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Hazardous weather has become a major cause of flight delays in recent years. With the development of satellite navigation
systems, the study of flight-path optimization under hazardous weather conditions has become especially important. In this
study, radar data were used as the basis for the initial flight-restricted area under hazardous weather conditions, and the
Graham algorithm was used to delineate the dynamic flight-restricted area by comprehensively considering the hazardous
weather boundary changes along with the speed and direction. Then, under the grid environment model, the range of
influence, size, and distribution characteristics of the flight-restricted area was examined, and the path optimization model was
created according to constraints related to the path distance, corner size, and number of turning points. An improved F-RRT∗

algorithm was developed to solve the model. The algorithm can overcome the problems of traditional path planning
algorithms, such as strong randomness, poor guidance, slow convergence speed, unsmooth paths, and poor tracing
smoothness. Finally, a simulation analysis was conducted on the Guiyang–Guangzhou route in China as an example. This
study can address the drawbacks of existing research on route change and provide sufficient theoretical support and reference
for the implementation of specific route change plans in the future.

1. Introduction

Hazardous weather, which primarily refers to small and
medium-scale weather elements such as thunderstorms,
squall lines, icing, and wind shear [1], has become a major
threat to air transport safety and causes flight delays. In
recent years, it has accounted for approximately 50% of the
total flight accidents. It is necessary to identify hazardous
weather accurately and provide the best route during aircraft
operation, which is of great significance to ensure the safety
of aircraft navigation [2].

At present, diversion models are generally used to deter-
mine the optimal route under hazardous weather, and
several studies have been reported. Ahlstrom and Jaggard
evaluated the implications of hazardous weather on flight
operations and proposed a method to identify dangerous
weather during flight [3]. Liu et al. comprehensively studied
hazardous weather, FFA, aircraft, and the flight coordination
of aircraft and established an aircraft diversion decision
model in extreme weather [4]. Chen et al. studied the cover-

age path planning problem of autonomous heterogeneous
unmanned aerial vehicles (UAVs) over a limited number
of areas and realized a flight path covering all the areas of
interest [5]. Ding and Sui comprehensively analyzed the dam-
age of route-based systems on meteorological data, identified
the flight segments that pilots should avoid in route selection,
and then used an A∗ algorithm to divert the route [6].
Minyang et al., to solve the path planning problem of multi-
degree-of-freedom robots in complex environments, proposed
an RRT∗ algorithm that can address the frequent demand for
UAVs [7]. Song et al. introduced several representative
methods of path planning in the field of UAVs and provided
several parameters for the 3D flight path planning of UAVs
[8]. Chen et al. focused on the coverage path planning prob-
lem of heterogeneous UAVs and proposed an ant-colony-sys-
tem-based algorithm to select appropriate UAV paths and
effectively cover all areas [9].

However, most current studies focus on the diversion of
UAVs [10] and a few on the diversion of flights in hazardous
weather, as found that most researchers focused on the route
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planning of flight diversions [11] with not fully consider the
implications of dangerous weather levels and movement
trends on the routes. To address these limitations, this study
delineates and predicts dangerous weather areas, utilizes
these areas as constraints, evaluates other limiting factors
such as aircraft performance and flight safety, and estab-
lishes a diversion path. Further, a mathematical model of
route planning is realized. In addition, this study proposes
an improved F-RRT∗ algorithm based on the goal-biased
strategy [12]. Most researchers used traditional path plan-
ning algorithms, such as A∗ [13], genetic [14], simulated
annealing [15], and ant colony optimization algorithms, to
realize flight diversion models [16]. However, the computa-
tional complexity of these algorithms is exponentially related
to the degrees of freedom of the aircraft. Therefore, based on
a previous study [17], this study proposes an improved F-
RRT∗ algorithm based on a target bias strategy combined
with the angle limit. It has demonstrated the ability to deter-
mine safe trajectories between two states in high-
dimensional problems using system dynamics and
constraints. Unlike other algorithms, the RRT∗ algorithm
does not require an initial guess because it can determine a
feasible path in a few iterations and then optimize the path
in subsequent steps [18]. Initially, the traditional RRT∗ algo-
rithm was used for robot path planning. Recently, it has been
employed to study UAVs [19]. However, it has not been
successfully applied for flight path planning. To address this
limitation, this study modifies an RRT∗ algorithm according
to the characteristics of the flight and obtains an F-RRT∗

algorithm, which is suitable for flight path optimization.
This approach solves the problems of strong randomness,
poor guidance, slow convergence, tortuous paths, and the
poor tracking smoothness of traditional path planning algo-
rithms [20]. It can more effectively solve the problem of
flight path planning in dangerous weather.

2. Delineation of Flight-Restricted Areas in
Hazardous Weather

Hazardous weather during flights mainly refers to hail,
heavy rain, and thunderstorms. These hazardous weather
conditions have adverse effects on flight safety and normal
operation of the airspace system [21]. Reasonable and accu-
rate delineation of the flight-restricted area is essential to
reduce these adverse effects. In this study, we mainly used
the monitored radar echo data to filter and divide the data
in order to determine the initial range of the flight-
restricted area [22]. The Graham algorithm was then used
for the dynamic prediction of the flight-restricted area.

2.1. Initial Designation of Flight-Restricted Area in
Hazardous Weather. In this study, the flight-restricted area
was determined based on the radar echo map. First, the area
of radar weather echo intensity ≥ 41 dBZ was determined as
the dangerous flight area according to the characteristics of
heavy rainfall [23]. Then, image processing techniques were
used to identify the hazardous weather areas in grayscale.
Finally, the outline of the flight-restricted area was circled

using convex polygons. The steps to delineate the flight-
restricted area are as follows.

(1) Obtain the relevant hazardous weather data, extract
the areas with radar weather echo intensity ≥ 41 dBZ,
and calculate the radar reflectance. Each radar reflec-
tance corresponds to an RGB color value, and the
area constituted by the pixel points combining these
color values is the hazardous weather area

(2) Binarize the images of severe weather areas, thus
highlighting them and making the background
grayer

(3) Delineate the initial outline of the severe weather
area. The binary image obtained in the second step
is further recognized to improve the rough outline
of the severe weather area

(4) Approximate the contour lines using irregular poly-
gons. In this step, the resulting contour set is approx-
imated using irregular polygons of a given accuracy,
and a simple polygonal contour set is created after
approximation

(5) Create a convex polygon. The convex packets of each
simple polygon are located; the area enclosed by these
convex polygons is the flight-restricted area. Subse-
quently, the delineated danger zone is processed

(a) Denoising process: according to the flight per-
formance database, a danger zone of less than
seven miles can be neglected when the aircraft
is flying at a speed of no greater than 420 kt

(b) Combined processing: according to civil aviation
regulations, the minimum separation between
clouds should be at least 20km for the aircraft to
pass through them; clouds that do not meet the
above condition are considered as a whole [24]

2.2. Dynamic Prediction of Flight-Restricted Area in
Hazardous Weather. To perform the dynamic prediction of
the flight-restricted area under hazardous weather, we first
need to determine the initial convex polygon formed by
the hazardous weather boundary area. Then, we introduce
the gray prediction model, combine the data before the
hazardous weather boundary point, and use the Graham
algorithm to dynamically predict the changes in the hazard-
ous weather boundary point within a short period of time in
the future. Finally, the predicted area is extended outward by
25 km to determine the extent of the flight-restricted area at
a certain time in the future.

The algorithm first scans the planar point set to find the
extreme points in the leftmost, rightmost, topmost, and
bottommost directions to construct an initial convex packet
and delete all the points inside the initial convex packet. Then,
it groups the remaining point sets and generates a new convex
packet for each group by using theGraham algorithm. Finally,
the vertices of all subsets of the convex packets are considered
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as a new point set, and the Graham algorithm is applied again
to generate the final convex packet.

Based on the above analysis, the Graham algorithm is
divided into the following three steps. (1) The individual
reference points on the graph are determined. (2) The polar
angles are extended outward from each reference point, and
the resulting polar angles are sorted to form a simple poly-
gon. (3) The concave points on the simple polygon are
removed, and the individual convex points are then joined
to form a convex polygon. The time complexity of the
convex packet algorithm is largely determined by that of
the sorting algorithm. Because the time complexity of (1)
and (3) is OðnÞ, that of (2) is Oðn log nÞ. Therefore, the
total time complexity is Oðn log nÞ. At this point, the
speed of computing the convex packets is relatively slow.
Therefore, if the time complexity of the sorting algorithm
can be reduced, the speed of computing the convex
packets can be improved significantly [25]. The process
is illustrated in Figure 1 below.

2.3. Movement Prediction Model of Flight-Restricted Area.
Previous studies proposed dynamic predictions for light-
prohibited areas under the assumption that the moving
speed and direction of extreme weather are known. How-
ever, in practical applications, these parameters cannot easily
be determined. Moreover, the relationship between the
movement of a flight-restricted area along the x and y direc-
tions and time can be studied based only on the constantly
updated meteorological radar data. Subsequently, the move-
ment prediction model of this area can be established.

As the update frequency of meteorological radar data used
in this study is 5min, the starting time tn of the forecast is
used as the benchmark. By converting the forecast time tiði
= 1, 2, 3,⋯Þ into the forecast time slice TiðTi = 1, 2, 3,⋯Þ,
the conversion formula can be expressed as

Ti =
ti − tnð Þ
5

� �
: ð1Þ

2.3.1. Prediction Model of Uniform Movement. The motion of
a thunderstorm can be modeled as a uniform motion along a
certain direction in a short time as its component speeds along
the x and y directions are unchanged. Therefore, the centroid
positions of a thunderstorm, xi and yi, correspond to n histor-
ical time slices TiðTi = 1, 2, 3,⋯Þ. Using the relationships
among the speed, distance, and time, the moving speeds vx
and vy along the x and y directions, respectively, are obtained
as follows:

vx =
∑n−1

i=0 xi+1 − xið Þ
n − 1

,

vy =
∑n−1

i=0 yi+1 − yið Þ
n − 1

:

ð2Þ

According to the moving speeds, vx and vy, and the thun-
derstorm positions, xn and yn, corresponding to the n time
slices Tn, we can predict the position of the thunderstorm after
iði = 1, 2, 3,⋯nÞ time slices as follows:

xn+i = xn + vx ∗ i,

yn+i = yn + vy ∗ i:
ð3Þ

2.3.2. Prediction Model of Uniform Speed Movement. In Sec-
tion 2.3.1, the thunderstorm motion is regarded as a uniform
motion. However, in summer, thunderstorms exhibit uniform
acceleration or uniform deceleration during the development
and dissipation phases. Therefore, according to the centroid
positions of the thunderstorm, xi and yi, corresponding to n
historical time slices TiðTi = 1, 2, 3,⋯nÞ and using the rela-
tionship between acceleration, speed, and time, the accelera-
tions ax and ay along the x and y directions, respectively, are
obtained as follows:

ax =
∑n−2

i=0 xi+2 − xi+1ð Þ − xi+1 − xið Þf g
n − 2

, ð4Þ

ay =
∑n−2

i=0 yi+2 − yi+1ð Þ − yi+1 − yið Þf g
n − 2

: ð5Þ

In Equations (4) and (5), ðxi+2 − xi+1Þ − ðxi+1 − xiÞ and
ðyi+2 − yi+1Þ − ðyi+1 − yiÞ represent the velocity change rates
of two adjacent time slices. By calculating the average accel-
erations ax and ay and using the thunderstorm positions xn
and yn corresponding to the time slice Tn, the position of
the thunderstorm after iði = 1, 2, 3,⋯nÞ time slices can be
expressed as follows:

xn+i = xn + xn − xn−1ð Þ ∗ i +
1
2
axi

2,

yn+i = yn + yn − yn−1ð Þ ∗ i +
1
2
ayi

2:

ð6Þ

3. Multiobjective Redirected Path
Optimization Model

3.1. Three Types of Flight-Restricted Areas. Considering the
shape, size, and distribution characteristics of the flight-
restricted areas, this study classified them into three main
categories—block-shaped, strip-shaped, and scattered. A
block-shaped flight-restricted area is a convex polygon with
the horizontal scale of the flight-restricted area usually larger
than 100 × 100 km2; the affected flight area is usually large
[26]. Both dynamic flight-restricted areas caused by block
clouds and those formed over a period of time are catego-
rized as block-shaped flight-restricted areas.

There are generally two types of strip-shaped flight-
restricted areas. The first is a single-strip flight-restricted
area with a long and narrow convex polygon. The second
is a series of small, banded flight-restricted areas with long
and narrow strips distributed along both sides of the route.
The strip-shaped flight restriction zone covers almost 2–3
points. The ratio between the long and short sides of the
outer rectangle is greater than two.

Scattered flight-restricted areas refer to multiple small-
scale flight-restricted areas along the route on both sides of
the arbitrary distribution, which have the characteristics of
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small scale, large number, and small impact range. The main
difference between the scattered and block-shaped flight-
restricted areas is that the latter is limited to a single flight-
restricted area, whereas the former consists of multiple
flight-restricted areas. The geometric scale of the latter is
much smaller than that of the former. Unlike the strip-
shaped distributed flight-restricted area, the scattered
flight-restricted area is distributed among a small number
of route points. The strip distribution is not obvious.
Moreover, the distribution is irregular, and the scale of
the flight-restricted area is small [27]. The distribution of
banded flight-restricted areas covers almost the entire
route, involving at least five waypoints with distinct band-
ing characteristics. The dynamic flight-restricted areas
caused by the scattered small-scale clouds and the flight-
restricted areas formed during the fixed period belong to
this category. The distribution of the scattered flight-
restricted areas has no specific pattern, and the number
of restricted areas may be large or small. Therefore, the
grid approach has advantages of simplicity, intuitiveness,
and ease of implementation.

(Abridged here)

3.2. Description of Related Concepts

3.2.1. Turning Points of the Change of Course. The number
of path-optimized turning points determines the workload
of the controllers and pilots when performing path planning.
The number of turning points for redirecting an aircraft in
clear weather is usually 2–4, and the maximum number of
turns for an aircraft in hazardous weather is 7–8.

3.2.2. Turning Angle of the Aircraft. The turning angle of an
aircraft is the amount of constant change in its heading
during flight. As shown in Figure 2, θ indicates the angular

magnitude of the turn. When radar control is used, the air-
craft’s turn angle usually does not exceed 60°. The turning
angle when flying in restricted areas under hazardous
weather conditions usually does not exceed 90°.

3.2.3. Segment Distance. The segment distance is the
straight-line distance between two turning points. This
distance should be long enough to ensure that an aircraft
completes a turn smoothly [28]. Therefore, for a normal
flight, the distance between two turning points must exceed
7:4 km, and the turning radius must exceed 3:7 km.

3.3. Modification of Navigation Model and Algorithm. This
study focused on the path optimization of a single flight;
therefore, in addition to avoiding the flight-restricted area,
other factors such as path length, magnitude of turning
angle, and number of turns [29] should be considered
during the actual modeling process. Under actual circum-
stances, the turning angle of the flight around the flight-
restricted area should not exceed the maximum angle
allowed for the aircraft performance, and the turn radius
should not be lower than the minimum radius of turn of
the aircraft. In the path optimization process, the number
of turns should be minimized to avoid aircraft congestion
[30]. Therefore, this model adopts the shortest path, mini-
mum turn angle, and minimum number of turns as the
objectives, considering the above factors. Simultaneously,
to achieve a unified metric for the mathematical modeling
of multiple objectives, it was decided to perform dimension-
less processing of multiple metrics. The model built based on
the above requirements is as follows:

Objective function was as follows:

min C = ω1Cl + ω2Ct + ω3Ca, ð7Þ

Calculate the angle between the line between p1 and the 
remaining points p and the horizontal line, and sort by the

angle; if the angles are the same, sort by the distance. 

P4

P1

P5

P6P7P8

P9P10

P4 P3

P2

P3

P1

P5

P3

P2P10

P8

P1

P2

P2

P9

P8

P7 P6
P5

Connect the sorted vertices in sequence to form an irregular
polygon.

Loop through the non-convex vertices p4, p6, p7, p9
to get the convex packet vertices p1, p2, p3, p5, p8
and p10, and connect all convex packet vertices.

Figure 1: Construction of a convex packet using the Graham algorithm.
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Cl = 1 −
d ps,pD
� �

d ps,pl
� �

+∑Nr
i=1d pi,pi+1

� �
+ d pNr ,pD

� � , ð8Þ

Ct =
Nt

Nmax
, ð9Þ

Ca =
∑Nr

i=1cosθ
Nt

: ð10Þ

Binding conditions were as follows:

ω1 + ω2 + ω3 = 1, ð11Þ

ω1 ≥ 0, ω2 ≥ 0, ω3 ≥ 0, ð12Þ
D pi,pi+1ð ÞFi

≥Dmin∀i = 1⋯Nt , j = 1⋯ n, ð13Þ

d pi,pi+1
� �

≥ dmin∀i = 1⋯Nt , ð14Þ
θ < θmax, ð15Þ

Nt ≤Nmax: ð16Þ
Here are the following definition of parameters:
Cl, Ct , Ca: path length cost, corner number cost, and

turning angle change cost
ω1, ω2, ω3: path length cost weighting, corner number

cost weighting, and turning angle change cost weighting
Ps, Pi, PD: path starting point, turning point, and path

ending point in the path optimization process
Dðpi,pi+1ÞFi : minimum straight-line distance of the path

between two turning points from the flight-restricted area
dðps,pDÞ: initial distance between the starting and ending

points of the change of course
dðpi,pi+1Þ: straight-line distance between two turning

points
Dmin: minimum distance to deviate from the restricted

area, usually 10 km
dmin: shortest distance allowed between two turning

points, usually 7:4 km
Nt : actual number of corners
Nmax: maximum number of corners allowed
θ: corner size
θmax: maximum turning angle allowed
Fi: i-th flight-restricted area
According to the above formula of the objective func-

tion, the best path can be obtained when the minimum value
of the objective function is considered [31]. Equations

(7)–(10) normalize the costs for covering the segment dis-
tance, given number of turns, and angle change, and ensure
that the smaller the value of Cl, the shorter is the path length
after path optimization; the smaller the value of Ct , the smaller
is the number of turns, and the smaller the value of Ca, the
smaller is the angle change. Equation Equation (11) ensures
that the sum of the weight coefficients is 1 and positive;
Equation (12) ensures the safety of path optimization, and
Equations (13)–(16) limit the segment distance, maximum
turning angle, and number of turning points.

4. Model Solution Using Algorithm for
Change of Navigation

4.1. RRT∗ Algorithm. Traditional path planning algorithms
such as A∗, shortest path, and genetic algorithms, which
require modeling the obstacles in a defined space, are not suit-
able for solving the path planning of a multidegree-of-freedom
aircraft in a complex environment [31]. The fast extended ran-
dom tree algorithm, that is, the RRT∗ algorithm, can solve
path planning problems in high-dimensional spaces and
under complex constraints by performing collision detection
on sampled points in the state space. The intention is to gen-
erate random points and then search for a step forward from
the starting point to the target point. In this manner, it can
effectively avoid obstacles, prevent the path from falling into
the local minima, and converge faster [32].

According to Figure 3, the steps of the RRT∗ algorithm
are as follows.

Initialize the random tree, adding nodes starting with an
arbitrary random tree with only Qinit.

(1) Execute the sample function to obtain a random
point Qnearest in the map

Iterate through all the nodes in the tree and find the
point Qnearest with the least cost to reach Qrand.

(2) Execute the extend function to obtain the extension
point Qnew of the specified length in the direction
of Qnearest to Q rand and perform collision detec-
tion on Qnew. If false, Qnearest is designated as the
parent node of Qnew, and the line connecting the
two points is drawn

(3) Determine whether Qnew has reached the specified
target range, if it has, end the loop; otherwise, con-
tinue to execute the loop until the target point Q
rand is found

(4) To increase the practicality of the algorithm, a run-
ning time limit and a limit on the number of nodes
searched are added to the above process. In other
words, the algorithm is judged to have failed after
searching for a finite number of nodes within the
specified time and not finding the target point

4.2. Improved F-RRT∗ Algorithm. To solve the problems of
strong randomness, poor orientation, slow convergence
speed, and poor smoothness of path twisting and tracing

𝜃 (–15° ≤ 𝜃 ≤ 15°)

Figure 2: Turning angle of the aircraft.
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of the traditional rapidly exploring random tree∗ algorithm,
an improved RRT∗ algorithm based on a target-biasing
strategy combined with angle restriction is proposed—the
F − RRT∗ algorithm.

First, a target bias threshold is set based on the tradi-
tional RRT∗ algorithm, and the randomness of tree growth
is reduced by expanding the internal nodes of the tree
through the target bias strategy [33]. Simultaneously, a local
expansion mechanism is introduced to avoid the local opti-
mum problem caused by changing the sampling structure.
Then, a bidirectional tree growth strategy is used to improve
the convergence speed of the algorithm. Finally, redundant
nodes are removed, and cubic spline interpolation is used
to increase the smoothness of the path.

4.2.1. Extended Step. In the RRT∗ algorithm, Qinit is
extended to Qnearest by a step to obtain the sampling point
Qnew, expressed as

Qnew =Qinit + φ
Qnearest −Qinit
L Qinit,Qnearestð Þ , ð17Þ

where φ is the extended step size, and LðQinit,QnearestÞ is
the Euclidean distance between the points Qinit and
Qnearest.

4.2.2. Target Bias Strategy. The traditional RRT∗ algorithm
has a large range of sampling points and is prone to ran-
domness; therefore, the algorithm search time is longer
[34]. By adopting the target bias strategy, the target points
are used as sampling points for random tree expansion
with a certain probability P, which reduces the number
of sampling points and accelerates the efficiency of the
random tree expansion [35].

4.2.3. Metric Function. The objective of the metric function
is to find the point closest to the selected point Qinit in the
randomly expanded tree, namely, Qnearest. In the tradi-
tional RRT∗ algorithm, the metric function of the Euclidean
distance is used [36]. The improved F-RRT∗ algorithm
introduces an angle constraint while considering two-point
spacing, which makes the entire path smoother.

The distance and angle are unified such that Ld represents
the distance function, andMθ represents the declination func-

tion after planning. The node that minimizes the function M
ðxi, xjÞ is near the node formed in the search extension tree,
which can be used as Qnew, as shown in Figure 4.

Ld =
dmax − d
dmax

,

Mθ =
θmax − θ

θmax
,

L i, jð Þ = xj − xi
�� ��,

θ i, jð Þ = θj − θi
�� ��,

M xi, xj
� �

= LdL i, jð Þ +Mθθ i, jð Þ,

ð18Þ

where the coordinates of the point Qinit are ðxi, yiÞ, and those
of Qnearest are ðxj, yjÞ; dmax and θmax are the maximum
distance and maximum angle of the search, respectively.

4.2.4. Path Pruning and Smoothing. The sampling points of
the traditional RRT algorithm are highly random, and the gen-
erated paths often have numerous redundant nodes [37]. The
efficiency in complex environments with many obstacles is
low, making path pruning an essential step. The newly gener-
ated path nodes are filtered based on the traditional paths to
remove redundant nodes, and the pruned paths are then
simplified using a greedy algorithm [38].

The specific pruning steps are as follows:
Begin from the starting point Qinit and find all its Q

nearest nodes. If the connection between Qinit and one of
its Qnearest nodes does not contain obstacles, the Qnearest
node is taken as the new node Qnew, and all other Q
nearest nodes are deleted. Conversely, if the connection
between Qinit and one of its Qnearest nodes encounters
obstacles, then the above process is repeated starting from
the parent node of the point Qinit.

(1) Find the connection between Qinit and the next Q
nearest node until the Q rand node is added to the
new path. Finally, the identified nodes are connected
by a smooth curve [39]

The K-times B-spline curve equation is as follows:

P uð Þ = 〠
n

i=o
Bi,k uð ÞPi i = 1, 2⋯ nð Þ, ð19Þ

Qinit
Qnearest

Qnew

Qrand

Figure 3: Expansion diagram of the RRT∗ algorithm.

Qinit
Qnearest

Qnew

Qrand

𝜃

Figure 4: Extended diagram of the F-RRT∗ algorithm.
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where Pi is the node of the curve control, Bi,kðuÞ is the K
-times B-spline basis function, and the node vector u = ½u0,
u1,⋯,un+k+1� determines the K-times segmented curve [40].

The basis functions of the triple B-spline curve are
as follows:

b0 =
1
6

−u3 + 3u2 − 3u + 1
� �

,

b1 =
1
6

3u3 − 6u2 + 4
� �

,

b2 =
1
6

−3u3 + 6u2 + 3u + 1
� �

,

b3 =
1
6
u3:

ð20Þ

4.3. Steps to Improve the RRT∗ Algorithm. The main
difference between the improved RRT∗ algorithm and
RRT∗ algorithm is that the former has two additional
recomputation processes for the new node Qnew, which
are as follows:

(1) The process of reselecting the parent node for Qnew
contains an additional reselection process

(2) An additional rewiring random tree process

Beginning from the starting point Qinit, we search for
the “nearest neighbors” in the selected range; that is, we
search for the suitable Qnearest node among all the Q
nearest nodes from Qinit as an alternative to the parent node
Qnew. The distance from the starting point Qinit to the
nearest Qnearest node and the distance from the nearest Q
nearest node to the parent node Qnew are calculated [41].
The specific steps are illustrated in Figure 5. Figure 5(a)
shows the expansion process of the random tree at a certain
moment, where node 0 represents the starting point Qinit,
node 9 is the newly generated node Qnearest, node 6 is the
parent node Qnew of node 9, and the generated path
sequence number is 0-4-6-9 with a distance cost of 10 + 5
+ 1 = 16. Figure 5(b) shows the process of identifying the
parent node once again based on Figure 5(a). The newly
generated Qnearest node, that is, node 9, is considered as
the center, and its “near neighbors” are detected within the
selected range [42], that is, nodes 5, 6, and 8; they are Q
nearest composed of paths 0-1-5-9, 0-4-6-9, and 0-1-5-8-9,
and the distances are 3 + 5 + 3 = 11, 10 + 5 + 1 = 16, and 3
+ 5 + 1 + 3 = 12, respectively. It can be seen that node 5 is
the closest to node 9; therefore, the parent node of node 9
is changed from the original node 6 to node 5, and the
results are shown in Figure 5(b).

After reselecting the parent node, the rewiring process is
performed on the random tree to further reduce the distance
cost of the random extended tree [43]. The specific steps are
illustrated in Figure 6. Figure 6(a) shows the rewiring pro-
cess of the random tree at a certain moment, where node 0
is the starting point Qinit and node 9 is the Qnew node; that
is, node 9 is the center, and its “nearest neighbors” are found
in the selected range, which are nodes 5, 6, and 8. The dis-

tances from the starting point to each “nearest neighbor”
node are 8, 15, and 9, respectively. Figure 6(b) shows the
rewiring process based on Figure 6(a). Suppose that the
parent node of node 5 is not node 1 but node 9, and
the path is 0-4-9-5 with distance 17, which is greater than
the original path distance 8, then the parent node of node
5 is not changed. Similarly, find the new parent node of
node 6. Assuming that it is node 9 with path 0-1-5-9-6
and distance 12, which is less than the original path dis-
tance of 15, the parent node of node 6 is changed from
node 4 to node 9. Finally, we find the new parent node
of node 8. Assuming it is node 9, the path is 0-1-5-9-8,
and the distance is 14, which is greater than the original
path distance 9; therefore, the parent node of node 8 is
not changed [44]. In summary, only the parent node of
node 6 must be changed, and the newly generated paths
are shown in Figure 6(b). From the above, it can be seen
that the significance of rewiring is to reduce the distance
cost of some newly generated node paths, thus reducing
the distance of the entire optimized path.

The core steps of the improved RRT∗ algorithm lie in the
above two processes, by which the redundant paths can be
reduced and optimal paths can be found.

5. Simulation Verification

Southern China is a thunderstorm-prone region. Hence,
this study considered the typical route of Guiyang–
Guangzhou in China as an example and studied the
delineation of the flight-restricted area and optimization
of the route affected by thunderstorms and traffic disrup-
tion. The Guiyang–Guangzhou route comprises the route
points Guiyang–Guilin–Gaoyao–Pingzhou–Guangzhou, as
shown in Figure 7.

5.1. Flight-Restricted Area at the Start of the Change of Flight.
Through meteorological satellite and Doppler meteorolog-
ical radar observation images, the Chinese aviation meteo-
rological department observed a band of thunderstorm
clouds in the Guiyang–Guilin flight segment and some
thunderstorm clouds in the Guilin–Gaoyao flight segment.
According to the method introduced in Section 1, the ini-
tial flight-restricted area is set up; the area has a radar
echo ≥ 41dBZ at a certain time t, as shown in Figure 8
[45]. To facilitate the analysis, the flight restricted area
obtained following the processing in Figure 8 is analyzed
separately in Figure 9. To simplify the graphical represen-
tation, Guiyang is denoted as A, Guilin as B, Gaoyao as C,
Pingzhou as D, and Guangzhou as E in Figure 9. The
boundary points are s1 – s10, with the location of Guiyang
Airport in China as the origin, magnetic north as the positive
direction of the y-axis, and magnetic west as the positive
direction of the x-axis [46]. The coordinates of Guiyang,
Guilin, and Gaoyao in this map are (0, 0), (152.50, −53.26),
and (394.30, −256.72), respectively. The coordinates of S1–
S10 are (213.64, −24.78), (265.64, −153.32), (299.64,
−97.82), (304.14, −219.32), (249.64, −182.82), (202.14,
−187.20), (174.14, −5.32), (174.14, −32.82), (97.26, −34.14),
and (97.26, −6.33), respectively. The lumpy thunderstorm
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cloud AFFA was observed to be moving in the direction of
40° east of north; the rates of movement were v1 = 40 km/h
and v2 = 10 km/h, and the safety margin was L1 = 25 km;
the expansion speed of the thunderstorm boundary point
was Vs2 = 20 km/h [47]. The direction of movement of the
banded thunderstorm cloud BFFA was 20° south by west;
the rates of movement were v3 = 30 km/h and v4 = 10 km/h,
and the safety margin was L2 = 25 km; the expansion speed
of the thunderstorm boundary point was Vs1 = 20 km/h,
and the acceleration was a = 5 km/h2. The flight from Gui-
yang to Guangzhou was expected to start at a certain time
t [48], t0 = 0:5 h after arriving in Guilin. The cruising speed
was vs = 800 km/h.

Based on the initial flight-restricted area, the dynamic
flight-restricted areas AFFA2 and BFFA2 are determined
according to the prediction method introduced in Sec-
tions 2 and 2.1, as shown in Figure 10. Owing to the
uncertainty of the thunderstorm movement, the boundary
of the initial flight restricted area is shifted outward by
25 km [49]. Then, it is expanded outward with a speed
v = 20 km/h and an acceleration a = 3 km/h using the uni-
form speed prediction method to obtain the finalized
dynamic flight-restricted areas AFFA2 and BFFA2. First,
the movement of the flight-restricted area was considered
according to the boundary point Si of the affected area
by using the Graham algorithm. The initial dynamic
flight-restricted areas AFFA1 and BFFA1 were determined
after an elapsed time t = 0:5 h, as shown in Figure 10.
Because of the uncertainty of the thunderstorm movement,
the flight-restricted area boundary was shifted outward by
25 km [49]. Considering the variation in the thunderstorm
boundary, the finalized dynamic flight-restricted areas
AFFA2 and BFFA2 were obtained by expanding outward
with velocity v = 20 km/h and acceleration a = 3 km/h2
[50]. The coordinates of the vertices are (210.44, −4.70),
(255.64, −53.32), (319.64, −96.82), (314.14, −239.32),
(233.64, −221.82), (197.14, −197.20), (144.14, 4.33),
(144.14, −42.82), (76.26, −42.82), and (76.26, 4.33) assum-
ing that the actual flight-restricted areas are AFFA2 and
BFFA2, as shown in Figure 11, and path planning is per-
formed based on them.
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Figure 5: Process of reselecting the parent node.
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Figure 6: Process of rewiring a random tree.

Figure 7: High-altitude aerial map of Guiyang–Guangzhou route
in China.
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The above figure depicts the delineation of the flight-
restricted area. The next step is to set the model parame-
ters and solve the model. First, we set up the simulation
environment with the location of Guiyang Airport in
China as the origin, magnetic south as the positive y-axis
direction, magnetic west as the positive x-axis direction,

starting point as [0,0], ending point as [860,480], and
extended step as 20m; the standard deviation σ = 5:6,
kp = 420000. The standard threshold of the path length
was 586m. The search was terminated when the number
of sampled nodes was greater than 18000 or the path
length was less than the standard threshold.
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The results obtained using the improved F-RRT∗ algo-
rithm based on the above parameters are shown in
Figure 12. From the following graphs, it can be seen that this
algorithm enables the flight to bypass the flight-restricted
area affected by dangerous weather more smoothly and finds
the least costly path more quickly when compared with the
other algorithms [51].

The paths obtained by the following four algorithms
were compared and analyzed in terms of the path planning

time, number of turning points, and path distance. The anal-
ysis results are shown in Figure 13. In terms of the path
planning time, the F-RRT∗ algorithm uses the shortest time
to identify a path. The effect is significant as the number of
sampling points increases. In terms of the number of turning
points, it can identify more valid nodes, whereas in terms of
the path distance, it also determines the shortest path. The
specific parameters are shown in Table 1. The simulation
results show that the F − RRT∗ algorithm has a shorter path
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planning time, fewer turning points, and shorter and
smoother paths than the other RRT∗ algorithms. It can be
better used for flight path planning.

6. Conclusion

This paper presented an in-depth study on the redirecting
strategy of flight paths under hazardous weather conditions.
An improved F-RRT∗ algorithm based on the target-biasing
strategy combined with angle restriction was proposed. The
traditional RRT∗ algorithm has been conventionally used for
robot path planning; it has never been used for flight-path
planning. In this study, we improved the traditional RRT∗

algorithm based on the characteristics of flight and derived
an algorithm applicable to flight-path optimization, that is,
the F-RRT∗ algorithm.

The main aspects of this study and its findings are as
follows.

(1) The radar data for the Guiyang–Guangzhou route in
China were obtained, processed and filtered to deter-
mine the initial hazardous weather area on the route
based on the radar echo values. Then, the Graham
algorithm was proposed to predict the flight-
restricted area according to the boundary change of
hazardous weather to obtain the final flight-
restricted area on the route. The flight-restricted area
was divided into three categories based on its shape
and distribution characteristics: block-shaped, strip-
shaped, and scattered. The concepts related to
changes in flight were briefly explained

(2) Based on the above analysis, the model was con-
structed as a grid environment model with the flight
route distance, route turn size, and number of turning
points as the objectives, and the model was explained

(3) An improved F-RRT∗ algorithm based on a target-
biasing strategy combined with angle restriction
was proposed based on the flight characteristics. It
solved the problems of traditional path planning
algorithms, such as strong randomness, poor guid-
ance, slow convergence speed, poor path curvature,
and tracing smoothness

(4) The model obtained under this algorithm was simu-
lated and analyzed for the Guiyang–Guangzhou
route in China as an example. The obtained rerout-
ing paths were compared in terms of the path plan-
ning time, path distance, and number of turning

points. The simulation results showed that the F-
RRT∗ algorithm had shorter planning time, fewer
turning points, smaller turning angle, and smoother
path than the other RRT∗ algorithms. This method
is effective in reducing flight delays while ensuring
safety interval standards

Although the achievements of this study are significant,
several aspects can be further improved in future research,
for example, the establishment of a more detailed dynamic
environment model, improvement of the metric for bad
weather, and consideration of three-dimensional modeling
of the flight paths. It is also possible to conduct in-depth
research on multiflight and multiroute flight plans and
expand from diversion path planning for one route to that
for route networks.
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