
Research Article
Path Planning of Unmanned Helicopter in Complex Environment
Based on Heuristic Deep Q-Network

Jiangyi Yao ,1 Xiongwei Li ,1 Yang Zhang ,1 Jingyu Ji ,2 Yanchao Wang ,1

and Yicen Liu 3

1Equipment Simulation Training Center, Shijiazhuang Campus, Army Engineering University, Shijiazhuang, Hebei 050003, China
2Department of UAV Engineering, Shijiazhuang Campus, Army Engineering University, Shijiazhuang, Hebei 050003, China
3State Key Laboratory of Blind Signal Processing, Chengdu, Sichuan 610000, China

Correspondence should be addressed to Xiongwei Li; lxw-wys@163.com

Received 17 April 2022; Revised 26 May 2022; Accepted 15 June 2022; Published 28 June 2022

Academic Editor: Erkan Kayacan

Copyright © 2022 Jiangyi Yao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Unmanned helicopters (UH) can evade radar detection by flying at ultralow altitudes, so as to conduct raids on targets. Path
planning is one of the key technologies to realize UH’s autonomous completion of raid missions. Since the probability of UH
being detected by radar varies with height, how to accurately identify the radar coverage area to avoid crossing has become a
difficult problem in UH path planning. Aiming at this problem, a heuristic deep Q-network (H-DQN) algorithm is proposed.
First, as part of the comprehensive reward function, a heuristic reward function is designed. The function can generate
dynamic rewards in real time according to the environmental information, so as to guide the UH to move closer to the target
and at the same time promote the convergence of the algorithm. Second, in order to smooth the flight path, a smoothing
reward function is proposed. This function can evaluate the pros and cons of UH’s actions, so as to prompt UH to choose a
smoother path for flight. Finally, the heuristic reward function, the smooth reward function, the collision penalty, and the
completion reward are weighted and summed to obtain the heuristic comprehensive reward function. Simulation experiments
show that the H-DQN algorithm can help UH to effectively avoid the radar coverage area and successfully complete the raid
mission.

1. Introduction

Unmanned helicopter (UH) has the characteristics of strong
manoeuvrability and good concealment and can avoid radar
detection by flying at ultralow altitude. Therefore, UH is widely
used to raid important targets on the battlefield. Ordinary UH
still needs to be operated by rear personnel to complete a series
of tasks, which just transfers the operator from the front to the
background, and does not achieve true unmanned operation.
The intelligent UH should complete a series of tasks through
autonomous decision-making, so as to truly operate completely
autonomously without the control of personnel. To achieve this,
research related to real-time communication, resource alloca-
tion, and path planning needs to be paid more attention [1–3].

As one of the key technologies for unmanned systems to
achieve intelligence, path planning technology plays an impor-

tant role in improving the intelligence, safety, and adaptability
of UH [4]. UH needs to complete a series of decisions under
the guidance of the safe path to achieve autonomous move-
ment. Therefore, path planning technology is the basis for UH
to move towards the target. In order to ensure the safety of
the UHmovement process, the path planning needs to consider
a large number of constraints such as the battlefield environ-
ment and the manoeuvrability of the UH. Since many elements
in the battlefield environment will pose a serious threat to the
safe flight of the UH, the path planning of the UHwill face com-
plex constraints.

In recent years, researchers have proposed a series of solu-
tions to solve the path planning problem of unmanned aerial
vehicle (UAV). A new metaheuristic grey wolf optimizer
(GWO) was proposed to solve the UCAV two-dimensional
path planning problem in the literature [5], which fully consider

Hindawi
International Journal of Aerospace Engineering
Volume 2022, Article ID 1360956, 15 pages
https://doi.org/10.1155/2022/1360956

https://orcid.org/0000-0002-5144-2816
https://orcid.org/0000-0001-9920-3227
https://orcid.org/0000-0002-6442-5783
https://orcid.org/0000-0001-6806-7437
https://orcid.org/0000-0002-9125-8925
https://orcid.org/0000-0002-7720-6854
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1360956


the threats and constraints of the battlefield environment. In the
literature [6], an improved pigeon-inspired optimization algo-
rithm (PIOFOA) was proposed to solve problems about path
planning in a three-dimensional dynamic environment of oil-
fields. An improved constrained differential evolution (DE)
algorithm was proposed in the literature [7], which combines
DE algorithm with the level comparison method, to find the
optimal route in feasible regions. An adaptive selection
mutation-constrained differential evolution algorithm was pro-
posed in [8]. In this paper, UAV path planning was modelled as
the optimization problem, in which fitness functions include
traveling distance and risk of UAV; three constraints involve
the height of UAV, angle of UAV, and limited UAV slope.
On the one hand, the environmental threats in existing research
are usually static, and the threat area is completely impassable.
This constraint method reduces the difficulty of UAVs avoiding
dangerous areas to a certain extent. However, there are usually
many dynamically changing threat areas in the battlefield envi-
ronment, and it is difficult for the algorithms in the above stud-
ies to accurately identify and avoid these areas. On the other
hand, most of the above studies were conducted on general-
purpose UAV, and few studies were conducted on UH alone.
There is a big difference between UAV and UH in terms of
flight height and usage scenarios. First of all, UAVs usually con-
duct cruise operations at high altitudes of tens of thousands of
meters, while UHs usually operate at low altitudes of thousands
or even hundreds of meters. Secondly, UAV is usually used for
high-altitude reconnaissance, confrontation, and other tasks on
the battlefield, while UH is more used for low-altitude raid mis-
sions. Therefore, it is necessary to distinguish UH and UAV for
separate research. In summary, the existing path planning algo-
rithms cannot fully meet the path planning requirements of UH
in complex battlefield environments.

UH needs to fly in low airspace for a long time during the
raidmission, which will face ground obstacles and radar threats.
Ground obstacles such as mountains are usually stationary, and
it is not difficult to accurately identify and avoid them. Due to
factors such as terrain and the curvature of the earth, the prob-
ability of UH being detected by radar will vary with the flight
height, which means that it will face a dynamically changing
threat area for a long time. Traditional path planning algo-
rithms generate optimal paths based on real-time environmen-
tal information, which is effective in the face of static threat
areas. However, the security status of some locations within
the dynamic threat changes in real time, and some locations
are passable at one time and not at another. Therefore, the paths
planned by traditional path planning algorithms are not abso-
lutely safe in the face of dynamic threat areas. A good solution
to this problem is to accurately identify the dynamic threat area
and avoid it entirely. Deep Q-network (DQN) algorithm is the
product of the combination of neural network and Q-learning
algorithm. It can not only process large state space information
but also interact with the environment to seek optimal strategies
when the environment state is unknown. With appropriate
reward settings, the DQN algorithm can accurately identify
the dynamic threat area and avoid it by interacting with the
environment. Therefore, using the DQN algorithm for path
planning can help UH to effectively avoid dynamic threat areas
in the battlefield environment. This paper was aimed at provid-

ing an effective path planning method based on DQN algo-
rithm, which can help UH to effectively avoid the dynamically
changing radar coverage area and successfully complete the raid
task in complex environment.

Based on the above analysis, a heuristic deep Q-network
(H-DQN) algorithm is proposed in this paper. We study the
ability of the proposed algorithm to plan paths for UH in the
complex environment and try to make the planned paths
smoother, thereby reducing the manoeuvring consumption
of UH. Compared with traditional algorithms, the H-DQN
algorithm can effectively identify the dynamically changing
radar coverage area and help UH plan a safe and effective
flight path. The main contributions of this paper are as
follows:

(1) A heuristic comprehensive reward function is
designed, which mainly includes two parts: heuristic
reward function and smooth reward function. The
heuristic reward function can promote the rapid
convergence of the algorithm and effectively improve
the sparse reward problem faced by traditional rein-
forcement learning. The smooth reward function can
constrain the UH’s behaviour, prompting the UH to
choose a smoother path for flight, thereby reducing
flight consumption. The proposed heuristic compre-
hensive reward function integrates the information
of environmental constraints and motion con-
straints, which can effectively promote the conver-
gence speed of algorithm and further improve the
quality of planned path. It has certain versatility
and can be combined with other intelligent
algorithms

(2) We model the dynamic threat constraints faced by
UH in low-altitude raid missions and apply the pro-
posed H-DQN algorithm to UH path planning. The
modelling of dynamic constraints fully considers the
complexity of the battlefield environment, which can
reflect the difficult situations faced by UH in the
application of the battlefield. The proposed algo-
rithm embedded in the environment model for path
planning is described in detail, which provides a new
solution to the path planning problem

The rest of this paper is structured as follows. The related
works are presented in next section. In Section 3, numerical
analysis and modelling of the complex low airspace environ-
ment faced by UH are carried out. Section 4 introduces the
deep reinforcement learning methods. In Section 5, the
design of the comprehensive reward function and the pro-
posed H-DQN algorithm are explained in detail. In Section
6, the experimental results and comparative analysis are pre-
sented. The conclusions are presented in Section 7.

2. Related Works

Path planning technology usually refers to finding the optimal
path from the starting position to the target position according
to certain evaluation criteria under certain environmental

2 International Journal of Aerospace Engineering



constraints [9]. Path planning algorithms are usually divided
into global path planning algorithms and local path planning
algorithms [10]. Among them, the global path planning algo-
rithm requires that the environmental model is known, and
the algorithm can generate the global optimal path according
to the environmental constraints, and the representative one is
the A∗ algorithm [11]. The A∗ algorithm was used to compute
near-optimal paths in static and dynamic environments with
underwater obstacles in the literature [12], which completed
path replanning and obstacle avoidance for unmanned under-
water vehicles. By using a modified A∗method in the literature
[13], the global path planning problem of a robot was solved by
establishing an approximation to the optimal path. In the liter-
ature [14], the authors propose a novel decentralized coordina-
tion scheme for autonomous ground vehicles to enable map
building and path planning with a network of smart overhead
cameras, and the A∗ algorithm is used to calculate the path.
However, since the A∗ algorithm requires the environment
model to be fully known when performing path planning, its
scope of application is relatively limited.

The local path planning algorithm can make corre-
sponding decisions according to the local environment
information and explore the passable path when the global
information is unknown by interacting with the environ-
ment. The more representative algorithms include genetic
algorithm, dynamic window approach, ant colony algo-
rithm, particle swarm algorithm, and artificial potential field
method [15–20]. In the literature [15], the authors find the
optimal flight path for the UAV by using an improved
genetic algorithm with a new genetic factor on the basis of
the probability map. Aiming at the problem that the classical
DWA has an unreasonable path in dense obstacles and can-
not guarantee speed and safety at the same time, the litera-
ture [16] proposes an adaptive DWA algorithm, which is
successfully applied to the local path planning of the robot.
A heterogeneous UAV coverage path planning algorithm
based on ant colony algorithm is proposed in [17]; the
author applied ant colony algorithm to cooperative search
system to minimize the time consumption of the task. An
improved particle swarm algorithm was proposed to solve
the problem of path planning for an unmanned aerial vehi-
cle (UAV) in adversarial environments including radar-
guided surface-to-air missiles (SAMs) and unknown threats
in the literature [18]. In order to efficiently complete the
underwater information collection, a heterogeneous AUV-
aided information collection system with the aim of maxi-
mizing the energy efficiency of IoUT nodes taking into
account AUV trajectory, resource allocation, and the Age
of Information (AoI) was proposed in the literature [19].
Particle swarm optimization algorithm was used as the
method for the trajectory planning of underwater robots.
In order to ensure the optimality, rationality, and path con-
tinuity of the formation trajectory of unmanned surface
vehicles, a deterministic algorithm of multi-subtarget artifi-
cial potential field (MTAPF) based on improved APF was
proposed in the literature [20]. MTAPF can greatly reduce
the probability of USV falling into the local minimum and
help USV escape from the local minimum by switching the
target point. However, these algorithms generally have

shortcomings such as difficult to guarantee convergence
and easy to fall into local optimum, so their applicable sce-
narios are relatively limited. Among these algorithms, the
genetic algorithm has been widely used in many fields
because of its strong scalability and easy to combine with
other algorithms [21]. In the literature [22], an improved
cost function for a grid path planning in 2D static
environment-based genetic algorithm (GA) was proposed,
which was used to reduce the energy consumption of AUVs.
A genetic algorithm was used to determine the optimized
path with the minimum travel time for a USV under envi-
ronmental loads in the literature [23]. A new hybrid algo-
rithm which is based on genetic algorithm and firefly
algorithm was proposed in the literature [24], which was
used to solve the path planning problem of mobile robots.
It is worth noting that the parameters of the genetic algo-
rithm are numerous and complex, so its path search is inef-
ficient and time-consuming.

Introducing reinforcement learning technology into path
planning is a research hotspot in recent years. Reinforce-
ment learning is a learning method that maps from the envi-
ronment state to the action. By constructing a Markov
decision model, the learner repeatedly interacts and explores
with the environment to learn the optimal strategy. Rein-
forcement learning does not require complete prior knowl-
edge. Since learners can independently obtain optimal
behaviour strategies through dynamic interaction with the
environment when facing an unfamiliar environment, the
application of reinforcement learning to path planning has
certain advantages. According to the update method of the
policy, reinforcement learning can be classified into value
function-based and policy gradient-based [25], among
which value function-based reinforcement learning is more
widely used. As a kind of value function-based reinforce-
ment learning algorithm, Q-learning algorithm has been
widely used in the field of path planning. In order to prove
the ability of Q-learning algorithm to interact with the envi-
ronment, the Q-learning algorithm was used to extract the
state of the environment in the literature [26]. The path
planning task of a mobile robot in an unknown environment
was accomplished by combining the Q-learning algorithm
with the dynamic window approximation algorithm. In the
literature [27], the Q-learning algorithm is used to complete
the autonomous navigation and control of intelligent ships
in simulated waterways. The author completed the environ-
mental information modelling during the ship’s navigation
and set environmental factors such as obstacles and
restricted areas as reward and punishment information. By
combining the Q-learning algorithm, a multi-AUV collabo-
rative data acquisition algorithm was proposed in the litera-
ture [28], which can reduce the data acquisition load of a
single AUV and serve as a path planning algorithm for
autonomous underwater vehicles. However, as the environ-
ment becomes more complex, the state space of the environ-
ment is also becoming larger, and the problem of state space
explosion occurs at this time, which makes it difficult for the
traditional Q-learning algorithm to converge.

Relevant studies have shown that deep reinforcement
learning formed by the combination of deep learning and

3International Journal of Aerospace Engineering



reinforcement learning can effectively improve the state
space explosion problem [29]. The DQN algorithm is
formed by combining the deep neural network and the Q-
learning algorithm. The appearance of DQN algorithm fur-
ther solves the problem of path planning. In the literature
[30], a deep reinforcement learning method ANOA based
on dueling deep Q-network was proposed, which tailored
design of state and action spaces and the reward function.
In the literature [31], a smoothly convergent DRL (SCDRL)
method was proposed based on the deep Q-network (DQN)
and reinforcement learning, which to solve the path follow-
ing problem for an underactuated unmanned-surface-vessel
(USV). Aiming at the problem of vehicle model tracking
error and overdependence in traditional path planning of
intelligent driving vehicles, a path planning method of intel-
ligent driving vehicles based on deep reinforcement learning
was proposed in the literature [32]. A novel hierarchical
framework to achieve real-time path planning and following
for a gliding robotic dolphin was proposed in the literature
[33], which present a novel hierarchical deep Q-network
method to separately plan the collision avoidance path and
the approach path and also design different continuous
states under the kinematic constraints.

Based on the above analysis, it can be seen that the DQN
algorithm has obvious advantages in solving path planning
problems in complex environments. In view of the complex-
ity of UH’s model for performing raid tasks, a heuristic
DQN algorithm for UH’s path planning based on the deep
reinforcement learning DQN algorithm is designed in this
paper.

3. Environment Model

Figure 1 is an illustration of the battlefield environment that
UH faces when performing low airspace raid missions. The
helicopter flight area Ωhelicopter, the mountain area Ωmountain
, and the radar coverage area Ωradar are included in the com-
plex battlefield environment ΩX . At the same time, any posi-
tion in ΩX is represented by X = ðx, yÞ, x represents the
horizontal position, and y represents the height.

The experimental environment is set as a low airspace
with a length of 50 km and a height of 1 km. UH’s mission
is to raid radar positions 50 km away. It is assumed that
the UH is equipped with a radar warning device that can
determine whether it is locked by the radar, and the position
of the target radar is known. The position coordinates of the
radar are expressed as

Radar x,yð Þ = 50, 0½ �: ð1Þ

UH avoids colliding with mountains during flight.
Assuming that the height of the mountain is 0.15 km, its
position is expressed as

Mountain x,yð Þ = 20,0:15½ �: ð2Þ

As shown in Figure 2, due to the powerful manoeuvrability
of UH, it can do 8 degrees of freedom within ΩX . The flight

speed of UH can be decomposed into two directions of x
-axis and y-axis, which can be represented by vx

! and vy
!.

vx
!= 360km/h,
vy
!= 36km/h:

(
ð3Þ

Then, the position of UH in ΩX can be expressed as

UH x,yð Þ tð Þ = UH xð Þ tð Þ, UH xð Þ tð Þ
h i

= vx
!t, vy!t
� �

: ð4Þ

In the process of UH flight, the distance from the obstacle
is greater than the safety radiusRsafe, which is the premise of its
own safety. The safety radius Rsafe is determined by the follow-
ing factors:

ΩRsafe
= UH x,yð Þ tð Þ −Mountain x,yð Þ

��� ���[
UH x,yð Þ tð Þ −Ωradar

��� ��� ≥ R
n o

:

ð5Þ

Due to the large difference between the horizontal and ver-
tical speeds of UH, its safe radius Rsafe should also be decom-
posed into two directions of x-axis and y-axis. The UH
safety radius is

Rsafe =
x = 1km,
y = 0:05km:

(
ð6Þ

The maximum attack distance of UH is 8km. Assuming
that each attack of UH is regarded as a hit, the condition for
completing the task is that the distance dt from the radar is less
than 8km, namely,

dt = UH x,yð Þ tð Þ − Radar x,yð Þ
��� ��� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UH x,yð Þ tð Þ − 50

�2
+ UH x,yð Þ tð Þ − 0
� �2

r
≤ 8km:

ð7Þ

The maximum detection range of the radar is 45km. Due
to factors such as ground reflection clutter and the curvature
of the earth, it is usually difficult for radars to detect low-

Radar

𝛺radar

𝛺helicopter

𝛺mountain

Helicopter

Figure 1: Illustration of the complex battlefield environment.

4 International Journal of Aerospace Engineering



flying targets. The radar detection probability is expressed as

i =

0, d > 45km,
1, d ≤ 45km, h ≥ 1km,

1
1 + e − 20h−7ð Þð Þ , d ≤ 45km, 0:2km < h < 1km,

0, h ≤ 0:2km:

8>>>>>><
>>>>>>:

ð8Þ

In equation (8), d represents distance information, and h
represents height information. Equation (8) is a simplification
of the real radar detection probability, which can represent the
distribution of the radar detection probability, but is not the
real data. The probability model of UH flight process detected
by radar can be obtained from Figure 3:

In Figure 3, the d-axis is the distance between the heli-
copter and the radar position, the h-axis is the flying height
of the helicopter, and the i-axis is the probability of being
detected by the radar.

Based on the above information, the passable condition
Cm and impassable condition Cum of UH can be obtained as

Cm = Ωmovable f Ωhð Þ = 0jf g,
Cum = Ωumovable f Ωmountain,Ωradar = 1ð Þ = 1jf g,

ð9Þ

where f ðxÞ represents the judgment function and 0 and 1
represent movable and completely immovable, respectively.
Ωradar = 1 means UH is detected by radar; if Ωradar = 0, it
means that it is not detected.

Modelling the battlefield environment is the first step in
path planning. Through the above numerical analysis, we intro-
duce the entire battlefield environment in detail, define the
movement mode and behaviour constraints of UH, and clarify
the passable and impassable areas in the environment. In order
to successfully complete the raid mission, UH needs to reach
the attack area safely, and in the process, it needs to avoid hit-
ting mountains and being detected by radar. Since the radar
threat area is dynamic, the best way to keep UH safe is to avoid
crossing the radar coverage area. Therefore, to measure the
quality of the planned path, indicators such as path length, path
smoothness, whether there is a collision, and whether it crosses
the radar coverage area should be integrated. The ideal planned
path should have a short length and good smoothness, so as to
effectively reduce the flight consumption of UH. Avoiding col-
lisions and avoiding crossing the radar area are prerequisites for
UH safety. It can be seen from Figure 3 that within the range of
the flight height h ∈ ð0:2,0:5Þ, the probability of UH being
detected by radar is not 100%, which makes it difficult for UH
to accurately identify the radar coverage area and avoid cross-
ing. To sum up, this path planning task is challenging.

4. Deep Reinforcement Learning Methods

It is the core content of path planning that requires a suitable
algorithm model for path search. In this section, we intro-
duce the reinforcement learning Q-learning algorithm and
the deep reinforcement learning DQN algorithm, respec-
tively, and explain the experience playback and target net-
work mechanisms in the DQN algorithm. These
algorithms are the key to completing the path search and
are the basis of our proposed algorithm.

4.1. Reinforcement Learning. Four elements, state set S,
action set A, state transition probability P, and reward set
R, are included in the reinforcement learning model. Define
the strategy π : S⟶ A which is the mapping from state to
action. In the current state s, the learner will choose the
action a according to the policy π. When action a is exe-
cuted, the environment will transition to the next state s′
with probability P and receive reward r from the environ-
ment. The purpose of reinforcement learning is to maximize
the cumulative reward by adjusting the policy. Value func-
tions can be used to judge the pros and cons of a strategy.
Assuming that the initial state of the learner is s0 = s, the
state value function of the policy π is defined as

Vπ = 〠
∞

t=0
γtr st , atð Þ s0 = s, at = π stð Þj , ð10Þ

where γ ∈ ð0, 1Þ is the decay factor, which is used to specify
the decay degree of future rewards. Reinforcement learning
can take the maximization function as the optimal strategy,
which can be expressed as

π∗ =max
π

Vπ sð Þ,∀s ∈ S: ð11Þ

Due to the Markov property of reinforcement learning,
the state action value function can be expressed as

Qπ st , atð Þ = r st , atð Þ + γVπ st+1ð Þ, ð12Þ

where Qπðst , atÞ represents the expected reward of choosing
action at in state st . At this time, the optimal strategy should
be reexpressed as

π∗ =max
π

Qπ s, að Þ,∀s ∈ S,∀a ∈ A: ð13Þ

Q-learning is a relatively mature and widely used rein-
forcement learning algorithm. Q-learning is a reinforcement
learning algorithm based on value function, and its update
method can be expressed as

s, að Þ =Q s, að Þ + α r + γ max
a′

Q s′, a′
� �

−Q s, að Þ
	 


, ð14Þ

where α ∈ ð0, 1� is the learning rate, which is used to control
the proportion of future rewards in the learning process. For
formula (14), if each state s and action a are visited infinitely,
and the decay factor γ takes an appropriate value, then the Q

a3
a2

a6
a5 a7

a0a4

a1

Figure 2: Illustration of UH movement direction.

5International Journal of Aerospace Engineering



value will eventually converge to a fixed value. It is worth
noting that the Q-learning algorithm needs to generate a Q
table during operation to store the Q value corresponding
to different actions in each state, so the algorithm needs to
keep reading and writing the Q value to update the Q table.

4.2. Deep Reinforcement Learning. The combination of rein-
forcement learning and neural network has been studied in
the early days, but simply combining the two has not
achieved the desired effect [34]. The proposal of DQN algo-
rithm provides a powerful boost for the development of deep
reinforcement learning [35]. Experience replay and the pro-
posal of target network mechanism are important reasons
for the success of DQN algorithm. Since the correlation of
samples in deep reinforcement learning is much larger than
in simple reinforcement learning, the purpose of experience
replay is to make the deep neural network converge to the
same step size, so that the algorithm gradient descent moves
in the same direction, thereby promoting the algorithm con-
vergence. At the same time, the experience replay mecha-
nism requires the algorithm to randomly sample training
samples from the experience pool, which can improve data
utilization. The experience replay mechanism effectively
solves three problems: overcoming the correlation of empir-
ical data, reducing the variance of parameter updates, and
overcoming the nonstationary distribution problem [36].

The principle of the DQN algorithm is to combine rein-
forcement learning and deep neural networks, use the Q-
learning algorithm to provide labelled samples for the neural
network, and then use the gradient descent method of back-
propagation to update the neural network parameters. The
DQN algorithm uses a neural network to fit the update pro-
cess of the Q-learning algorithm:

Q s, a, ωð Þ ≈Q s, að Þ, ð15Þ

where ω represents the neural network parameters. The
DQN algorithm takes the state s as the input and the Q value
corresponding to different actions as the output, so that the
Q value information is stored in the neural network node.
Therefore, the DQN algorithm does not need to generate a
Q table, and the update of the Q value is completed by
updating the parameters of the neural network. The loss
function LðωÞ in the algorithm update process can be
expressed as

L ωð Þ = E r + γ max
a′

Q s′, a′, ω
� �

−Q s, a, ωð Þ
	 
2

" #
, ð16Þ

where Qðs, a, ωÞ is generated by the evaluate training net-
work and Qðs′, a′, ωÞ is generated by the target value net-
work. The parameters of the target value network are
exactly the same as the training network. When the algo-
rithm updates a certain number of steps, the parameters of
the evaluate training network will be completely copied to
the target network. The target value network can solve the
problem of strong data dependence when a single network
is updated, thus effectively promoting the convergence of
the algorithm.

The algorithm update process uses the stochastic gradi-
ent descent algorithm to update the network parameter ω,
and the update value Δω can be expressed as

δL ωð Þ
δω

= r + γ max
a′

Q s′, a′, ω
� �

−Q s, a, ωð Þ
	 
� �

δQ s, a, ωð Þ
δω

:

ð17Þ

DQN algorithm code description can be seen in
Algorithm 1:

80

100

80

60
i (%)

40

20

0
0

10
20

30

d (k
m)

h (km)
40

500.0
0.2

0.4
0.6

0.8
1.0

60

40

20

0

Figure 3: Radar detection probability model.

6 International Journal of Aerospace Engineering



5. Heuristic Deep Q-Network Algorithm

In this section, we detail the proposed process of the heuris-
tic DQN algorithm and embed it in the UH path planning
task. We first describe the state-action ensemble of the UH
performing low-altitude raid task model and then design a
heuristic synthetic reward function.

5.1. State and Action Sets. The partitioning of state and
action sets is the first step in reinforcement learning algo-
rithms. Since the UH is moving in the environment, its
motion path is a time-dependent nonlinear function. Con-
sidering that the DQN algorithm requires the state to be dis-
crete, the environment model needs to be discretized. The
grid method can be used to discretize the system environ-
ment. First, the airspace environment is divided into 500
squares using 50 × 10 squares, and each square can corre-
spond to a state si of the environment. At this time, the path
of the UH is also discretized into a series of time-related
location points. Combined with the movement speed of
the UH, 10 s can be taken as a time step; that is, the UH will
complete a state transition in each time step. Then, state si is
represented in vector form:

si = si1, si2, si3, si4½ �, ð18Þ

where si1 and si2 can correspond to x and y in X = ðx, yÞ,
respectively, indicating the position information. si3 indi-
cates collision information, si3 = 1 indicates a collision, and
si3 = 0 indicates no collision. si4 means radar detection, si4
= 1 means detected, and si4 = 0 means not detected.
Through the above analysis, the battlefield environment is
divided into 500 states; that is, the state set S can be
expressed as

si ∈ S, i ∈ 0,499½ �: ð19Þ

UH performs an action per time step. Since UH per-
forms 8-dimensional motion, the action set A can be
expressed as

ai ∈ A, i ∈ 0, 7½ �: ð20Þ

The movement direction of ai in formula (20) is consis-
tent with that in Figure 2.

Path search is a key step in path planning, and the divi-
sion of state-action sets is a prerequisite for path search. The
state set can effectively pass the UH position and environ-
mental constraints to the algorithm for path search. The
action set defines the movement mode of the UH in the
environment and further clarifies the action constraints.

5.2. Comprehensive Reward Function. The setting of the
reward function is crucial for reinforcement learning algo-
rithms. Selecting an appropriate reward function can effec-
tively promote the algorithm convergence, while
inappropriate reward function settings may lead to difficulty
in algorithm convergence [37]. In traditional reinforcement
learning algorithms, when a learner completes a task, there

is a corresponding reward, while the previous series of
behaviours are not rewarded. Some studies have pointed
out that this kind of reward can lead to sparse reward prob-
lem in the face of complex environment [38]. When the set
of environmental states is large, the learner encounters a
series of nonfeedback states before completing the task.
Since the effective reward cannot be obtained in time, the
algorithm will be difficult to converge. In order to improve
this problem, we design a heuristic reward function r1, and
its specific expression is

r1 =

dmax − dt+1
dmax − dmin

, dt+1 < dt ,

−
dt+1 − dmin
dmax − dmin

, dt+1 ≥ dt ,

8>>><
>>>:

ð21Þ

where dt and dt+1 are the distances between the UH and the
radar target in the current state and the next state, respec-
tively, and dmax and dmin represent the maximum and min-
imum distances, respectively. It can be seen from formula
(21) that the value of the reward r1 will be related to dt+1
in real time. When the UH takes a certain action at , its dis-
tance from the radar target will change. If UH is closer to the
radar, at will get a positive reward; otherwise, it will be
penalized (negative reward). The analysis shows that when
the distance between the UH and the radar is large, the value
of the negative reward is relatively large. At this time, the
UH will quickly approach the radar under the constraint of
negative reward. As the distance between the UH and the
radar decreases, the value of the negative reward decreases,
while the value of the positive reward increases. Then, the
constraints of negative rewards will gradually weaken and
the effects of positive rewards will increase. At this time,
since UH takes suboptimal actions, it will not be severely
punished, and it can continue to explore suboptimal actions
while approaching the target, so as to seek the optimal path.

Considering the motion constraints, frequently changing
the motion direction is unfavorable for UH, especially for
large corners. Frequently changing the movement direction
will increase the flight consumption of the UH and also
affect the flight safety. In order to make the planning path
smoother, the smooth path reward function r2 is designed,
and its specific expression is as follows:

r2 = −
∠atat+1
180° , ð22Þ

where ∠atat+1 represents the acute angle value of the angle
between the motion directions of at and at+1. It can be seen
from formula (22) that we punish the corner behaviour, and
the value of the negative reward increases with the increase
of the corner. This effectively constrains the corner behav-
iours and makes the planned path smoother.

It is worth noting that both r1 and r2 are rewards
obtained when UH satisfies the passable condition Cm.
When UH satisfies the impassable condition Cum, that is,
the distance between UH and the obstacle is less than the

7International Journal of Aerospace Engineering



safety radius Rsaf e, set the reward r3 as

r3 = −1000, ð23Þ

where the value of the negative reward is larger, because we
want to strictly prohibit the occurrence of collision events.
When UH completes the raid mission, set the reward r4 to

r4 = 1000: ð24Þ

We strongly approve of the behaviours of completing the
task, so we can get a large reward. We summarize the above
reward settings into a comprehensive reward function Rc:

Rc = θ1r1 + θ2r2 + θ3r3 + θ4r4, ð25Þ

where θ1, θ2 ∈ ð0,∞Þ are reward coefficients. Under normal
circumstances, the value of θ3 is 0. When a collision event
occurs, θ3 is set to 1. At this time, the system will exit and
start learning again. Similar to θ3, the value of θ4 is also 0
under normal circumstances. Only when the task is com-
pleted will θ4 take the value of 1. At this time, the system will
still exit and start learning again.

To sum up, the comprehensive reward function designed
can generate dynamic rewards in real time in combination
with environmental information, so that UH has good con-
trol performance and can make the planning path smoother.
The heuristic comprehensive reward function can optimize
the search according to the continuously estimated environ-
mental cost information, which makes the process of reward
accumulation smoother, thus effectively improving the
sparse reward problem in complex environments. The posi-
tional relationship between UH and radar targets, motion
constraints, and environmental constraints is effectively
integrated by the reward function, which further improves
the efficiency of path search.

5.3. Heuristic Deep Q-Network Algorithm Model. Figure 4
shows the algorithm model, which clearly shows the whole
process of using H-DQN for path search. It can be seen from
the figure that after the algorithm runs, the s containing the
UH location information and the surrounding environment
information will be used as the input of the neural network.
After the Q values of the different actions corresponding to
the state s are output by the neural network, the algorithm
will select the action a corresponding to the largest Q value
as the output according to the ε-greedy strategy. When UH
performs action a, state s will change to state s′. At this time,
the environment will evaluate the action a according to the
comprehensive reward function and get the reward r. After
this series of actions is completed, the complete quaternary
information group ðs, a, r, s′Þ will be obtained. According
to the experience replay mechanism, the quaternary infor-
mation group will be stored in the experience pool. If the
experience pool stores data of a certain size, it can start to
random sample learning on the experience pool. In the pro-
cess of learning, the current state s will be used as the input
of Evaluate Net to obtain the actual value Qðs, a ; ωÞ, and the
next state s′ will be used as the input of Target Net to obtain
the estimated value Qðs′, a′ ; ωÞ. Next, Qðs, a ; ωÞ, Qðs′, a′ ;
ωÞ, and reward r are used as input to the loss function to
get the mean squared error. Finally, the Evaluate Net is
updated by the stochastic gradient descent method, thus
completing the optimization of the action selection strategy.
Through the above process, the proposed H-DQN algorithm
can effectively use the environment model information to
complete the search of the safe path. After a lot of training,
the algorithm and the environment model fully interact,
and the neural network parameters will tend to be stable.
The trained network model can be loaded directly when it
is used, so that the input state can be automatically recog-
nized and the corresponding correct action can be obtained.
We can get the complete safe flight path by outputting the

Algorithm: DQN algorithm
Initialization: initialize training network parameter ωand target network parameter ω′, ω = ω′.
Iterative process:
Repeat (for each episode)

Initialization state s
Repeat (for each step)

Select action a based on the ε − greedy policy
Perform action a to get reward r and next state s′
Store transition ðs, a, r, s′Þ in the experience memory
Sample random mini batchðs, a, r, s′Þ from the experience memory

yi =
r j for − terminal

r j +γ max
a′

Qðs′, a′, ωÞ for non − terminal

8<
:

Loss functionLðωÞ is obtained
Updating network parameters
s = s′

End Repeat (s′is the terminated state)
End Repeat (End of the training)

Algorithm 1: DQN algorithm.

8 International Journal of Aerospace Engineering



real-time positions of the UH after performing the corre-
sponding actions in sequence. So far, we have completed
the entire process of path planning.

The division of the state-action set is a key step in
embedding the reinforcement learning algorithm model into
the path planning problem, and designing an appropriate
reward function is an important way to improve the perfor-
mance of the algorithm. We describe these procedures in
detail and frame the proposed algorithm so that it is conve-
nient to extend these results to more general path planning
problems. It is worth noting that the comprehensive reward
function we designed has remarkable generality, not only
applicable to the DQN algorithm and its various variants,
but also can be combined with other intelligent algorithms
that require reward constraints.

6. Simulation Experiment

In this section, the performance of the proposed H-DQN
algorithm is evaluated through comparative experiments.
To ensure the validity of the experiments, all experiments
were carried out in the same environment. The construction
of the experimental environment and the implementation of
the algorithm are all done through Python code on the
PyCharm platform. We are using Python-3.6.10 version,
and the neural network is built with Tensorflow-2.6.0 ver-
sion. All experiments were performed on the same computer
with twelve Intel (R) Core (TM) i7-8700 CPU @ 3.20GHz
processor and one NVIDIA GeForce GT 430 GPU, running
memory with 16GB RAM.

6.1. Experimental Parameter Settings. The learning rate α is a
parameter that has a great influence on the performance of
reinforcement learning algorithms. In order to select appro-
priate parameters, a control experiment was carried out by
selecting different learning rates. During the experiment, if
the raid task is completed, UH will get 1 point; otherwise,
it will not score. The score of the last 100 tasks performed
by UH is used as the standard to measure the performance
of the algorithm. In order to reduce the experimental error,
the experiments under each parameter setting were carried
out independently for 5 times, and the experimental results
were averaged to obtain Figure 5.

Figure 5 shows the performance of the algorithm under
different learning rate values. It can be seen from the figure
that the performance of the algorithm is affected by the value
of the learning rate. This is because the learning rate repre-
sents how well the learning effect is preserved with each
algorithm update. The larger the value of the learning rate
α, the more the learning effect is retained, and the faster
the training speed will be. At this time, the algorithm is
not stable enough and is prone to oscillation. The smaller
the learning rate is, the less the learning effect is retained,
and the slower the training speed will be. At this point, the
algorithm will become relatively stable, but if the training
speed is too slow, it will bring more time overhead, which
is also unacceptable under certain circumstances. According
to the results of this experiment, when the learning rate α is
0.005, the algorithm has the final performance, and the
training time overhead at this time is also acceptable. In
addition, after training, the algorithm scores can be stabi-
lized within a certain range. It shows that the algorithm

Q(s, a; 𝜔)

s, a, r, sʹ

Evaluate net

Argmax
a

Target net

sʹr

s

Every N
episodes 

Copy
weights

...

...

...

...

DQN
loss

function

Experience
pool

s

Environment

Q(sʹ, aʹ; 𝜔)

Q(s, a; 𝜔)

...

...

...

...

Figure 4: H-DQN algorithm model.

9International Journal of Aerospace Engineering



can converge smoothly under the background of this
experiment.

In addition to the learning rate α, the decay factor γ is
also an important parameter. The larger the decay factor γ
is, the more the algorithm pays attention to past experience,
and the smaller the value is, the more attention is paid to the
current income. The value of γ can obtained based on past
experience, and 0.9 is a common choice in the related liter-
ature. It is pointed out in the literature [39] that a suitable
value of γ can be obtained by γ = 0:11/t . The t represents
the number of steps to expect the algorithm to consider

future rewards. A value of 0.9 means that the algorithm
needs to consider the next 22 steps, which is appropriate in
our experiments.

The influence of other parameters of the algorithm is as
follows: if the exploration factor ε is too large, the algorithm
tends to maximize the current profit and loses the motiva-
tion to explore, thus it may miss the bigger profit in the
future. There are too few hidden layers and hidden layer
neurons in a neural network to fit the data well and too
many to learn effectively. If the batch size is too small, the
sampling learning efficiency will be low, and if it is too large,
the algorithm will easily converge to the local optimum.
After many experiments, the algorithm parameters are
finally set as follows: the learning rate α is 0.005, the decay
factor γ is 0.9, and the exploration factor ε is 0.9. The input
layer of the neural network and the state dimension are con-
sistent with 4 neurons, the output layer and the action
dimension are consistent with 8 neurons, and the hidden
layer is two identical fully connected networks, each with
16 neurons. Neural network parameters ω are initialized
with random values from a normal distribution with a mean
of 0 and a standard deviation of 0.3. The parameter of Eval-
uate Net will be copied to Target Net every 200 episodes.
The pool size is 3200 and the batch size is 32.

6.2. The Effect of Reward Coefficients. Since the comprehen-
sive reward function designed this time is obtained by the
weighted addition of each part of the reward function, the
influence of the weight of each part of the reward function
on the overall performance of the algorithm is a question
worthy of discussion. In this section, we analyse the influ-
ence of each coefficient of the comprehensive reward func-
tion through multiple comparative experiments. Due to the
particularity of the definition, θ3 and θ4 in equation (25)
are not within the scope of our research and analysis, and
we only talk about the effects of θ1 and θ2.The experiments

0
0 250 500 750 1000

Episodes
1250

Learning rate = 0.001

1500 1750 2000

10

20

30

40

50

60

Sc
or

e

Learning rate = 0.005
Learning rate = 0.01

Learning rate = 0.05
Learning rate = 0.1

Figure 5: The score with different learning rates.

0
0 250 500 750 1000

Episodes 
1250

𝜃 1 = 4 𝜃 2 = 1

1500 1750 2000

20

40

60

80

100

Sc
or

e

𝜃 1 = 2 𝜃 2 = 1
𝜃 1 = 1 𝜃 2 = 1

𝜃 1 = 1 𝜃 2 = 4
𝜃 1 = 1 𝜃 2 = 0
𝜃 1 = 0 𝜃 2 = 0

𝜃 1 = 1 𝜃 2 = 2 𝜃 1 = 0 𝜃 2 = 1

Figure 6: The score with different reward coefficients.

10 International Journal of Aerospace Engineering



0.0
0 5 10 15 20

x (km)
25

𝜃 1 = 1 𝜃 2 = 0

30 35 40 45 50

0.1

0.2

0.4

0.3

0.5

0.6

0.7

0.8

0.9

1.0

y 
(k

m
)

Start

RadarDestination

(a)

0.0
0 5 10 15 20

x (km)
25

𝜃 1 = 1 𝜃 2 = 4

30 35 40 45 50

0.1

0.2

0.4

0.3

0.5

0.6

0.7

0.8

0.9

1.0

y 
(k

m
)

Start

RadarDestination

(b)

0.0
0 5 10 15 20

x (km)
25

𝜃 1 = 1 𝜃 2 = 2

30 35 40 45 50

0.1

0.2

0.4

0.3

0.5

0.6

0.7

0.8

0.9

1.0

y 
(k

m
)

Start

RadarDestination

(c)

0.0
0 5 10 15 20

x (km)
25

𝜃 1 = 1 𝜃 2 = 1

30 35 40 45 50

0.1

0.2

0.4

0.3

0.5

0.6

0.7

0.8

0.9

1.0
y 

(k
m

)

Start

RadarDestination

(d)

0.0
0 5 10 15 20

x (km)
25

𝜃 1 = 2 𝜃 2 = 1

30 35 40 45 50

0.1

0.2

0.4

0.3

0.5

0.6

0.7

0.8

0.9

1.0

y 
(k

m
)

Start

RadarDestination

(e)

0.0
0 5 10 15 20

x (km)
25

𝜃 1 = 4 𝜃 2 = 1

30 35 40 45 50

0.1

0.2

0.4

0.3

0.5

0.6

0.7

0.8

0.9

1.0

y 
(k

m
)

Start

RadarDestination

(f)

Figure 7: Path planning test for H-DQN in different reward coefficients. (a–f) The text results in the parameters θ1 and θ2 taking different
values.

11International Journal of Aerospace Engineering



under each parameter setting were independently run 5
times, and the experimental results were averaged to obtain
Figure 6.

Figure 6 shows the score of the algorithm when the
parameters θ1 and θ2 take different values, respectively. We
can see that, except for the two cases of θ1 = 0, θ2 = 0 and
θ1 = 0, θ2 = 1, the algorithms under other parameter settings
have converged after training. Since the algorithm cannot
converge when the parameters θ1 = 0, θ2 = 0, it can be shown
that the traditional sparse reward setting is difficult to adapt
to the experimental background. At the same time, when the
parameters θ1 = 0, θ2 = 1, the algorithm cannot converge,
which means that without the guidance of the heuristic
reward function, only the smooth reward cannot promote
the algorithm to converge. Since the algorithm can success-
fully converge when θ1 = 0, θ2 = 1, it can be shown that the
heuristic reward function effectively promotes the conver-

gence of the algorithm. In the remaining five parameter set-
tings, after training, the score of the algorithm can be
stabilized within a certain range, which shows that the intro-
duction of the smooth reward function does not affect the
convergence ability of the algorithm. Using the trained algo-
rithm for the path planning test results in Figure 7, the
experiments under each parameter setting were indepen-
dently run 5 times, and the experimental results were aver-
aged to obtain Figures 8 and 9.

It can be seen from Figure 7 that when θ1 = 1,θ2 = 0, that
is, only the heuristic reward function works alone, although
the algorithm successfully completes the path planning task,
the planned path oscillates to a large extent and the path is
not smooth enough. Comparing Figure 7(a) with
Figures 7(b)–7(f), it can be seen that the path planned by
the algorithm after adding the smooth reward is significantly
smoother. Figures 8 and 9 show the length and smoothness

km 43.3047 42.7897 42.6947 42.5698 42.4349 42.5897

41.6

41.8

42

42.2

42.4

42.6

42.8

43

43.2

43.4

43.6

Pa
th

 le
ng

th
 (k

m
)

𝜃1 = 1 𝜃2 = 0 𝜃1 = 1 𝜃2 = 4 𝜃1 = 1 𝜃2 = 2 𝜃1 = 1 𝜃2 = 1 𝜃1 = 2 𝜃2 = 1 𝜃1 = 4 𝜃2 = 1

Figure 8: Comparison of path length obtained for H-DQN in different reward coefficients. The interval on each bar denotes the standard
deviation of the path length.

𝜃1 = 1 𝜃2 = 0 𝜃1 = 1 𝜃2 = 4 𝜃1 = 1 𝜃2 = 2 𝜃1 = 1 𝜃2 = 1 𝜃1 = 2 𝜃2 = 1 𝜃1 = 4 𝜃2 = 1
Corners 42 30 28 19 8 26

0

5

10

15

20

25

30

35

40

45

Pa
th

 sm
oo

th
ne

ss
 

Figure 9: Comparison of path smoothness obtained for H-DQN in different reward coefficients.

12 International Journal of Aerospace Engineering



of the paths planned by the algorithms with different values
of θ1 and θ2, respectively. We can see that as the weight of θ2
increases, the path planned by the algorithm becomes

shorter and smoother, but when the weight of θ2 is greater
than a certain value, the performance of the algorithm
begins to deteriorate.

It can be seen from the above experimental results that
the heuristic reward can provide heuristic information for
UH, guide UH to move closer to the goal, and effectively
promote the algorithm convergence. The introduction of
the smooth reward function can effectively promote the path
planned by the algorithm to be smoother, but when the
weight of the smooth reward function exceeds a certain
value, its smoothing ability begins to gradually weaken.
Combining Figures 7–9, we can see that in our experimental
environment, when θ1 = 2, θ2 = 1, the algorithm can have the
best performance.

6.3. Compare with Other Algorithms. In order to further
prove the good performance of the H-DQN algorithm pro-
posed in this paper, the more representative path planning
algorithms A∗ algorithm and GA algorithm are selected
for comparative experiments. During the experiment, the
A∗ algorithm uses the Manhattan distance as the key value
calculation method. The population size of the GA algo-
rithm is 100, the terminating evolutionary generation is
200, and the crossover probability and mutation probability
are both set to 0.8. The two algorithms have carried out 10
times independent experiments and selected the more repre-
sentative path planning results to obtain Figure 10.
Figures 11 and 12 are obtained after averaging the 10 times
experimental results.

It can be seen from Figure 10 that although GA and A∗
algorithm have successfully completed the path planning
task, the paths planned by the two algorithms all pass
through the radar coverage area. Combining with
Figure 7(e), it can be seen that the H-DQN algorithm does
not cross the radar coverage area. On the one hand, because
GA and A∗ algorithm is based on the real-time state of the
environment model when searching for the path, there is a
certain lag in the path planned in this way for the dynamic

0.0
0 5 10 15 20

x (km)
25

Genetic algorithm

30 35 40 45 50

0.1

0.2

0.4

0.3

0.5

0.6

0.7

0.8

0.9

1.0

y 
(k

m
)

Start

RadarDestination

(a)

0.0
0 5 10 15 20

x (km)
25

A⁎ algorithm

30 35 40 45 50

0.1

0.2

0.4

0.3

0.5

0.6

0.7

0.8

0.9

1.0

y 
(k

m
)

Start

RadarDestination

(b)

Figure 10: Path planning test for GA and A∗ algorithm.

GA A⁎ H-DQN
km 47.3789 42.3499 42.3847

41.6

43.6

45.6

47.6

49.6

Pa
th

 le
ng

th
 (k

m
)

GA
A⁎

H-DQN

Figure 11: Comparison of path length obtained for GA, A∗, and
H-DQN algorithms. The interval on each bar denotes the
standard deviation of the path length.

GA A⁎ H-DQN
Corners 28.6 6.8 7.4

0
5

10
15
20
25
30
35

Pa
th

 sm
oo

th
ne

ss
 

GA
A⁎

H-DQN

Figure 12: Comparison of path smoothness obtained for GA, A∗,
and H-DQN algorithms.

13International Journal of Aerospace Engineering



threat area that changes in real time, and it cannot fully
reflect the real state of the environment model. On the other
hand, since the radar coverage area in the environment
model is in the form of probability distribution, in this case,
the GA and A∗ algorithm will consider part of the area
within the radar coverage area as safe when performing path
search. Therefore, the path planned by the GA and A∗ algo-
rithm has a high probability of passing through the radar
coverage area. However, due to the constantly changing
position of the safe area, the radar coverage area is inher-
ently dangerous and should not be passed. In the process
of path search, whenever UH is detected by radar, the H-
DQN algorithm will get a negative reward. Then, after a
lot of training, the radar coverage area will be explored by
the H-DQN algorithm. Since the update strategy of the H-
DQN algorithm is to maximize the cumulative reward, when
the algorithm converges, the radar coverage area will be
regarded as a forbidden area by the algorithm and will no
longer be entered. In summary, the UH trained by H-DQN
algorithm can accurately identify the radar coverage area
and avoid passing, which is difficult for GA algorithm and
the A∗ algorithm.

Figures 11 and 12 show the comparison of the average
length and average smoothness of the paths planned by the
GA, A∗, and H-DQN algorithms. We can see that among
the three algorithms, the GA algorithm performs poorly,
while the A∗ algorithm and the H-DQN algorithm perform
relatively well. Further comparison shows that the difference
in length and smoothness of the paths planned by the A∗
algorithm and H-DQN algorithm is small, and the perfor-
mance of the A∗ algorithm is even better than that of the
H-DQN algorithm. However, since the planned path should
avoid crossing the radar coverage area, the H-DQN algo-
rithm is a better choice.

7. Conclusions

In this paper, an H-DQN algorithm for path planning of UH
in complex low airspace environments is proposed. Numer-
ical modeling and analysis of UH’s low airspace raid mission
environment is carried out. On this basis, the corresponding
state, behaviour space, and comprehensive reward function
of the task model are given. In order to improve the sparse
reward problem of traditional reinforcement learning algo-
rithms, a heuristic reward function is designed to guide the
algorithm to converge quickly. The introduction of a smooth
reward function constrains the behaviour of UH and makes
the planned path smoother. The simulation experiment
analyses the influence of the weight of each part of the
reward function on the performance of the algorithm and
compares it with the traditional path planning algorithm.
The experimental results show that the proposed H-DQN
algorithm has better performance and faster convergence
speed, which can help UH successfully complete the raid
task. In the next step, we consider combining the compre-
hensive reward function with more intelligent algorithms
to verify its effectiveness in different experimental
backgrounds.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest or
personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Grant No. 62071483 and Grant No.
61602505).

References

[1] Z. Fang, J. Wang, Y. Ren, Z. Han, H. V. Poor, and L. Hanzo,
“Age of information in energy harvesting aided massive multi-
ple access networks,” IEEE Journal on Selected Areas in Com-
munications, vol. 40, no. 5, pp. 1441–1456, 2022.

[2] T. Do-Duy, L. D. Nguyen, T. Q. Duong, S. R. Khosravirad, and
H. Claussen, “Joint optimisation of real-time deployment and
resource allocation for UAV-aided disaster emergency com-
munications,” IEEE Journal on Selected Areas in Communica-
tions, vol. 39, no. 11, pp. 3411–3424, 2021.

[3] Z. Qadir, F. Ullah, H. S. Munawar, and F. al-Turjman,
“Addressing disasters in smart cities through UAVs path plan-
ning and 5G communications: a systematic review,” Computer
Communications, vol. 168, pp. 114–135, 2021.

[4] J. Chen, C. Du, Y. Zhang, P. Han, and W. Wei, “A clustering-
based coverage path planning method for autonomous hetero-
geneous UAVs,,” IEEE Transactions on Intelligent Transporta-
tion Systems, pp. 1–12, 2021.

[5] S. Zhang, Y. Zhou, Z. Li, and W. Pan, “Grey wolf optimizer for
unmanned combat aerial vehicle path planning,” Advances in
Engineering Software, vol. 99, pp. 121–136, 2016.

[6] F. Ge, K. Li, Y. Han, W. Xu, and Y. Wang, “Path planning of
UAV for oilfield inspections in a three-dimensional dynamic
environment with moving obstacles based on an improved
pigeon-inspired optimization algorithm,” Applied Intelligence,
vol. 50, no. 9, pp. 2800–2817, 2020.

[7] X. Zhang and H. Duan, “An improved constrained differential
evolution algorithm for unmanned aerial vehicle global route
planning,” Applied Soft Computing, vol. 26, pp. 270–284, 2015.

[8] X. Yu, C. Li, and J. F. Zhou, “A constrained differential evolu-
tion algorithm to solve UAV path planning in disaster scenar-
ios,” Knowledge-Based Systems, vol. 204, p. 106209, 2020.

[9] J. Chen, Y. Zhang, L. Wu, T. You, and X. Ning, “An adaptive
clustering-based algorithm for automatic path planning of het-
erogeneous UAVs,” IEEE Transactions on Intelligent Trans-
portation Systems, pp. 1–12, 2021.

[10] Z. Zhang, J. Wu, J. Dai, and C. He, “Rapid penetration path
planning method for stealth UAV in complex environment
with BB threats,” International Journal of Aerospace Engineer-
ing, vol. 2020, Article ID 8896357, 15 pages, 2020.

[11] N. Wang, X. Jin, and M. J. Er, “A multilayer path planner for a
USV under complex marine environments,” Ocean Engineer-
ing, vol. 184, no. JUL.15, pp. 1–10, 2019.

14 International Journal of Aerospace Engineering



[12] T. Phanthong, T. Maki, T. Ura, T. Sakamaki, and P. Aiyarak,
“Application of A∗ algorithm for real-time path re-planning
of an unmanned surface vehicle avoiding underwater obsta-
cles,” Journal of Marine Science and Application, vol. 13,
no. 1, pp. 105–116, 2014.

[13] A. Ammar, H. Bennaceur, I. Châari, A. Koubâa, and
M. Alajlan, “Relaxed Dijkstra and A∗ with linear complexity
for robot path planning problems in large-scale grid environ-
ments,” Soft Computing, vol. 20, no. 10, pp. 4149–4171, 2016.

[14] T. Whitaker, S. J. Cunningham, and C. Bobda, “Decentralised
indoor smart camera mapping and hierarchical navigation for
autonomous ground vehicles,” IET Computer Vision, vol. 14,
no. 7, pp. 462–470, 2020.

[15] H. Shorakaei, M. Vahdani, B. Imani, and A. Gholami, “Opti-
mal cooperative path planning of unmanned aerial vehicles
by a parallel genetic algorithm,” Robotica, vol. 34, no. 4,
pp. 823–836, 2016.

[16] Y. X. Wang, Y. Y. Tian, X. Li, and L. H. Li, “Self-adaptive
dynamic window approach in dense obstacles,” Control and
Decision, vol. 34, no. 5, pp. 927–936, 2019.

[17] J. Chen, F. Ling, Y. Zhang, T. You, Y. Liu, and X. du, “Coverage
path planning of heterogeneous unmanned aerial vehicles
based on ant colony system,” Swarm and Evolutionary Com-
putation, vol. 69, article 101005, 2022.

[18] J. J. Shin and H. Bang, “UAV path planning under dynamic
threats using an improved PSO algorithm,” International Jour-
nal of Aerospace Engineering, vol. 2020, Article ID 8820284, 17
pages, 2020.

[19] Z. Fang, J. Wang, J. Du, X. Hou, Y. Ren, and Z. Han, “Stochas-
tic optimization aided energy-efficient information collection
in internet of underwater things networks,” IEEE Internet of
Things Journal, vol. 9, 2021.

[20] H. Sang, Y. You, X. Sun, Y. Zhou, and F. Liu, “The hybrid path
planning algorithm based on improved A∗ and artificial
potential field for unmanned surface vehicle formations,”
Ocean Engineering, vol. 223, no. 3–4, p. 108709, 2021.

[21] V. Roberge, M. Tarbouchi, and G. Labonté, “Comparison of
parallel genetic algorithm and particle swarm optimization
for real-time UAV path planning,” IEEE Transactions on
Industrial Informatics, vol. 9, no. 1, pp. 132–141, 2013.

[22] K. Tanakitkorn, P. A.Wilson, S. R. Turnock, and A. B. Phillips,
“Grid-based GA path planning with improved cost function
for an over-actuated hover-capable AUV,” in 2014 IEEE/OES
Autonomous Underwater Vehicles (AUV), pp. 1–8, Oxford,
MS, USA, 2014.

[23] H. Kim, S. H. Kim, M. Jeon, J. H. Kim, S. Song, and K. J. Paik,
“A study on path optimization method of an unmanned sur-
face vehicle under environmental loads using genetic algo-
rithm,” Ocean Engineering, vol. 142, no. sep. 15, pp. 616–624,
2017.

[24] T. W. Zhang, G. H. Xu, X. S. Zhan, and T. Han, “A new hybrid
algorithm for path planning of mobile robot,” The Journal of
Supercomputing, vol. 2, 2021.

[25] M. Sun, X. Xu, X. Qin, and P. Zhang, “AoI-energy-aware
UAV-assisted data collection for IoT networks: a deep rein-
forcement learning method,” IEEE Internet of Things Journal,
vol. 8, no. 24, pp. 17275–17289, 2021.

[26] L. Chang, L. Shan, C. Jiang, and Y. Dai, “Reinforcement based
mobile robot path planning with improved dynamic window
approach in unknown environment,” Autonomous Robots,
vol. 45, no. 1, pp. 51–76, 2021.

[27] C. Chen, X. Q. Chen, F. Ma, X. J. Zeng, and J. Wang, “A
knowledge-free path planning approach for smart ships based
on reinforcement learning,” Ocean Engineering, vol. 189,
pp. 106299–106299, 2019.

[28] G. Han, A. Gong, H. Wang, M. Martinez-Garcia, and Y. Peng,
“Multi-AUV collaborative data collection algorithm based on
Q-learning in underwater acoustic sensor networks,” IEEE
Transactions on Vehicular Technology, vol. 70, no. 9,
pp. 9294–9305, 2021.

[29] M. Volodymyr, K. Koray, S. David et al. , “Human-level con-
trol through deep reinforcement learning,” Nature, vol. 518,
no. 7540, pp. 529–533, 2015.

[30] X. Wu, H. Chen, C. Chen et al., “The autonomous navigation
and obstacle avoidance for USVs with ANOA deep reinforce-
ment learning method,” Knowledge-Based Systems, vol. 196,
p. 105201, 2020.

[31] Y. Zhao, X. Qi, Y. Ma, Z. Li, and M. A. Sotelo, “Path following
optimization for an underactuated USV using smoothly-
convergent deep reinforcement learning,” IEEE Transactions
on Intelligent Transportation Systems, vol. PP, no. 99, pp. 1–
13, 2020.

[32] J. Li, Y. Chen, X. N. Zhao, and J. Huang, “An improved DQN
path planning algorithm,” The Journal of Supercomputing,
vol. 78, pp. 1–24, 2021.

[33] J. Wang, Z. Wu, S. Yan, M. Tan, and J. Yu, “Real-time path
planning and following of a gliding robotic dolphin within a
hierarchical framework,” IEEE Transactions on Vehicular
Technology, vol. 70, no. 4, pp. 3243–3255, 2021.

[34] J. Tsitsiklis and B. Van Roy, An Analysis of Temporal-
Difference Learning with Function Approximation (Technical
Report LIDS-P-2322), Laboratory for Information and Deci-
sion Systems, 1996.

[35] J. Chung, “Playing Atari with deep reinforcement learning,”
Computer Ence, vol. 21, pp. 351–362, 2013.

[36] J. Li, Y. Chen, X. N. Zhao, and J. Huang, “An improved DQN
path planning algorithm,” The Journal of Supercomputing,
vol. 78, no. 1, pp. 616–639, 2022.

[37] B. Wang, S. Li, X. Gao, and T. Xie, “UAV swarm confrontation
using hierarchical multiagent reinforcement learning,” Inter-
national Journal of Aerospace Engineering, vol. 2021, Article
ID 3360116, 12 pages, 2021.

[38] M. Riedmiller, R. Hafner, T. Lampe et al., “Learning by playing
solving sparse reward tasks from scratch,” International con-
ference on machine learning, 2018, pp. 4344–4353, Stockholm,
Sweden, 2018.

[39] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, MIT press, 2018.

15International Journal of Aerospace Engineering


	Path Planning of Unmanned Helicopter in Complex Environment Based on Heuristic Deep Q-Network
	1. Introduction
	2. Related Works
	3. Environment Model
	4. Deep Reinforcement Learning Methods
	4.1. Reinforcement Learning
	4.2. Deep Reinforcement Learning

	5. Heuristic Deep Q-Network Algorithm
	5.1. State and Action Sets
	5.2. Comprehensive Reward Function
	5.3. Heuristic Deep Q-Network Algorithm Model

	6. Simulation Experiment
	6.1. Experimental Parameter Settings
	6.2. The Effect of Reward Coefficients
	6.3. Compare with Other Algorithms

	7. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

