
Research Article
Fatigue Reliability Analysis System for Key Components of Aero-
Engine

Huizhi Qi ,1 Yaqing Lu ,1 Shufang Song ,1 and Qiannan Xu 2

1School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
2AECC Sichuan Gas Turbine Establishment, Mianyang 621700, China

Correspondence should be addressed to Shufang Song; shufangsong@nwpu.edu.cn

Received 26 July 2022; Revised 25 September 2022; Accepted 26 September 2022; Published 14 October 2022

Academic Editor: Jinyang Xu

Copyright © 2022 Huizhi Qi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Aero-engine is known as the heart of an aircraft. Fatigue is one of the main causes of aero-engine failure, therefore, it is essential to
predict the fatigue life in the aero-engine design process. Due to the uncertainty of influencing factors, it is necessary to further
analyze the fatigue reliability. First, the fatigue life should be predicted on the basic of finite element analysis. The steps include
parametric modeling, stress-strain analysis, load spectrum acquisition, and selection of fatigue life prediction model. Then, the
reliability estimation of fatigue life should be employed, including the statistical analysis of influencing factors, reliability
analysis method, and reliability estimation of fatigue life. Taking turbine blade and test probe of aero-engine as the research
objects, the fatigue reliability analysis system is developed based on the ABAQUS-MATLAB platform. Statistical analysis shows
that fatigue life approximately obeys lognormal distribution, and the distribution parameters estimated by MCS and Kriging
are coincide, while Kriging only needs dozens of training samples. Under different reliability indexes, the design fatigue life
error between Kriging and MCS is less than 1%, which meets the accuracy requirements and can effectively guide the fault
detection and maintenance of aero-engine.

1. Introduction

Aero-engine is the heart of an aircraft. If aero-engine failure
occurs during the flight, it will be a direct threat to flight safety
of the aircraft. And fatigue failure is one of the most typical
failure modes of aero-engine [1], which will have a significant
adverse effect on the safety, economic applicability, and equip-
ment integrity of the aircraft. Therefore, it is very necessary to
predict the fatigue life of aero-engine, especially its key compo-
nents. Fatigue life prediction can provide reference for the ser-
vice and maintenance cycle to ensure the stable operation of
aero-engine [2].

Generally, according to stress levels or fatigue cycles,
fatigue can be divided into high cycle fatigue (HCF) and low
cycle fatigue (LCF). For HCF, the stress is low enough, the
stress-strain relationship can be considered linear, and then
S-N curve is commonly used to predict the fatigue life [3].
For LCF, the stress-strain relationship is hysteretic and nonlin-
ear, and the local stress-strain method is the most widely used
to estimate the fatigue life [4]. In fact, the fatigue problems of

actual structure are often the superposition of several types of
fatigue, such as high-low cycle complex fatigue (H-LCF). For
example, H-LCF failure of the turbine blade accounts for
20% of aero-engine failures [5, 6].

Fatigue failure is a process of internal damage accumula-
tion under cyclic stresses. Fatigue cumulative damage theory
mainly includes linear and nonlinear cumulative damage the-
ories. Miner’s linear cumulative theory holds that the fatigue
damage increases linearly with the number of cyclic stress.
Because of its simple form and strong applicability, it is widely
used in the fields of aerospace, transportation industry, and
material science [7, 8, 9]. The nonlinear cumulative damage
theory considers the coupling effect between different stresses
[5, 10, 11], which is very theoretical, but it is too tedious to be
applied to engineering problems.

Actually, the fatigue life is uncertainty due to geometric
error and uncertainty of working environment [12, 13].
Therefore, it is necessary to analyze the fatigue life problem
with probability statistics, that is, the reliability analysis of
fatigue life [14, 15]. The probability distribution characteristics
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of fatigue life should be obtained, such as distribution type 0.
The numerical simulation method, represented by Monte
Carlo simulation (MCS) 0, requires a large number of random
samples to accurately predict the distribution of fatigue life,
and it is time-consuming. How to improve the computation
efficiency of fatigue reliability estimation has become an
imperative issue. To address this issue, surrogate models, such
as response surface method (RSM), neural network (NN),
support vector machine (SVM), and Kriging model, have
received widespread attention and rapid development
[16–19]. Different from the aforementioned surrogate models,
Kriging model can be established by using global and local
information of training samples, including the information
on the correlation between the variable of interest and covari-
ates. Therefore, Kriging is a probabilistic prediction model
with the unique advantage [20, 21]. The Kriging predictor is
an unbiased and optimal predictor with smaller standard error
to quantify the uncertainty than other surrogate models.

The fatigue life of aero-engine’s key components, such as
turbine blades and test probes, are predicted according to
their different fatigue damage modes. Combined with the
relevant knowledge of reliability, the fatigue reliability anal-
ysis framework is established by Kriging model. In addition,
in order to realize the programming and automation of
fatigue analysis, the corresponding simulation platform with
strong readability and good operability is developed.

The rest of this paper is organized as follows: Section 2
presents the high-low complex fatigue life analysis model
of aero-engine turbine blades and estimates the fatigue reli-
ability under uncertain influence parameters. Section 3
establishes the high cycle fatigue analysis process and evalu-
ates the corresponding reliability. Section 4 develops the
fatigue life reliability analysis software platform based on
ABAQUS-MATLAB. Section 5 summarizes the principles
and advantages of the presented analysis framework and
software platform.

2. Fatigue Reliability Analysis of Turbine Blade

Turbine blade of aero-engine is very prone to fatigue failure,
since it works in very harsh working conditions: high-tem-
perature, high-speed rotation, and high pressure complex
environment. The content of blade fatigue reliability analysis
includes finite element analysis to obtain the stress-strain
response of dangerous position, H-LCF life prediction
model, and fatigue reliability analysis.

2.1. Finite Element Analysis. First, finite element analysis is
used to obtain the stress-strain response of the most danger-
ous position, which is the basic of the foundation for struc-
tural fatigue life prediction [22]. The steps of finite element
analysis of blade are shown in Figure 1.

2.1.1. Parametric Modeling. There are 45 turbine blades in
a turbine rotor, which are circumferential uniform distrib-
uted. The turbine blade is connected with the turbine disk
through corresponding tenon. The geometric structure of
blade is mainly composed of blade body, blade root plat-
form, and tenon. In order to simulate the boundary condi-

tions of turbine blades, the normal displacement of each
tenon is limited, and the tenon foot is fixed. Considering
that the blade has no rigid displacement, the normal dis-
placement of the tenon side is also limited. The blade
body uses C3D8R element type, the rest uses C3D10 ele-
ment type, and the total number of grids is 12523. The
boundary conditions of the blade are shown in
Figure 2(a), the section of the blade body is shown in
Figure 2(b), the finite element model is shown in
Figure 2(c).

The turbine blade is made of K403 alloy, and the mate-
rial parameters of K403 alloy [23] are listed as follows: the
density is 8:10 × 10−9ρðt/mm3Þ, the Elastic modulus is
165000MPa, the Poisson’s ratio is 0.33, and the thermal
expansion coefficient is 1:38 × 10−5.

2.1.2. Mechanics Analysis

(1) Load Analysis. The turbine blades have various loads,
including centrifugal force, temperature load, aerodynamic
load, and vibration excitation.

(1) Centrifugal load

The bottom of the turbine blade is fixed on the turbine
disk under the action of the tenon, and centrifugal force is
mainly the tensile stress produced by the quality of the blade
itself in the process of high-speed rotation. In ABAQUS, the
centrifugal force is directly applied by rotational speed at the
central axis of turbine blade.

(2) Temperature load

Aero-engine turbine blades operate in a continuous
high-temperature environment. The thermal stress is caused
by the nonuniform temperature field and temperature
change. The temperature field distribution of the turbine
blade can be expressed according to the quadratic curve
[24] as follows:

T xð Þ = Ta + Tb − Tað Þ x − Ra

Rb − Ra

� �2
, ð1Þ

where x represents the position of blade; Ra and Rb represent
the distances from the highest point of blade body tempera-
ture and the lowest point of tenon temperature to the axis
origin, respectively; Ta and Tb represent the maximum tem-
perature of blade body and the minimum temperature of
tenon, respectively.

(3) Aerodynamic load

The flow through the cascade channel causes aerody-
namic loads. By analyzing the flow field characteristics, the
aerodynamic force applied to the turbine blade is obtained
from the pressure integration on the windward and leeward
surfaces.

(4) Vibration load
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The airflow disturbance and turbine disk foundation
vibration cause vibration loads. When the vibration excita-
tion frequency is close to the natural frequency, the turbine
blade is prone to resonance. Based on the flight test data,
the fatigue cumulative damage to turbine blades under
vibration load is calculated.

(2) Load Spectrum Analysis. Taking the rotational speed as
the control quantity, the working states of aero-engine can
be generally simplified as ground idling, cruising, and
maximum-continuous. Then, there will be three key combi-
nation of working cycles: “start→maximum-continuous→-
start,” “Ground idling→ maximum-continuous→ground
idling,” and “cruising→maximum-continuous→cruising”
(defined as case 1, case 2, and case 3, respectively). And it
is assumed that the rotational speeds change uniformly
between different working states. The load spectrum of air-
craft flying 1000h is shown in Table 1.

2.1.3. Static Finite Element Analysis. For the engine’s three
working states (ground idling, cruising, and maximum-
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Figure 1: Flowchart of finite element analysis of blade.
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Figure 2: Turbine blade.

Table 1: 1000 h load spectrum of an aero-engine [25].

Working cycle Cycle times (times) Rotor speed (r/min)

Case 1 1280 0-17650-0

Case 2 1945 9210-17650-9210

Case 3 13300 16446-17650-16446
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continuous), the finite element stress and strain analysis of
the turbine blade were carried out. The stress cloud diagram
and strain cloud diagram of the blade structure are shown in
Figures 3 and 4. The stress field is reasonably distributed,

and the high stress area is concentrated at the root of the
blade body. The stress and strain results are listed in Table 2.

2.1.4. Vibration Analysis. Structural resonance is one of the
most dangerous causes of fatigue failure under vibration
load. When the frequency of external excitation load is close
to the natural frequency of structure, resonance will occur.

The static frequency is only related to the material prop-
erties and geometric structure of the turbine blade. The
dynamic analysis is to calculate the natural vibration fre-
quency of the turbine blade with working loads as prestress
input. The results of static frequencies and natural frequen-
cies of each working state are shown in Table 3.
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Figure 3: Stress cloud diagram of blade (maximum-continuous working state).

E, Max. Principal
(Avg: 75%)

+5.551e–03
+5.088e–03
+4.626e–03
+4.163e–03
+3.701e–03
+3.238e–03
+2.775e–03
+2.313e–03
+1.850e–03
+1.388e–03
+9.251e–04
+4.626e–04
+0.000e+00

Max: +5.551e–03
Elem: GAO95YEPIAN-1,93
Node: 796

Max: +5.551e–003

Figure 4: Strain cloud diagram of blade (maximum-continuous working state).

Table 2: Stress and strain results of three working states.

Working state Stress (MPa) Strain

Ground idling 692.67 0.002752

Cruising 796.93 0.003798

Maximum continuous 868.84 0.005551
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Table 3: Calculation results of turbine blade frequencies.

1st 2nd 3rd 4th 5th 6th

Static 816.19 1025.4 1911.0 1981.6 3081.5 3357.8

Ground idling 811.98 1024.3 1910.1 1964.3 3085.5 3359.3

Cruising 789.33 1002.2 1827.3 1895.4 3074.4 3339.5

Maximum-continuous 751.04 1006.4 1713.5 1869.6 3040.6 3304.7
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Figure 5: Campbell diagram.
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Figure 6: RMS stress cloud diagram.
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The Campbell diagram is an overall view of regional
vibration excitation that can occur in the blade’s working
states [26]. That is to say, judge whether the running fre-
quency or its harmonics causes the resonance of the blade
natural frequency. The engine rotational speed is along X
axis, and the frequency is along Y axis. The fan lines are
the excitation order lines from K = 1 to K = 15 and K = 45.
As shown in Figure 5, turbine blades have resonance risks
under excitation orders of 4, 5, 9, 14, and 15.

And then it is necessary to calculate the fatigue cumula-
tive damage caused by low amplitude and high frequency
vibration load. The frequency domain method based on
power spectral density (PSD) is adopted. Setting the PSD
of vibration load as input, the structural vibration response
can be obtained through structural dynamic analysis. The
RMS stress cloud diagram of turbine blade is shown in
Figure 6.

2.2. High-Low Cycle Complex Fatigue Life Prediction. Tur-
bine blade bears high and low cycle loads at the same time,
and it is a complex fatigue problem. Turbine blade’s LCF
and HCF are analyzed firstly and then need to be compre-
hensively considered to predict its H-LCF life.

2.2.1. Low Cycle Fatigue Life Prediction Model. The local
stress-strain method is usually used to predict the LCF life.
The Manson-Coffin model modified by SWT (Smith-Wat-
son-Topper) considers the effects of plastic strain and aver-
age stress on the fatigue life of turbine blades. The
expression of SWT modified model is as follows:

σmaxεa =
σf′2
E

2Nð Þ2b + σf′εf′ 2Nð Þb+c, ð2Þ

where σmax is the maximum stress and εa is the strain
amplitude. The fatigue performance parameters are calcu-

lated by the improved universal slope method [3] as follows:

σf′ = 0:623E σb
E

� �0:832
,

εf′ = 0:0196 σb

E

� �−0:53
:

8>><
>>:

ð3Þ

For K403 alloy, the fatigue strength coefficient σf′ =
1401MPa, fatigue strength index b = −0:09, fatigue ductility
coefficient εf′ = 0:329, and fatigue ductility index c = −0:56.
Newton iterative method can be used to solve Eq. (2). The
fatigue limit life NLiði = 1, 2, 3Þ under three working cycles
can be obtained and listed in Table 4. Miner’s linear cumu-
lative damage theory is employed to calculate the total LCF
damage DL =∑3

i=1ðni/NLiÞ, and the total LCF life is NL = 1/
DL ≈ 7:63, that is to say, the LCF life is 7630 h.

2.2.2. High Cycle Fatigue Life Prediction Model. Steinberg
[27] proposed three-interval method based on the Gauss dis-
tribution and Miner’s cumulative damage criterion to ana-
lyze the HCF life. Considering the random vibration
excitation as Gauss distribution, then, the probability of
three intervals is Pðjx − μj ≤ σÞ = 68:3%, Pðσ < jx − μj ≤ 2σÞ
= 27:1%, Pð2σ < jx − μj ≤ 3σÞ = 4:33%, and Pðjx − μj > 3σÞ
= 0:27% (seen in Figure 7).

That is to say, the damage caused by vibration load in
interval jx − μj > 3σ can be ignored. Then, the calculation
formula for HCF damage is as follows:

DHi
= n1σ
N1σ

+ n2σ
N2σ

+ n3σ
N3σ

= 0:683f
N1σ

+ 0:271f
N2σ

+ 0:0433f
N3σ

� �
× T ,

ð4Þ

where DHi
is the cumulative damage of HCF caused by

vibration load; N1σ, N2σ, and N3σ are the cycle numbers cor-
responding to 1σ, 2σ, and 3σ stress level from S-N curve; f is
the first order natural frequency of structural vibration; T is
the total vibration time.

For the turbine blade, the maximum equivalent stress σ
= 17:92MPa. The S-N curve of the material can be obtained
by querying the Handbook of Aeronautical Materials of
China [23]. Query the corresponding allowable cycle times
N1σ, N2σ, and N3σ under 1σ, 2σ, and 3σ stress, and substi-
tute them into Eq.(4) to calculate DHi. Set the cumulative
critical as 1, the HCF life will be NHi = 1/DHi

, as shown in

Table 4. And the total HCF damage DH =∑3
i=1DHi

=∑3
i=1ð

ni/NHiÞ, the HCF life is 3098950h.

2.2.3. High-Low Cycle Complex Fatigue Life Prediction
Model. Considering the coupling between HCF loads and
LCF loads, the dual-parameter modified nonlinear damage
accumulation model, proposed by Yue [5], is used to esti-
mate the complex fatigue life.

NHL =
aHL

1/NLð Þ + 1/NHð Þ + AHL 1/NLð Þ1−BHL 1/NHð ÞBHL
, ð5Þ

Table 4: Calculation results of turbine blade life.

Fatigue life Case 1 Case 2 Case 3

NL 11160.0691 234517.9719 1647855.2250

NH 6:1995 × 106 3:5470 × 107 2:1666 × 108
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Figure 7: Interval division diagram.
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where NHL is the H-LCF life; NL and NH are the LCF life
and HCF life, respectively; AHL and BHL are the H-LCF
fatigue coupling coefficient, AHL = 0:16, BHL = 0:15; aHL is
the H-LCF critical damage coefficient, aHL = 0:98. Substitut-
ing NL, NH , and all parameters into the Eq. (5), the H-LCF
life is NHL = 7013:03h. It can be seen that the life of H-
LCF is j7013:03 − 7630/7630j = 8:1% lower than that of
LCF due to high cycle effect.

2.3. Fatigue Reliability Analysis. Generally, the influencing
factors of fatigue life have objective uncertainty, which leads
to the uncertainty of fatigue life. Therefore, it is necessary to
analyze the fatigue reliability of turbine blade.

2.3.1. Uncertainty of Influencing Factors. For the fatigue reli-
ability, there are six random input variables, including three
rotational speeds of working states, Young’s modulus, Pois-
son’s ratio, and linear expansion coefficient. They are inde-
pendent and normal distributed. The distribution
parameters are listed in Table 5. The coefficient of variation
(COV) of rotational speed is clearly required in the Aero-
engine Life Determination Guide [28], which is less than
3% (COV of rotational speed is 0.02). The COV of material
properties is determined [23] according to the aero-engine
material manual.

2.3.2. Fatigue Reliability Analysis Methods. Fatigue reliability
analysis studies the transfer law of uncertainty from
influencing factors to the fatigue life. MCS is the classical
reliability numerical simulation algorithm. MCS is based
on the large number theorem. The process of MCS is that
firstly the random samples of input variables are extracted
M times according to the probability distribution and then
substitute the input samples into the performance function
to obtain M response values, and finally, the statistical anal-
ysis should be carried out by usingM response values. How-
ever, there is no explicit performance function for the fatigue
life of turbine blades, and the implicit relationship between
influencing factors and the fatigue life can only be deter-
mined by finite element analysis. The finite element stress-
strain analysis of the random input samples is carried out
by ABAQUS and then substitute stress and strain into the
H-LCF life prediction model to obtain the complex fatigue
life. MCS is very time-consuming. In order to reduce the
number of FEM, Kriging model is carried out to construct
the surrogate model of influencing factors and fatigue life.

Table 5: Statistical characteristics of random variables.

Random variable Distribution type Mean value Coefficient of variation

1st rotation speed ω1 (r/min) Normal 17650 0.02

2nd rotation speed ω2 (r/min) Normal 16446 0.02

3rd rotation speed ω3 (r/min) Normal 9210 0.02

Young’s modulus (MPa) Normal 165000 0.01

Poisson’s ratio Normal 0.33 0.01

Thermal expansion coefficient Normal 1:38 × 10−5 0.01
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Table 6: Turbine blade fatigue life prediction.

Reliability
Fatigue life
(Kriging)

Fatigue life
(MCS)

Relative
error

0.5 6984.2(h) 7011.5(h) 0.38%

0.9 6508.8(h) 6486.7(h) 0.31%

0.99 6126.4(h) 6094.6(h) 0.52%
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According to the training samples obtained from the dis-
tribution form of random variables, Kriging model can be
established. And U learning function is adopted to update
the Kriging model until it meets the accuracy requirement.
Then, reliability analysis is performed based on the con-
structed Kriging model.

2.3.3. Fatigue Reliability Estimation Results. According to the
distribution information of input influencing factors, MCS
extracts 10000 H-LCF life samples by using finite element
analysis 3 × 10000 times. Each FEM needs 50 s, so MCS to
estimate the fatigue reliability needs at least 3 × 50 × 10000
= 1500000 s ≈ 17:4days. The frequency distribution histo-
gram of fatigue life can be obtained, as shown in Figure 8.

The logarithmic fatigue life ln NHL of the turbine blade
obeys the normal distribution. The 95% confidence interval
of mean μln NHL

is (8.8502, 8.8585), and the 95% confidence
interval of standard deviation σln NHL

is (0.0598, 0.0614).
The Kriging surrogate model NHL = gkðxÞ can be estab-

lished for turbine blade. And the statistical parameters of
the surrogate model are μgk = 6984:2 and σ2gk = 391:472.
Since NHL is lognormal distribution, then

Kriging : ln NHL ~N 8:8512, 0:06092
À Á

: ð6Þ

To construct the Kriging model, it needs only 46 sample
points, that is to say, 3 × 50 × 46 s = 2300 s ≈ 1:92h. The cal-
culation time of FEM by MCS and Kriging is greatly short-
ened from “week” to “hour.” The calculation time is
greatly shortened. As shown in Figure 9, the sample distribu-
tion obtained by Kriging method is within the confidence
interval of MCS estimation. There is the maximum error at
the mean point, and the maximum error is 0.05%. The cal-
culation accuracy also meets the requirements.

Given the design fatigue life N∗, the probability of tur-
bine blade reliability can be evaluated, i.e.,

Ð +∞
N∗ ð1/xσ

ffiffiffiffiffiffi
2π

p Þ
exp ½−1/2ðln x − μ/σÞ2�dx. The fatigue lives under different
reliabilities are listed in Table 6. The errors of prediction

results between Kriging model and MCS are all less than
1%, which proves the effectiveness of the surrogate model.
And the fatigue reliability design can also be carried out
based on the established Kriging model.

3. Fatigue Reliability Analysis of Test Probe

Test probe is an important test tool to test the parameters of
vibration, air flow temperature, velocity, and pressure in the
inner turbulent flow of aero-engine. In order to determine
the replacement time of the probe, it is necessary to predict
its fatigue life and estimate the fatigue reliability. The work-
ing load of the test probe is vibration excitation, which is
low-stress and high-frequency. Therefore, the fatigue prob-
lem of the test probe belongs to high cycle fatigue. The
fatigue reliability analysis of the probe includes finite ele-
ment analysis to obtain the RMS stress of dangerous posi-
tion, HCF life prediction model, and fatigue reliability
analysis.

3.1. Finite Element Analysis. The finite element analysis pro-
cess of the test probe [22] is similar to that of turbine blade
(shown in Figure 1), but it is different from turbine blade in
terms of working environments, stress characteristics, and
fatigue damage modes.

3.1.1. Parametric Modeling. The inside of the test probe is
hollow. Sensors, internal hoses, etc. can be installed inside
the probe. The bottom of test probe is usually fixed on the
inlet cylinder wall by bolts. Simplifying the chamfers, exter-
nal pressure pipe nozzles, and other relevant parts, the
model of probe is simplified to a typical cantilever beam
structure [29]. The finite element model of probe (shown
in Figure 10) is meshed by ABAQUS.

The material of the test probe is 1Cr18Ni9Ti steel, and
the material parameters [30] are listed as follows: the density
is 7850kg/m3, the elastic modulus is 184000MPa, and the
Poisson’s ratio is 0.31.

3.1.2. Mechanics Analysis

(1) Load Analysis. The test probe mainly bears the aerody-
namic pressure load and vibration load.

(1) Aerodynamic pressure load

When the air flow enters the inlet of aero-engine, the
pressure different is generated on the windward and leeward
of test probe. Therefore, the aerodynamic load is applied to
the probe. The aerodynamic load can be simplified into dis-
tributed pressure, which can be applied through the static
analysis module of ABAQUS.

(2) Vibration load

Vibration load includes the load transmitted by inlet cyl-
inder wall vibration and aerodynamic excitation force. The
vibration load of the probe is complex and belongs to ran-
dom load. Using the long-time flight test data, we can obtain
the working time and average frequency of the probe and

Y

Z X

Figure 10: Finite element model of test probe.

Table 7: Probe frequency calculation results.

Mode 1st 2nd 3rd 4th 5th 6th

Frequency (Hz) 508.65 647.42 2025.5 2653.7 4852.5 5908.5
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then obtain the PSD of excitation force, which is applied in
the random response analysis module of ABAQUS.

3.1.3. Dynamic Finite Element Analysis

(1) Modal Analysis. When the frequency of external load is
close to the natural frequency of test probe, resonance will

occur. The modal analysis of test probe is carried out to
obtain the natural frequencies (listed in Table 7) and mode
shapes (seen in Figure 11).

(2) Random Response Analysis. The variation of vibration
load caused by probe base vibration and aerodynamic excita-
tion force is relatively complex [31], which is analyzed by
frequency domain method based on PSD. For random
response analysis, the frequency range is generally set to
0~ 2000Hz, and the probe modal damping is set to 0.05.
The RMS stress distribution of random vibration response
of the probe can be solved by ABAQUS, as shown in
Figure 12.

3.2. High Cycle Fatigue Life Prediction. Steinberg’s three-
interval method [27] is used to solve the HCF life of test
probe. The equivalent RMS stress of test probe in
Figure 12 and the fitted S-N curve [23] of 1Cr18Ni9Ti steel
are as follows.

SmN = C, ð7Þ

where m and C are the fitting parameters, m = 22:34 and C
= 1:650. The cycle number N1σ, N2σ, and N3σ can be
obtained, respectively, and listed in Table 8.

Take the vibration time T = 700 hour and the vibration
frequency f = 508:65Hz, substitute all data into the life pre-
diction Eq. (4), and the HCF life of the probe is NH =
10042:3 hours.

3.3. Fatigue Reliability Analysis. The fatigue life of the test
probe is affected by random influencing factors, resulting
in great variability of fatigue life. In order to better predict
the fatigue life, it is necessary to analyze the fatigue life reli-
ability of the test probe.

U. Magnitude
+1.000e+00
+9.171e–01
+8.337e–01
+7.503e–01
+6.669e–01
+5.836e–01
+5.002e–01
+4.168e–01
+3.335e–01
+2.501e–01
+1.667e–01
+8.337e–02
+0.000e+00

Step:
Mode:

Primary Var:
Deformed Var:

Step-1
1: Value = 1.02141E+07 Freq = 508.65 (cycles/time)
U. Magnitude
U Deformation scale factor: +1.440e+01

Step:
Mode:

Primary Var:
Deformed Var:

Step-1
2: Value = 1.65475E+07 Freq = 647.42 (cycles/time)
U. Magnitude
U Deformation scale factor: +1.440e+01

Step:
Mode:

Primary Var:
Deformed Var:

Step-1
3: Value = 1.61968E+08 Freq = 2025.5 (cycles/time)
U. Magnitude
U Deformation scale factor: +1.440e+01

U. Magnitude
+1.001e+00
+9.177e–01
+8.342e–01
+7.508e–01
+6.674e–01
+5.840e–01
+5.005e–01
+4.171e–01
+3.337e–01
+2.503e–01
+1.668e–01
+8.342e–02
+0.000e+00

U. Magnitude
+1.004e+00
+9.201e–01
+8.365e–01
+7.528e–01
+6.692e–01
+5.855e–01
+5.019e–01
+4.182e–01
+3.346e–01
+2.509e–01
+1.673e–01
+8.365e–02
+0.000e+00

U. Magnitude
+1.009e+00
+9.251e–01
+8.410e–01
+7.569e–01
+6.728e–01
+5.007e–01
+5.046e–01
+4.205e–01
+3.364e–01
+2.523e–01
+1.682e–01
+8.410e–02
+0.000e+00

Step:
Mode:

Primary Var:
Deformed Var:

Step-1
4: Value = 2.78003E+08 Freq = 2653.7 (cycles/time)
U. Magnitude
U Deformation scale factor: +1.440e+01

Step:
Mode:

Primary Var:
Deformed Var:

Step-1
5: Value = 9.29606E+08 Freq = 4852.5 (cycles/time)
U. Magnitude
U Deformation scale factor: +1.440e+01

Step:
Mode:

Primary Var:
Deformed Var:

Step-1
6: Value = 1.37821E+09 Freq = 5908.5 (cycles/time)
U. Magnitude
U Deformation scale factor: +1.440e+01

U. Magnitude
+1.010e+00
+9.256e–01
+8.415e–01
+7.573e–01
+6.732e–01
+5.890e–01
+5.049e–01
+4.207e–01
+3.366e–01
+2.524e–01
+1.683e–01
+8.415e–02
+0.000e+00

U. Magnitude
+1.012e+00
+9.280e–01
+8.436e–01
+7.593e–01
+6.749e–01
+5.905e–01
+5.062e–01
+4.218e–01
+3.375e–01
+2.531e–01
+1.607e–01
+8.436e–02
+0.000e+00

Figure 11: The 1st to 6th order mode shape diagrams of test probe.

RMISES
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Figure 12: RMS stress cloud diagram of test probe.

Table 8: Fatigue life under three stress levels.

N1σ N2σ N3σ

8:3486 × 1019 1:5310 × 1013 1:9384 × 109
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3.3.1. Uncertainty of Influencing Factors. The aerodynamic
pressure and material properties of the test probe are
selected as the input random variables. The mean value
and variation coefficient of the random variables come from
the statistical analysis of the test data [31]. The distribution

types and distribution parameters of the random factors
are shown in Table 9.

3.3.2. Fatigue Reliability Estimation. 10000 groups of HCF
predicted life samples of probe are obtained, and then MCS
is used for probabilistic statistical analysis. The frequency dis-
tribution histogram can be obtained, as shown in Figure 13.
And because each FEM takes 31 seconds to get the stress,
MCS needs about 31s × 10000 = 310000 s ≈ 3:5days.

The logarithmic fatigue life ln NH of the test probe obeys
the normal distribution. The 95% confidence interval of
mean μln NH

is (9.2118, 9.2138), and the 95% confidence
interval of standard deviation σln NH

is (0.0216, 0.0239).
A Kriging surrogate model NH = gkðxÞ is established for

test probe. And the statistical parameters of the surrogate
model are μgk = 10049:8 and σ2gk = 224:662. Since NH is log-

normal distribution, then

Kriging : ln NH ~N 9:2125, 0:02242
À Á

: ð8Þ

In order to establish the Kriging model, 35 sample points
need to be used. It only takes about 20 minutes. As shown in
Figure 14, the sample distribution obtained by Kriging
method is within the confidence interval of MCS estimation.
There is the maximum error at the mean point, and the
maximum error is 0.02%. The test probe fatigue lives under
different reliabilities are shown in Table 10. The error of esti-
mations between Kriging model and MCS is less than 1%.

4. Fatigue Reliability Analysis System

ABAQUS finite element software is widely used because of
its powerful modeling and intuitive cloud diagram display,
simple Python kernel language, and strong interfaces.
MATLAB is a powerful tool language for engineering math-
ematics analysis and calculation. It is favored because of

Table 9: Statistical characteristics of random variables.

Random variables Distribution type Mean value Coefficient of variation

Aerodynamic pressure P (MPa) Normal 3.5 0.02

Young’s modulus E (MPa) Normal 184000 0.01

Poisson’s ratio Normal 0.31 0.01
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Figure 13: Distribution of probe fatigue life sample (Monte Carlo
method).

0.02

0.016

0.012

0.008

0.004

0
9 9.05 9.1 9.2 9.259.15

In NH

9.3

Maximum error

Confidence interval
Kriging

9.49.35

Figure 14: Comparison of MCS and Kriging (test probe).

Table 10: Test probe fatigue life prediction.

Reliability
Fatigue life
(Kriging)

Fatigue life
(MCS)

Relative
error

0.5 10049.8(h) 10023.4(h) 0.26%

0.9 9719.1(h) 9775.6(h) 0.58%

0.99 9482.2(h) 9554.5(h) 0.76%

ABAQUS-MATLAB Platform

Input
parameters

Output
response

Python

MATLAB ABAQUS

*.inp
file

*.odb
file

Figure 15: System structure diagram.
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its good at processing matrices and vectors. The fatigue
reliability analysis of turbine blade and test probe indicates
that fatigue reliability analysis is a complicated but rela-
tively fixed process. Therefore, we develop a fatigue life
reliability analysis system based on ABAQUS-MATLAB
platform for aero-engine turbine blade and test probe.
The developed system can be operated conveniently and
quickly, and its results are believable and accuracy.

4.1. Structure of Fatigue Reliability System. The ABAQUS-
MATLAB platform needs Python as a bridge. The information
between ABAQUS and MATLAB include the input parame-
ters (such as E and ρ) and output response (such as σ and ε
). And Python is used to make preprocessing and postproces-
sing of ABAQUS, i.e., import the ∗.inp file and export the ∗

.odb result file. The structure of ABAQUS-MATLAB platform
is shown in Figure 15.

Fatigue reliabilty analysis
system for typical components

of aero-engine

Fatigue life
perdication

Fatigue
reliability

Vibration
characteristic

Modal
analysis

Campbell
diagram/Mode

shape

High cycle
damage mode

High-low
cycle

damage mode

Probability
distribution

Reliability of
fatigue life

Low cycle
damage mode

Key components of
aero-engine

Material
properties

Structural
load

ABAQUS FEM

Figure 16: System operation flowchart.

(a) (b)

(c)

Figure 17: System interfaces.
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ABAQUS-MATLAB platform is associated with the fol-
lowing four technical points:

(1) Generate the basic ∗.inp file of ABAQUS

The operation commands of ABAQUS for preprocessing
modeling will be recorded in abaqus.rpy file, which is a
script in Python language format. And the input file can be
edited and submitted to ABAQUS by Python.

(2) Automatically rewrite input file by MATLAB

Set keywords and the positions in advance. MATLAB
imports the input parameter sample and calls the Python
code to rewrite the abaqus.rpy. Name the rewritten script file
abaqus.py, which is convenient for automatic repeat calls.

(3) Call ABAQUS for FEM by MATLAB

Use the system() function in MATLAB, and run the fol-
lowing code:

system(‘abaqus cae noGUI=abaqus.py’)
Note that ABAQUS should be called asynchronously.

(4) Read the result file and import to MATLAB

Take the output of the maximum principal strain in
ABAQUS result ∗.odb file as an example, run the following
Python code:

session.writeFieldReport(.
fileName= ‘temp.txt’,
outputPosition = INTEGRATION_POINT,
variable = ((‘LE’,INTEGRATION_POINT, ((INVARI-

ANT, ‘Max. Principal’),)),))
“Variable” is the type of the extracted variable, and “out-

put Position” is the output position of the variable. Then
import the maximum principal strain value to MATLAB
and save it for statistical analysis.

4.2. Operation Flow of Fatigue Reliability Analysis System.
The system includes the parametric finite element modeling,

Material properties Load

Fatigue reliability Fatigue life prediction Vibration

Figure 18: The analysis process for turbine blade.

Material properties Load

Fatigue reliability Fatigue life prediction Vibration

Figure 19: The analysis process for test probe.
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finite element analysis of vibration characteristics, life pre-
diction, and fatigue life reliability analysis for the aero-
engine turbine blade and test probe. The system running
flowchart is shown in Figure 16.

The main interface of the system is shown in
Figure 17(a). Click the button to open the interfaces of blade
and probe (in Figures 17(b) and 17(c), respectively).

There are analysis processes arranged in the interface
Figures 17(b) and 17(c). Click the buttons in turn, import
or input the required information in the corresponding
interface, and finally obtain the prediction fatigue life and
fatigue reliability results of blade and probe, shown in
Figures 18 and 19.

It can be seen that the developed system has simple oper-
ation and strong practicability. The system can also be used
for the analysis of aero-engine casing, turbine shaft, and
other key components.

5. Conclusions

Turbine blade and test probe are key components of aero-
engine, and their fatigue life and reliability are related to
the economy and safety of the aircraft. Based on the ABA-
QUS finite element analysis model, using the Miner’s linear
fatigue damage accumulation theory, combined with the S-N
curve of materials and performance parameters, the fatigue
reliability analysis of aero-engine’s key components has been
realized and programmed. The fatigue reliability analysis
system is developed based on the ABAQUS-MATLAB plat-
form. The system includes four modules: parametric finite
element modeling, finite element vibration characteristics
analysis, fatigue life prediction, and fatigue life reliability
analysis. Under different reliability requirements, the fatigue
life prediction results between Kriging model and MCS are
consistent, which meets the analysis accuracy requirement.
And Kriging can significantly reduce the calculation time.
This system provides a more convenient way for the fatigue
life reliability analysis of key aero-engine components, which
can meet actual engineering requirements and accelerate the
design speed of aero-engine’s key components. In addition,
the designed system reserves interfaces for embedding other
component analysis modules and reliability analysis
methods.

Data Availability

The simulation data used to support the results of this study
are included in this paper.
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