available
navigation stars is 292. Compared with Figure 10, it can be
seen that there are only 8 alternative navigation stars in the
local navigation star database, indicating that most stars in

the array-borne navigation star database can be excluded
based on the maximum deviation angle from the theoretical
optimal navigation star, thus shortening the time to deter-
mine the available optimal navigation star. Tables 8 and 9
represent the available optimal navigation stars for the
6000 km and 12000 km launch vehicle.

Table 8 and 9 show the comparison results of the pro-
posed method and the traversal method to determine the
available optimal navigation star. The traversal method in
the table refers to traversing all stars in the local navigation
star database, and the results obtained can be considered as
accurate. The proposed method refers to the available opti-
mal navigation star determined according to Section 4.2.2.
The above results are the navigation stars selected from the
real local navigation star database after considering various
star selection constraints. It can be observed from the tables
that the navigation star determined by the proposed method
is the same as the traversal method, which proves that this
method in this paper is effective. At the same, the angular

Table 8: The available optimal navigation stars for the 6000 km launch vehicle.

Date 2019/1/1 2019/3/10 2019/8/20

Theoretical optimal navigation star

es (deg) 37.6011 37.6011 37.6011

σs (deg) -0.0404 -0.0404 -0.0404

CEPINS (m) 2628.89 2628.89 2628.89

CEPCOM (m) 0.001 0.001 0.001

Available optimal navigation star (traversal method)

e′s (deg) 36.4093 36.5827 37.0740

σ′s (deg) -3.5698 1.0344 -2.9698

CEPINS (m) 2628.89 2628.89 2628.89

CEPCOM (m) 67.152 26.320 54.120

Available optimal navigation star (proposed method)

e′s (deg) 36.4093 36.5827 37.0740

σ′s (deg) -3.5698 1.0344 -2.9698

CEPINS (m) 2628.89 2628.89 2628.89

CEPCOM (m) 67.152 26.320 54.120

Table 9: The available optimal navigation stars for the 12000 km launch vehicle.

Date 2019/1/1 2019/3/10 2019/8/20

Theoretical optimal navigation star

es (deg) 30.0264 30.0264 30.0264

σs (deg) -0.1318 -0.1318 -0.1318

CEPINS (m) 3198.36 3198.36 3198.36

CEPCOM (m) 0.001 0.001 0.001

Available optimal navigation star (traversal method)

e′s (deg) 30.5718 32.2593 25.3675

σ′s (deg) 0.7825 0.3548 -0.4691

CEPINS (m) 3198.36 3198.36 3198.36

CEPCOM (m) 26.332 33.224 64.516

Available optimal navigation star (proposed method)

e′s (deg) 30.5718 32.2593 25.3675

σ′s (deg) 0.7825 0.3548 -0.4691

CEPINS (m) 3198.36 3198.36 3198.36

CEPCOM (m) 26.332 33.224 64.516
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distance between the theoretical optimal navigation star and
the available optimal navigation star is within 5°, and the
variation of composite guidance accuracy is less than 70m,
indicating that the available optimal navigation star still
has a good correction effect.

6. Conclusion

The demand for the application of single-star inertial-stellar
guidance system in responsive launch vehicles is to deter-
mine the optimal navigation star quickly. However, the cur-
rent optimal navigation star selection schemes are to
determine the star by numerical method, which increase
the preparation time before launch. This paper proposes a
fast algorithm to determine the star. The key of this algo-
rithm is to deduce the optimal navigation star based on the
equivalent information compression theory under the con-
dition of significant initial error. It is obvious that the analyt-
ical solution is less time-consuming than the numerical
solution. And the analytical solution can achieve the same
accuracy as the numerical solution, or even higher.

On the basis of determining the optimal navigation star,
the available optimal navigation star should be further deter-
mined in combination with the arrow-borne navigation star
database. There are certain deviations between the optimal
navigation star and the navigation stars in the database. There-
fore, the deviation angles between them without considering
constraints are analyzed firstly. Based on the deviation angle,
the navigation stars are selected to the local navigation data-
base. Then, the available optimal navigation star can be deter-
mined according to certain criteria. The algorithm proposed
in this paper can quickly determine the optimal navigation
star and the available optimal navigation star.

Data Availability

The data used to verify the effectiveness of this method are
included within the paper. The data is generated by utilizing
the software which is described in Section 5. The data used
to support the findings of this manuscript, “A fast algorithm
for determining the optimal navigation star for responsive
launch vehicles,” written by Yi Zhao, Hongbo Zhang, Peng-
fei Li, and Guojian Tang, is generated by software. The
detailed simulation conditions are presented in this paper.
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