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A homing guidance law for exoatmospheric interceptor based on the Deep Q Network (DQN) algorithm is proposed in this paper.
Aiming at the exoatmospheric interception problem, the guidance agent is built with the help of the deep reinforcement learning
theory, and the action command is given according to the measurement information of the exoatmospheric interceptor for the
accurate interception of the target. The homing guidance problem is first transformed into a Markov decision process, and a
three-dimensional (3D) interception scenario is established. Then, the reward function considering the line-of-sight (LOS) rate
and the final zero-effort-miss (ZEM) is designed, and the homing guidance problem is transferred to the reinforcement
learning framework. After that, DQN is utilized to solve the exoatmospheric interception problem, and the guidance agent is
obtained through a large amount of training. Finally, the guidance performance of DQN homing guidance law is verified by
numerical simulation examples and compared with the classical true proportional navigation (TPN) guidance law. The results
show that the guidance performance of the homing guidance law is better than that of TPN.

1. Introduction

The homing guidance law is a key factor to determine
whether the missile can intercept the target or not. The
current battlefield environment is becoming increasingly
complex, which brings more challenges to the traditional
guidance strategies. The design of intelligent guidance law
has become a hot research issue [1].

Proportional navigation (PN) is one of the most widely
used classical guidance laws [2], mainly including pure
proportional navigation (PPN) [3] with reference to the
interceptor velocity and true proportional navigation
(TPN) [4, 5] with reference to the line of sight (LOS). PN
has the advantages of simple structure, easy implementation,
and good robustness. Therefore, it has been widely utilized
in practical interception and guidance projects. Many
improved forms of PN were proposed later. For example,
based on the Lyapunov-like approach and inequality analy-
sis method, the capture region of the realistic true propor-

tional navigation (RTPN) guidance law against the
arbitrarily maneuvering target for exoatmospheric homing
guidance is thoroughly analyzed [6]. And later the capture
region of 3D RTPN is further given, considering the full non-
linearity of the relative kinematics between the interceptor and
target [7]. Actually, PN is with terrific guidance performance
for nonmaneuvering and weakly maneuvering targets. How-
ever, when the target has a large-maneuvering acceleration,
the guidance performance of PN will degrade significantly,
because the commanded accelerationmay exceed the overload
saturation of the interceptor, which may cause the divergence
of LOS rate and a large miss distance [8].

Optimal guidance (OG) is also widely utilized for solving
the homing guidance problem [9]. OG law is derived based
on optimal control theories with optimal guidance perfor-
mance indexes. However, OG laws usually need accurate
estimations of time-to-go; otherwise, the guidance perfor-
mance will be greatly reduced. Meanwhile, OG law is not
originally advanced for solving the problem of maneuvering
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target interception. If the target is with large maneuverabil-
ity, OG law may need to directly introduce the target accel-
eration or its estimation in the guidance command.
However, the target acceleration estimation is very hard to
obtain, and usually with large time lags, hence the guidance
performance of OG laws against the highly maneuvering
target cannot be theoretically guaranteed. Later, many
scholars proposed various guidance laws based on differen-
tial geometry [10], sliding mode control [11, 12], differential
game theory, etc. However, these derived guidance laws are
usually suffering from the problems of complexity in form,
requiring too much measurement information, or involving
too many guidance parameters, resulting in problems such
as poor robustness and difficulty in practical application.

With the rapid development of artificial intelligence (AI)
technology, AI algorithms represented by reinforcement
learning (RL) [13] are increasingly applied to the field of
homing guidance. For example, based on reinforcement
learning theory, the paper [14] proposes a new guidance
law with better performance than PN, which considers the
dynamic characteristics of the missile and the noise delay
of the sensor and actuator. In addition, reference [15] studies
PN with a variable proportional coefficient using the Q-
learning algorithm, which discretizes the state space and
action space of the homing guidance process. However, the
traditional RL method is only applicable to discrete and
low-dimensional state space and action space. It is difficult
to deal with the continuous and high-dimensional environ-
ment in the actual interception process. The deep reinforce-
ment learning (DRL) theory based on the combination of
deep learning (DL) and RL can effectively solve the problem
of spatial dimension explosion [16, 17], so it has great
advantages in the field of homing guidance. The deep deter-
ministic policy gradient (DDPG) is a typical DRL algorithm.
A missile terminal guidance law based on DDPG is designed
in [18]; then, the time and field of view (FOV) constraints
are considered to generate the reward function. The numer-
ical simulation results show that this guidance law is with
stronger robustness rather than PN.

The targets of exoatmospheric interception [19, 20] are
mainly spacecraft, such as spacecraft in elliptical orbits [21]
or flexible spacecraft [22]. For this problem, Liang et al.
[23] propose a model-based guidance law using DRL
algorithm. The dynamic model of the guidance system is
predicted and integrated into the path integral control
process. The model-based reinforcement learning theory
and the deep neural network (DNN) are used in this process.
Another novel guidance law based on DDPG for maneuver-
ing target interception is proposed in [24]. The reward func-
tion is designed based on miss distance, and the guidance
performance is verified through numerical simulation. At
present, many guidance laws for the exoatmospheric
interception problem generally need the measurement infor-
mation about the relative position, velocity, or target acceler-
ation [25, 26]. The measurement variables are too many, and
large measurement errors are usually involved, which
degrades the performance of the traditional guidance laws.
Some scholars introduce the RL method into the angle-
only homing guidance problem for intercepting maneuver-

ing targets. The proposed guidance laws only need the input
consisting of the line-of-sight (LOS) angle and angular rate
[27, 28]. Gaudet et al. [28] propose a novel guidance law
based on reinforcement metalearning to solve the problem
of terminal guidance for exoatmospheric interception. The
guidance law does not need to estimate the relative range.
It stabilizes seeker line-of-sight angles and their rate of
change directly to commanded thrust for the missile’s divert
thrusters. The guidance model is trained and optimized
using the proximal policy optimization (PPO) and meta-
learning theory and then simulated and compared with the
augmented zero effort miss (augmented ZEM) guidance
law. It shows that the guidance performance of this RL-
based guidance method is better.

There are limitations in the general guidance methods,
such as unstable guidance performance, too many required
measurements, and guidance parameters. Meanwhile, the
traditional reinforcement learning methods are difficult to
deal with the continuous and high-dimensional environ-
ment. Therefore, according to the nonmodel reinforcement
learning theory, we propose a homing guidance law based
on Deep Q Network (DQN) [29] in this paper. The homing
guidance law only needs the measurement of LOS angle and
angular rate and does not need to estimate the target maneu-
vering acceleration in advance. Referring to the principle of
PN, the homing guidance law proposed in this paper mainly
solves the interception problem by reducing the relative
velocity which is perpendicular to line-of-sight between the
interceptor and the target. A reward function is designed
considering the LOS rate and the final ZEM. Then, we build
the DQN agent in the Tensorflow framework and train the
agent in the 3D homing guidance environment. The simula-
tion results show that the homing guidance law proposed in
the paper has strong adaptability to the environment and
higher guidance accuracy compared with the classical TPN.

The paper is organized as follows. Section 2 mainly
introduces RL algorithm used in this paper. Then, we model
the homing guidance of RL in Section 3, including the
model of relative motion, the model of measurement, and
the Markov decision process (MDP) of homing guidance.
In Section 4, we show the homing guidance law proposed
in this paper and describe how to train and optimize
DQN agent and adjust the hyperparameters of algorithm.
Section 5 gives the training performance of the agent and
the analysis of simulation results. Finally, the conclusions
are presented in Section 6.

2. Reinforcement Learning Overview

“Trial and Error” is the central mechanism of RL method. In
the process [30], the agent interacts with the environment to
obtain the current state and immediate rewards and then
executes actions to get feedback and generate the next state,
which can update the policy and value function. The goal of
the RL algorithm is to get a policy through a large number of
samples, that is, the policy function π. The input is state
information of the environment at the current time, and
the output is the action executed by the agent. This process
can be expressed as the following equation:
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a = π sð Þ, ð1Þ

where s is the current environment state and a is the
executed action that comes from the state space and
action space.

According to whether the action space is discrete or con-
tinuous, the RL algorithm can be divided into methods
based on value function and policy gradient [31]. Classical
methods based on value function include Q-learning and
state action reward state action (SARSA) algorithm [32,
33]. Methods based on policy gradient include policy gradi-
ent algorithm and actor critic (AC) [34] which combines
value function and policy gradient. Because the commanded
acceleration of the exoatmospheric interceptor in the guid-
ance problem is discrete, the method in this paper is based
on value function to design the guidance law and construct
the action space. And we consider that the interceptor
maneuvers in the way of constant maneuvering and solve
the interception problem using DQN of DRL algorithm.

2.1. Deep Q Network Algorithm. The purpose of RL policy is
to generate action instructions so that the interceptor can
successfully intercept the target. To solve this problem, this
paper uses the prioritized experience replay DQN to design
a homing guidance law [35].

The DQN combines DL and classical Q-learning, and it
can use a neural network to fit the value function, that is, Q
network. The input of the Q network is the environment
state, and the output is the expected cumulative return of
various actions corresponding to the current state.

There are problems of data correlation during DQN
training. The algorithm adopts the replay buffer and double
network mechanism to solve the problems. In the training
process, a small batch of data will be randomly obtained
from the experience pool for training the neural network.
The current network in the double network mechanism is
used for predicting model, and the target network is used
to calculate the value of tag. Both networks have the same
structure, and the parameters of the target network need to
be updated regularly during training. The basic framework
of DQN is shown in Figure 1.

2.2. Prioritized Experience Replay DQN. The prioritized
experience replay DQN optimizes the logic of the experience
replay part based on the general DQN. It changes the way of
random sampling from the sample pool and adds weight to
the sample data so that the samples with large absolute value
of temporal difference (TD) error have a greater probability
of being selected. Therefore, the prioritized experience
replay DQN can solve the problems of larger fluctuation
and slow convergence in the training process, and the
obtained policy is more stable [36].

The algorithm usually uses the binary tree structure of
sum tree to store the samples in the experience replay pool
with priority [35]. Due to the weight of the sample, the loss
function of the network is also optimized. The improved
equation is as follows:

Loss = 1
n
〠
n

j=1
ωj yj −Q sj, aj,w

� �� �2
, ð2Þ

where ωj is the priority weight of the j -th sample, which
is obtained by TD error. The meanings of other symbols are
shown in Algorithm 1. After updating the gradient of
network parameters, it is necessary to recalculate the TD
error and update it to the sum tree structure. The prioritized
experience replay DQN is the same as the DQN flow; then,
its pseudocode is shown in Algorithm 1.

In Algorithm 1, s, a, r, and d, respectively, represent the
environment state, action, reward, and termination state of
the Markov decision process, T is the number of learning
iterations, and C is the update frequency of the target
network. β is the exponent in loss function.

3. RL Model of Homing Guidance

In order to design guidance law using deep reinforcement
learning algorithm, the interception problem should be trans-
formed into reinforcement learning framework. Then, the
reinforcement learning model will be described in this section.

3.1. Model of Relative Motion. Considering the interception
process in 3D space, the position vectors of the target and
interceptor are defined as rt and rm in the launch inertial
frame. The velocity vector of the target and interceptor is
defined as vt and vm. The accelerations generated by the
target and interceptor are at and am.

According to the relevant definitions of 3D interception
process, the plane composed of the relative position vector r
and the relative velocity vector v of the interceptor and target
is called the intersection plane. The intersection plane may
rotate with the relative motion of the target and interceptor
[36–38]. The schematic diagram of the intersection plane is
shown in Figure 2. The coordinate origin om is the centroid
of interceptor, and er and eθ, respectively, represent the unit
vectors that are parallel and perpendicular to r in the inter-
section plane. q is the line-of-sight angle. The relative veloc-
ity vector v can be decomposed into vr and vθ, which
represent closing velocity, y, and relative velocity which is
perpendicular the to line-of-sight between interceptor and
target. Also, vθ is the cause of LOS rotation.

ωs is defined as the rate of change of the line-of-sight
vector in 3D space, and ωs = ωs ∗ eω:eω is perpendicular
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Figure 1: DQN basic framework.
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to er and eθ, and they form the line-of-sight coordinate
frame. We derive the relative position vector r and obtain
the equation

_r = vrer + vθeθ = _rer + rωseω × er: ð3Þ

eω in equation (3) will rotate with the intersection plane in
3D space. We assume that Ωs is the angular velocity of eω.
Then, the following equation can be obtained.

_eω =Ωser × eω = −Ωseθ: ð4Þ

By deriving from the equation (3), the equation of relative
motion in the line-of-sight coordinate frame can be obtained
as the following equation:

€r − rω2
s

� �
er + r _ωs + 2_rωsð Þeθ + rωsΩseω = atm, ð5Þ

where atm = at − am. It represents the relative acceleration
vector of the target and interceptor.

The line-of-sight direction can be expressed by the line-
of-sight elevation angle qε and line-of-sight azimuth angle qβ
in the launch inertial frame [37, 38]. qε and qβ are the LOS

angle, and _qε and _qβ are the LOS angular rate in this paper.
According to the relationship of coordinate conversion, the
line-of-sight coordinate frame and the launch inertial frame
can be mutually converted through the LOS azimuth angle
and the LOS elevation angle. The line-of-sight angular veloc-
ity ωs in the LOS coordinate frame is expressed as the
following equation:

ωs = _qβ sin qε ⋅ xS + _qβ cos qε ⋅ yS + _qεzS, ð6Þ

where xS, yS, and zS are the coordinate axis unit vector of
the LOS coordinate frame. Since er and xS are in the same
direction, the following equations can be obtained from the
LOS angle and LOS angular rate.

_er = _qεyS − _qβ cos qεzS, ð7Þ

eθ =
_qεyS − _qβ cos qεzSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_qβ cos qε
� �2

+ _q2ε

r , ð8Þ

eω =
_qβ cos qεyS + _qεzSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_qβ cos qε
� �2

+ _q2ε

r : ð9Þ

To sum up, when the LOS elevation angle qε and LOS
azimuth angle qβ are measured, and then, the line of sight
angular rate is obtained by filtering, the intersection plane
and the relative equation of motion can be determined
according to equations (7)–(9).

3.2. Measurement Model. The measurement model of the
interceptor includes information measurement and data
processing. Its purpose is to obtain the LOS angle and LOS
angular rate according to the current state of interceptor
and target. The relative position vector and relative velocity

1. Initialize Q network parameter w, target Q network parameter w = w'.
2. Initialize replay memory D with capacity N, the priority of all Sum Tree leaf nodes pj=1.
3. For i=1to T do
4. Initialize s as the first state in the current state sequences of interceptor.
5. While s is not Termination:
6. a) Select an action a with ε-greedy.
7. b) Execute action a, transfer to the next state s', and get the immediate reward r. Judge whether it is in the termination state d.
8. c) Store transition {s, a, s', r, d} in D. Replace the oldest tuple if ‖D‖>N.
9. d) Sample n tuples from D, { sj, aj,s'j, rj, dj }, j=1,2,3,…,n. The sampling probability is Pj = pj/∑ipi. Compute the weight of loss

function: ωj = ðN ∗ PjÞ−β/maxiωi.
10. e) Compute the current target Q value yi.

yi = r j + ð1 − dÞγQ′ðsj′, argmaxa′Qðsj′, a,wÞ,w′Þ.
11. f) Compute the loss as equation (2). Updating Q network parameter w.
12. g) Compute TD error of all sample data: δj = yj −Qðsj, aj,wÞ. Update the priority of all Sum Tree nodes: pj = jδjj.
13. h) if T%C == 0, Update the target Q network parameter w'=w End if.
14. i) s=s'.
15. End For

Algorithm 1: Prioritized experience replay DQN for homing guidance.
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Figure 2: The intersection plane of interception geometry.
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vector of the target and interceptor in the launch inertial
frame are expressed as the following equations:

r = rt − rm = rx , ry, rz
� �T , ð10Þ

v = vt − vm = vx, vy, vz
� �T

: ð11Þ
According to equations (10) and (11), the LOS angle

and LOS angular rate can be obtained as the following
equations [7]:

qε = tan−1
ryffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x + r2z

p
 !

,

qβ = tan−1 −
rz
rx

	 

,

ð12Þ

_qε =
r2x + r2z
� �

vy − ry rxvx + rzvzð Þ
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x + r2z

p ,

_qβ =
rzvx − rxvz
r2x + r2z

:

ð13Þ

In this paper, the measurement model temporarily
does not include the measurement errors of the relative
range between the interceptor and the target, the LOS
angle, and the closing velocity of the interceptor and the
target but only considers the measurement errors of the
LOS angular rate, which is set as the Gaussian white noise
with the standard deviation of 1 × 10−4rad/s. The measure-
ment model in this section will be used to generate the
simulation system.

3.3. MDP for Homing Guidance. The exoatmospheric inter-
ception process of interceptor and target is an MDP. And
the three-dimensional relative motion model established
before constitutes the environment of the process. In the
environmental state design, we consider a more concise sit-
uation, that is, only the LOS angle needs to be measured
and the LOS angular rate can be obtained through filtering.
Therefore, we only use the LOS angle and LOS angular rate
to design the state space [23], which is expressed as the
following equation:

S = Δqε, Δqβ, _qε, _qβ
h i

, ð14Þ

where Δqε and Δqβ are the errors of the LOS angle and
the initial LOS angle. S is the variable of state space in the
reinforcement learning problem we designed.

The output of DQN is each action value corresponding
to each state. Because the control mode of interceptor is dis-
crete, the action space in MDP is discrete. We consider that
the interceptor maneuvers in the way of constant-maneuver-
ing, and the maneuvers along yS and zS directions do not
affect each other in the plane perpendicular to the LOS.
The interceptor can maneuver with saturated overload in
yS direction, with saturated overload in yS direction or with-
out maneuver, that is, the interceptor’s acceleration is zero.

The maneuvering mode of interceptor in zS direction is the
same as that in yS direction. We combine the actions in yS
and zS to get the following action space, which is shown in
the following equation:

A = u, v½ �, u, v ∈ −amax, 0, amaxf g, ð15Þ

where u and v are the maneuvering accelerations of the
interceptor along the yS and zS, respectively. We sort and
code the 9 actions in the action space, which correspond to
9 action values output in the value network. The schematic
diagram of its action space is shown in Figure 3.

For the interception problem, we assume that the inter-
ceptor carries detection equipment that can measure the
position vector and velocity vector of the target. Through
the measurement model, we can calculate the LOS angle
errors Δqε and Δqβ and LOS angular rate _qε and _qβ. There-
fore, the observations of the model are expressed as equation
(16). It can be seen from the above analysis that the MDP is
observable in all states.

O = rt , vt , rm, vm, Δqε, Δqβ, _qε, _qβ
h i

: ð16Þ

3.4. Reward Function. The design of the reward function is
the key factor for DQN to solve tasks. In many reinforce-
ment learning environments, there is a problem of sparsity
of reward, that is, there is no reward, resulting in slow con-
vergence or even nonconvergence of the algorithm. There-
fore, an effective solution is to introduce a reward shaping
function to guide the agent to learn the final policy [39].

In the interception process, our ultimate goal is to inter-
cept the target in a limited time. General guidance laws, such
as PN, control the ZEM by restraining the divergence of LOS
rate in the guidance process, while the OG takes minimizing
the terminal miss distance as the optimization goal and
obtains the optimal control law by solving the two-point
boundary value problem. The reward function constructed
in this paper is mainly based on LOS rate and final ZEM.
The specific description is as follows.

Because the relative velocity which is perpendicular to
line-of-sight between interceptor and target can reflect the
LOS rate to a certain extent, the smaller the absolute value
of the relative velocity which is perpendicular to line-of-sigh,
the smaller the LOS rate and the smaller the ZEM of the
interceptor. We design the shaping reward function in
Gaussian form shown in the following equation:

R1 = exp −
θj j
σ

	 

, ð17Þ

where θ is the angle between the relative velocity of
the interceptor and target and the LOS direction, which
is called the velocity leading angle of the interceptor and
target. σ is the reward coefficient, which is used to adjust
the reward value. When σ is 0.01, the curve of the reward
function is shown in Figure 4. It can be seen that the
smaller the velocity leading angle of interceptor and target,

5International Journal of Aerospace Engineering



the closer the relative velocity is to the direction of LOS,
and the greater the reward value.

ZEM is the minimum distance between interceptor and
target when both are not maneuvering. The process of inter-
cepting the maneuvering target is to minimize the final miss
distance of the interceptor. To ensure the interception effec-
tively, another terminal reward is set in the paper. When the
final ZEM generated by the interceptor at the time of termi-
nation is less than the given miss distance, the reward is a
positive value. When the interceptor misses the target, the
reward is 0. The form of the terminal reward function is
shown as follows:

R2 =
+10 if ZEMf ≤ rMiss,
0 else,

(
ð18Þ

where rMiss is the maximum allowable miss distance. In
general, the reward value obtained by the agent from the
environment is the sum of shaping reward and terminal
reward. It can be seen in the following equation:

R = R1 + R2: ð19Þ

4. DQN Agent

For the training process of DQN agent, the environment is a
3D kinematic system composed of interceptor and target,
and the agent is generally an interceptor. Based on the 3D
motion model of target and interceptor, a 3D interception

environment can be established to train the guidance policy.
Firstly, it is assumed that the target and interceptor are
regarded as a particle, and the time lag and measurement
error of the guidance control system is not considered dur-
ing training. Secondly, the 4-order Runge Kutta method is
used to compute the kinematic equations of interceptor
and target, and we set the step of the simulation as 1ms.
Next, we will explain the design of the algorithm, including
the selection of neural network structure, simulation param-
eters, and hyperparameter settings.

4.1. Algorithm Design. First, the initial conditions of inter-
ceptor and target in the training environment of simulation
are given, as shown in Table 1.

In the training environment, it is assumed that the satu-
rated overload of the interceptor along yS and zS is 6g. And g
is the gravitational acceleration, taking 9.8m/s2. The total
maximum overload of the interceptor is 6

ffiffiffi
2

p
g. We set the

target’s saturated overload along yS and zS as half of the
interceptor, that is, 3g, so the maximum overload is 3

ffiffiffi
2

p
g.

In addition, the allowable miss distance rMiss used for termi-
nal reward is taken as 0.2m in training.

In this paper, the prioritized experience replay DQN
algorithm is used to train the agent, and the Tensorflow
framework is used to build DQN model. Firstly, the model
is established according to the basic parameters and neural
network structure, which are shown as follows. There are
mature built-in functions and basic variables in Tensorflow
that can help build networks. Then, complete the design
of the network interface and calling method of environ-
ment. Finally, the data is used for training the network
and optimizing the parameters and network, which
includes training method of network, parameter updating,
and action selection policy.

The Q network of the algorithm adopts a three-layer
fully connected neural network, and the network structure
is shown in Table 2 and Figure 5. The target Q network
has the same structure as the current Q network, and the ini-
tial network parameters are also consistent with the current
network. According to the reinforcement learning model
established in Section 2, the designed neural network has
four inputs, that is, the state. There are 9 outputs, namely,
action value. A relatively simple hidden layer is used in the
middle, and tanh is used as our activation function in both
layers, which can be better for algorithm convergence.

4.2. Hyperparameter Setting. DQN algorithm contains many
hyperparameters, some of which are sensitive to the
environment. If the parameters are set unreasonably, the
algorithm will be difficult to converge. Therefore, in the
training process of reinforcement learning, the hyperpara-
meters need to be adjusted continuously to make the algo-
rithm converge finally. For the interception environment
established above, after a large number of numerical simula-
tions, the algorithm hyperparameters set in this paper are
shown in Table 3.

It can be seen from the table that we have trained 3000
episodes, and the discount factor is 0.996. The initial net-
work parameters are trained with Adam optimizer, and the

os
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xs

zs

Figure 3: The discrete action space diagram.
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Figure 4: The Gaussian reward function.
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learning rate is 0.001. The minibatch size is 64, and the
weight of the target network is adjusted to the initial network
every 10 steps. In addition, the exploration rate of our
motion selection mechanism during training ranged from
0.8 simulated annealing to 0.01. Its purpose is to make the
algorithm finally learn the optimal policy. The reward coef-
ficient in the shaping reward function is set to 0.5.

5. Results and Analysis

The simulation results in this section mainly include the
training results of the DQN agent, the test results of trained
agent, and the comparison with TPN guidance methods.
After each simulation result, we give a detailed analysis.

5.1. Training Simulation. The training process of DQN is
actually the process of optimizing Q network. According to
the training method of the neural network, the algorithm
needs a lot of data to make the Q network converge. In each
iteration, the agent interacts with the environment to gener-
ate experience data s, a, s′, r, and d and save them to the
experience replay pool. At the same time, a small batch of
data is extracted from the replay pool to train the neural net-
work. When the terminal state is reached, the iteration ends.
After many iterations, the action selected by the agent
through the Q network can maximize the value correspond-
ing to the current state; it is indicated that the agent has
learned an effective policy. The simulation in the paper is
trained by a computer, which is with Intel(R) Gold 6226R:
2.90GHz CPU, NVIDIA GeForce RTX 2080 Ti GPU,
64.0GB RAM, and Windows7 operating system. We also
use Python 3.7.6 and Tensorflow 1.15.0 to write algorithms.

The training process is visualized by Tensorboard. It
takes about 14101.9053 s to train 3000 episodes and
45870.4302 s for 10000 episodes. It means that it uses nearly
3.9 hours to do full training. The results are shown in
Figures 6 and 7. The horizontal axis of the coordinates rep-
resents the training times, the vertical axis of Figure 6 repre-
sents the Q network loss, and the vertical axis of Figure 7
represents the TD error. At the beginning of training, the
network loss and TD error change very little, the agent is
in the exploratory stage at the beginning of training, the
experience data is relatively small, and the policy adopted
by the agent has great randomness. With the increase of
learning times, Q network loss and TD error change
greatly, which indicates that the policy learned by the
agent has been greatly improved. When the experience
replay pool is full, the old experience data is of little sig-
nificance to the agent’s policy. The new experience data
will replace the original historical experience. Therefore,
the TD error of the experience data in the experience pool
will gradually increase in the later stage of training,
making the policy continuously optimized.

The reward changes during the training process are
shown in Figure 8. The horizontal axis of the coordinates
represents the episodes of training, and the vertical axis rep-
resents the episode reward and average reward. The blue
curve in the figure is the cumulative reward after smoothing,
and the orange curve represents the average reward of all
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Store samples

Figure 5: The structure of DQN network.

Table 3: DQN algorithm hyperparameter.

Hyperparameter Parameter value

Maximum iterations 3000

Discount factor 0.996

Q network learning rate 0.001

Capacity of experience replay memory 100000

Minibatch size 64

Target network update rate 10

Initial exploration 0.8

Final exploration 0.01

Reward coefficient 0.05

Table 2: Q network structure.

Network layer Number of neurons Activate function

Input layer 4 \

Hidden layer 1 100 tanh

Hidden layer 2 80 tanh

Output layer 9 \

Table 1: Initial conditions of interceptor and target in the training
environment.

Physical parameters Reference value

Line-of-sight range 100 km

Line of sight elevation angle 30 deg

Line of sight azimuth angle 40 deg

Position vector of interceptor [0, 0, 0]T m

Target velocity 7 km/s

Velocity pitch angle of target 0 deg

Velocity yaw angle of target 220 deg

Interceptor velocity 5 km/s

Alignment deviation in intersection plane 2 deg

Alignment deviation perpendicular to
intersection plane

2 deg
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episodes. According to the change of the cumulative
reward of each episode in the figure, the reward obtained
by the agent in each episode in the early stage of learning
is low, and the reward gradually increases after a period of
learning. After 2000 rounds of iterations, the cumulative
reward of the algorithm in each episode reaches the max-
imum, and after 3000 rounds of iterations, the cumulative
reward is basically stable around the maximum, indicating
that the algorithm has reached the convergence. The
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Figure 6: Q network loss change.
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Figure 7: TD error change.
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Figure 8: DQN cumulative reward change.

Table 4: Simulation initial conditions.

Position (km) Velocity (m/s)

Target [70, 50, -33.3] [-6039, 610, 3486]

Interceptor [0, 0, 0] [338.7, 4984, -211]
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Figure 9: DQN simulation results of constant-maneuvering target.
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Figure 10: The engine switch curve of the exoatmospheric interceptor.
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increasing average reward value also shows that the policy
learned by the algorithm is improving.

5.2. Test and Comparative Analysis. In the training of agent,
the measurement error and time delay were not considered.
In order to be closer to the real environment, a 3D simula-
tion system is established, and the measurement error of
LOS angular rate is considered in the measurement model.
Then, the guidance model is the guidance agent generated
by training before. When we design the control system, it
is assumed that the response speed of the interceptor is very
fast, and the control command may lag 1~2 sampling cycles
compared with the guidance command. Therefore, in the
simulation, the response delay of the control system is the
delay of the sampling period actually, which is 2 sampling
periods later than the guidance instruction, that is, 20ms.
The DQN homing guidance law proposed in the paper and
TPN with different coefficients are simulated and analyzed.
We design two movements of target. They are target
constant-maneuvering and arbitrarily maneuvering.
Through simulation, the performance of the homing guid-
ance law is further tested.

The longitude of the launch position in the geocentric
inertial frame is 140°, the latitude is 60°, the altitude is
100m, the launch azimuth is 90°, and the earth radius is
6378137m. The initial position and velocity information of
the target and interceptor in the simulation environment
are shown in Table 4.

According to the initial conditions of the interceptor and
the target, the relative range between the target and the
interceptor is 100 km, the initial LOS azimuth is 30°, the ini-
tial LOS elevation angle is 30°, and the velocity of the target
and the interceptor is 7.0 km/s and 5.0 km/s, respectively.
For the interceptor, the main factors affecting its miss dis-
tance are the direction of target maneuvering and saturated
overload. In the example, we consider the time step of sim-
ulation is 1ms. And the sampling period of the interceptor’s
command acceleration is 10ms. When the relative velocity
between the interceptor and the target is greater than zero,
the simulation ends, and the terminal miss distance is
approximately the ZEM at this time.

5.2.1. Constant-Maneuvering Target. For the constant-
maneuvering target, maneuvering in the plane perpendicular
to the LOS direction can most effectively increase the line-
of-sight rate, so we only consider the target maneuvering
in the plane perpendicular to the LOS. We assume that the
total overload of the target is 4

ffiffiffi
2

p
g, the acceleration in the

LOS coordinate frame is expressed as at = ½0, 4g, 4g�T , and
the total overload of the interceptor is 6

ffiffiffi
2

p
g. The interceptor

is controlled by the obtained DQN homing guidance law
and TPN, where the proportional guidance coefficient N of
TPN is 4 and 6. The simulation results are shown in
Figure 9, where vr and vq represent the closing velocity
and relative velocity which is perpendicular to LOS between
interceptor and target, respectively. qε and qβ are the eleva-
tion angle and azimuth angle of line of sight, and dqε and
dqβ are their corresponding rate of change. And ωs is 3D
line-of-sight rate.

According to the calculation of final ZEM, the terminal
miss distance of DQN homing guidance law is 0.38m, the ter-
minal miss distance of TPN is 206m when N = 4, and the ter-
minal miss distance of TPN is 5:3 × 10−4mwhenN = 6. It can
be seen from Figure 9(a) that both DQN homing guidance law
and TPNwith guidance coefficientN = 6 can reduce vq to zero
in a limited time, while vq increases in the later period when
N = 4. Figure 9(b) shows the of LOS angular rate with noise.
It can be seen that TPN with guidance coefficient N = 6 and
DQN homing guidance law can finally make LOS angular rate
stable. From the change of 3D LOS rate described in
Figure 9(d), both DQN homing guidance law and TPN with
guidance coefficient N = 6 can effectively limit the divergence
of LOS rate. However, when N = 4, LOS rate gradually
diverges. Figure 10(a) shows the engine switch curve when
the exoatmospheric interceptor intercepts the constant-
maneuvering target, which corresponds to the accelerations
in ys and zs directions, respectively.

5.2.2. Arbitrarily Maneuvering Target. For arbitrarily
maneuvering target, it is assumed that the target’s maneu-
vering mode is sinusoidal maneuvering, the total saturated
overload is 4

ffiffiffi
2

p
g, and the acceleration in the LOS coordi-

nate frame is at = ½0, 2g + 2g cos ðtÞ, 2g − 2g sin ðtÞ�T .
Other simulation settings are the same as those of the
constant-maneuvering target, and the change of maneuver-
ing acceleration with time is shown in Figure 11.

Similar to the target with constant-maneuvering, the
interceptor is controlled by DQN homing guidance law for
guidance and compares it with TPN simulation. The guid-
ance coefficient N is also taken as 4 and 6. The simulation
results are shown in Figure 12. And the meanings of symbols
in the figure are the same as those in Figure 9. The calcula-
tion of final ZEM shows that the terminal miss distance of
DQN homing guidance law is 0.29m, the terminal miss dis-
tance of TPN is 4.13m when N = 4, and the terminal miss
distance of TPN is 6:3 × 10−4m when N = 6.

It can be seen from Figure 12(a) that both DQN homing
guidance law and TPN has a small impact on the closing
velocity. But when N = 4, the relative velocity which is
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Figure 11: Acceleration of sinusoidal maneuvering target.
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perpendicular to LOS between interceptor and target of TPN
does not decrease to 0 at the terminal time. From the change
of dqε and dqβ in Figure 12(b), we can find that the change
of LOS angular rate in the three cases is not very dramatic,
but the change of LOS angular rate is more stable when
using DQN homing guidance law and TPN guidance coeffi-
cient N = 6. In addition, the 3D LOS rate curve in
Figure 12(d) also shows that DQN homing guidance law
can effectively reduce LOS rate compared with TPN. Since
the target’s maneuvering mode is sinusoidal, it can also be
seen that the changes of LOS angular rate and 3D LOS rate
also have some volatility. In this test, the engine switch curve
of the interceptor is given in Figure 10(b).

The simulation results of the above groups show that,
after adding the measurement error and guidance time
delay, the designed RL homing guidance law based on
DQN can intercept the target with certain maneuverability
more effectively than the general guidance law of TPN in
the 3D interception simulation system. At the same time,
the comparative analysis shows that whether the target is

constant-maneuvering or arbitrarily maneuvering, the hom-
ing guidance law can reduce the relative velocity which is
perpendicular to LOS between interceptor and target in a
limited time. It can also restrain the divergence of LOS rate
and ensure that the final miss distance is very small.

6. Conclusion

A reinforcement learning homing guidance law based on
DQN is proposed in this paper. The DQN homing guidance
law only needs the LOS angle and angular rate between the
interceptor and the target. The continuous state space,
discrete action space, and Gaussian reward function in the
MDP process are designed. Then, the DQN agent is built
in the Tensorflow framework, which is trained and opti-
mized in the interception environment. The obtained hom-
ing guidance law is numerically simulated and compared
with the classical TPN. The simulation results show that
the reinforcement learning homing guidance law proposed
in this paper has a better performance compared with TPN.
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Figure 12: DQN simulation results of sinusoidal maneuvering target.
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