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The stratospheric satellite is regarded as an ideal stratosphere flight platform and is able to accomplish various missions such as
surveillance, earth observation, and remote sensing, which requires a robust and effective trajectory tracking control method to
support these tasks. A novel observer-based robust finite-time control scheme is proposed to address the trajectory tracking
control problem dedicated to a stratospheric satellite in the presence of external disturbance and actuator saturation. Firstly, an
extended state observer (ESO) is adopted to observe the unavailable velocity states and unknown disturbances simultaneously,
and the estimated data are utilized in the robust control law design. Then, an auxiliary system based on anti-windup
compensator is developed to directly compensate for the actuator saturation difference. After that, a backstepping nonsingular
fast terminal sliding mode control (BNFTSMC) strategy is designed to track the desired trajectory with high accuracy, fast
convergence rate, and finite-time convergence. Then, a stability analysis using Lyapunov-based theory is performed, in which
the stabilization of the stratospheric satellite system and finite-time convergence are proven. Furthermore, a number of
simulations are conducted further to verify the excellent performance of the designed control strategy.

1. Introduction

Near space refers to the airspace 20-100 km above the earth
surface, which is the transition between the highest flight
height of traditional aircrafts and the lowest altitude orbit
of low-Earth-orbit (LEO) satellites [1]. The stratosphere is
at the bottom of near space and the most peaceful layer of
the earth’s atmosphere, which garners a great deal attention
due to its stable meteorological condition [2, 3]. As a special
lighter-than-air vehicle, the stratospheric airship is devel-
oped to operate in this zone for a long period; thus, it is
called “stratospheric satellite.” Compared with space-based
satellites, the stratospheric satellite is capable of maneuver-
ing to arbitrary positions without the restriction of orbit
and has a shorter delay in receiving and transmitting signals
[4]. Therefore, the stratospheric satellite performs better per-
formance in aerial photography, scientific exploration,
broadcasting relays, and remote sensing missions, to name

just a few. To complete these complex tasks, it has research
significance and practical value in developing the robust
and effective control method for trajectory tracking dedi-
cated to a stratospheric satellite, whereas the trajectory
tracking controller design of a stratospheric satellite is a
challenging task on account of the highly nonlinear, strong
coupling, sensitivity to unknown external disturbances, and
other factors.

To cope with the problem of motion control, a number
of nonlinear control strategies have been successfully utilized
in the stratospheric satellite, such as backstepping control [5,
6], adaptive control [7, 8], and sliding mode control (SMC)
[9, 10]. Among the above methods, as a wildly used nonlin-
ear control approach, the SMC method is regarded as a
desirable control technique, which is low sensitivity towards
dynamic uncertainties [11, 12]. Paiva et al. [13] proposed a
SMC technique for the longitudinal control of an autono-
mous airship. Zheng and Sun [14] developed an adaptive
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SMC for the airship with parameter uncertainties and
unknown external disturbances. Yang et al. [15] presented
a fuzzy adaptive SMC where the control gains are tuned
based on the fuzzy logic system, for trajectory tracking con-
trol of an autonomous airship. Indeed, the conventional
SMC method can only obtain the asymptotical convergence
of the system states, but not in a limited time. To enhance
the convergence performance and achieve the finite-time
convergence, Wang et al. [16] developed a nonlinear finite-
time control scheme proposed by combining the integral
sliding mode technique with input/output feedback lineari-
zation. Considering the finite-time tracking control problem
of a robotic airship, Cui et al. [17] designed a finite-time
command-filtered backstepping supertwisting controller.
Additionally, terminal sliding mode control (TSMC), adopt-
ing the nonlinear exponential sliding mode manifold, is
developed to obtain the finite-time convergence, which has
attracted considerable attention, whereas the traditional
TSMC suffers from the singularity problem. To overcome
this problem, Yang [18] proposed a time-specified nonsin-
gular terminal sliding mode control (NTSMC) approach,
dedicated to an autonomous unmanned airship, achieving
singularity avoidance and finite-time convergence. Further-
more, TSMC is combined with a fuzzy logic system and neu-
ral network in Ref [19, 20], which reduces the dependence of
the prior knowledge on the upper bound of the total system
uncertainties and further improves the control performance.
In order to further enhance the convergence speed, the non-
singular fast terminal sliding mode control (NFTSMC)
method is developed, which has been applied in quadrotors
[21], underwater vehicles [22], and spacecraft [23]. As far,
there are few works utilizing NFTSMC strategy to address
the trajectory tracking control problem of a stratospheric
satellite. Therefore, in this research, a nonsingular fast termi-
nal sliding mode (NFTSM) surface combined with backstep-
ping technique, is selected to enhance the convergence speed
and tracking precision.

The aforementioned works mainly concentrate on
ensuring the robustness of the controller to handle the
unknown system uncertainty. However, few of them explic-
itly consider the input saturation constraints. In fact, input
saturation is intrinsically the physical constraint of the actu-
ator, which means that the required force or torque is
beyond the maximum force or torque that the stratospheric
satellite can provide. If it is not treated appropriately, it may
have an unfavorable effect on the system stability [24, 25].
There are several studies to cope with the input saturation
problem of the control system. In order to address the input
constraint problem, Gou et al. [26] combined a tan-type bar-
rier Lyapunov function with the auxiliary variables. Based on
the vectorial backstepping tracking controller, a control allo-
cation module was designed to optimize the control inputs
by the author of Ref. [27]. Yuan et al. [28] proposed a novel
auxiliary system to solve the saturation problem and pre-
serve the finite-time property. Chen et al. [29] introduced
an auxiliary system in the form of a saturation compensator
based on RBFNN to compensate for the possible saturation
effect. Zheng et al. [30, 31] designed an anti-windup com-
pensator to handle the input saturation effect. In addition,

the anti-windup compensator combined with the backstep-
ping approach provides more flexibility for addressing the
actuator constraint problem, which is a recursive design pro-
cedure through the construction of Lyapunov functions. In
this context, we employed an anti-windup compensator as
the auxiliary system in the finite-time trajectory tracking
control scheme for the stratospheric satellite to cope with
the saturation problem.

Varieties of present studies on stratospheric satellite con-
trol are under the hypothesis that all state variables can be
obtained directly. In general, due to the limitations of the
stratospheric satellite sensors, the exact velocity states are
difficult to measure by sensors precisely, and only the system
output is available, including the position, attitude, and con-
trol input [32]. State observer can be utilized to online esti-
mate the values of the velocity states, which can
substantially reduce the cost, size, weight, and even noise
of measuring them physically by using sensors [33–35].
Therefore, it is rather significant to design a suitable state
observer to offer the necessary information to the controller
design, and many researchers have done much work. In
order to estimate the velocity state of the spacecraft system,
Perruquetti et al. [36] proposed a nonlinear reduced-order
observer for the spacecraft attitude control system. For path
following control for a quadrotor, Meng et al. [37] con-
structed a full-order state observer to estimate the derivative
of the quadrotor system output and a nonlinear disturbance
observer to estimate the external disturbance. In terms of the
observation gain, there are two kinds of ESO, linear ESO,
and nonlinear ESO. Although the nonlinear ESO can obtain
high tracking accuracy, its parameter adjustment is too com-
plicated. The linear ESO has the merits of simple structure
and good state estimation performance. At present, ESO
for stratospheric satellite motion control is rarely studied
by researchers. Inspired by Ref. [38], a third-order linear
ESO is utilized to estimate the unmeasurable velocity states
and unknown external disturbance.

Motivated by the above discussion, this paper proposed
an observer-based robust finite-time controller, to settle the
trajectory tracking control problem of the stratospheric sat-
ellite subject to external disturbances and actuator satura-
tion. In order to dispose of the unknown external
disturbance, based on the NFTSM surface, a novel backstep-
ping nonsingular fast terminal sliding mode control
(BNFTSMC) method is proposed. The designed BNFTSMC
strategy takes advantages of backstepping technique and
NFTSMC technique. On the one hand, the BNFTSMC
improves the convergence rate of system state and does
not exhibit any singularity problem. On the other hand,
the design topology follows the design procedure of back-
stepping strategy and the global stability of the closed-loop
system is ensured. In addition, the position and velocity
tracking errors can obtain the finite-time convergence to
small regions around zero. For the input saturation con-
straint, an assistant system based on the anti-windup com-
pensator is formulated to compensate for the saturation
effect. Furthermore, an ESO is adopted to estimate the
unmeasurable state variables and external interferences
simultaneously. The ESO can obtain high accuracy
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observation of unmeasurable velocity state and thus offer the
reliable and necessary information to the robust finite-time
control law.

The main contributions and critical features of the
designed control method are summarized as follows:

(1) A BNFTSMC scheme is designed to achieve singu-
larity avoidance, high robustness, good tracking
accuracy, high response speed, and finite-time con-
vergence, which combines the merits of backstep-
ping technique and NFTSM surface

(2) An auxiliary system based on anti-windup compen-
sator, producing a number of signals to compensate
for the negative effect of the actuator saturation, is
constructed

(3) A third-order ESO is adopted to estimate the velocity
state variables and external disturbances, which
works as an online approximator to give the online
estimated data to the BNFTSMC controller for
designing the control input

(4) The designed observer-based robust finite-time con-
trol method not only can guarantee all the state
tracking errors will be stabilized to equilibrium point
with input saturation but also can reduce the chatter-
ing effect effectively without sacrificing robustness
property

The remainder of the paper is organized as follows. Sec-
tion 2 describes the preliminaries and problem formulation.
Section 3 presents the formulation of the observer-based
robust finite-time controller to be used in the trajectory
tracking of the stratospheric satellite. Section 4 presents the
results of simulations to illustrate the effectiveness of the
designed control method. Finally, Section 5 concludes the
paper.

2. Problem Formulation and Preliminaries

2.1. Preliminaries

2.1.1. Notations. The following notations are employed
throughout this paper. λmaxð⋅Þ represents the maximum ele-
ment of a vector or the maximum eigenvalue of a matrix.
λminð⋅Þ represents the minimum element of a vector or the
minimum eigenvalue of a matrix. j⋅j represents the absolute
value of a scalar or the absolute value of each component
of a vector. k⋅k denotes the two norm of a vector or the Fro-
benius norm of a matrix. For q ∈ R, the signum function
sgn ðqÞ is expressed as

sgn qð Þ =
1, q > 0,

0, q = 0,

−1, q < 0:

8>><>>: ð1Þ

Meanwhile, for q ∈ R, sgnrðqÞ is denoted as sgnrðqÞ =
jqjr sgn ðqÞ. Similarly, for q = ½q1, q2,⋯, qn�T ∈ Rn, sgnrðqÞ

is denoted as sgnrðqÞ = ½jq1jr sgn ðq1Þ,⋯,jqnjr sgn ðqnÞ�T .
For q ∈ Rn, qiði = 1, 2,⋯, nÞ represents the ith component
of q. Moreover, In×n and On×n respectively represent a n ×
n identity matrix and a n × n null matrix.

2.1.2. Definitions and Lemmas

Definition 1. For q ∈ R, a saturation function is defined as
follows.

sat qð Þ
qmax, q > qmax,

q, qmin > q > qmax,

qmin, q < qmin,

8>><>>: ð2Þ

where qmax and qminrespectively are the upper bound and
lower bound of satðqÞ. For q ∈ Rn, satðqÞ is expressed as sat
ðqÞ = ½satðq1Þ, satðq2Þ,⋯, satðqnÞ�T .

Definition 2. Consider the following general dynamic sys-
tem.

_q tð Þ = f q tð Þð Þ, q 0ð Þ = 0, ð3Þ

where q ∈ Rn, f : D0 ⟶ Rn is continuous and differentiable
on an open neighborhood D0 of the origin.

Lemma 3 (see [39]). Consider the above system (3). Assume
that there exist a Lyapunov function V and continuous
K∞ type functions ℏ1 and ℏ2, which satisfies the following
term:

ℏ1 qð Þ ≤V qð Þ ≤ ℏ2 qð Þ,
dV q tð Þð Þ

dt
≤−W q tð Þð Þ,∀ qk k ≥ σ > 0,

ð4Þ

where WðqðtÞÞ is a radially unbounded continuous differen-
tiable positive definite function and σ is a finite positive
constant.

Lemma 4 (see [40]). Consider the system (3) and suppose
that there exists a Lyapunov function VðqÞ, which holds the
following inequation.

V qð Þ + λVr qð Þ ≤ 0, ð5Þ

where λ > 0, 0 < r < 1. Then, the finite-time stability of the
system state qðtÞ are guaranteed, and the convergence time
reaching the equilibrium satisfies

T ≤
V1−r q0ð Þ
λ 1 − αð Þ , ð6Þ

where Vðq0Þ denotes the initial value of VðqÞ.
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Lemma 5. For qi ∈ R ði = 1, 2,⋯, nÞ and 0 < γ < 1, the follow-
ing inequation holds.

q1j jγ + q2j jγ+⋯+ qnj jγ ≥ q1j j + q2j j+⋯+ qnj jð Þγ: ð7Þ

2.2. Dynamic Model. The studied stratospheric satellite mod-
eled as an axially symmetric rigid body, is shown in Figure 1.
Before developing the stratospheric satellite dynamics, two
coordinate frames are adopted to describe the motion of
the stratospheric satellite, i.e., earth reference frame (ERF)
and body reference frame (BRF). Then, the kinematic model
is described as [16, 41]

ζ
:

γ:

" #
= R

υ
ω

" #
, ð8Þ

with

R =
R1 03×3

03×3 R2

" #
, ð9Þ

where ζ = ½x, y, z�T and γ = ½ϕ, θ, ψ�T respectively denote the
position vector and attitude vector in ERF and υ =
½u, v,w�T and ω = ½p, q, r�T denote the linear and angular
velocities in BRF. R1 and R2 are the direction cosine matrix
and rotation matrix, respectively.

The dynamic model of the stratospheric satellite is
expressed as follows [8].

M
_υ
_ω

" #
=

fk + fGB + fA + dυ
nk + nGB + nA + dω

" #
+

uυ
uω

" #
, ð10Þ

where M is mass matrix. fGB represents the sum of the grav-
ity and buoyancy vector. nGB is the corresponding torque

BRF
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w zb
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Figure 1: Structure of the stratospheric satellite.
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Figure 2: Block diagram of the robust finite-time controller.

4 International Journal of Aerospace Engineering



generated by fGB. fk and nk represent the kinetics force and
torque, respectively; fA and nA represent aerodynamic force
and torque, respectively; uυ and uω represent control force
and torque, respectively. The details of (10) are presented
in Ref. [29].

2.3. Problem Formulation. For simplicity, the dynamic
model is rewritten as follows.

_x1 = x2,
_x2 = F x1, x2ð Þ + B x1ð Þu +D,

(
ð11Þ

with

F= _RR−1 _x + RM−1 fk + fGB + fA
nk + nGB + nA

" #
,

D = RM−1 dv
dw

" #
, B = RM−1, ð12Þ

where x1 = ½ζT , γT �T and x2 = ½_ζT , _γT �
T
are the system state

vectors. u = ½u1, u2, u3, u4, u5, u6�T is the control input vec-
tor. _R is the time derivative of R.

Start

Consider stratospheric
airship system (15)

N
Check

assumption 1-2

Y

Choose A, l and h

Choose h and 𝜂

s

Check (59)

End

Y

N

u

Choose P

x⌃2, D⌃

Choose c1, c2 𝜆1, 𝜆2, 𝜑1, 𝜑2, 𝛼

Choose r1, r2, k1, k2

Check (35)

Y

N

Figure 3: The flow chart of the robust finite-time controller design procedure.

5International Journal of Aerospace Engineering



Assumption 6. The lumped external disturbances D and its
derivative are assumed to be bounded, which satisfies

Dk k ≤ δ,

Dk k ≤ δ1,

(
ð13Þ

where δ and δ1 are finite positive constants.

Assumption 7. The smooth function FðχÞ is Lipschitz contin-
uous, i.e., ∀t ≥ 0, then ∃L ∈ R+, satisfying the following in
equation

F χð Þ − F bχð Þj j = L χ − bχk k, ð14Þ

where χ ∈ Rn, bχ ∈ Rn. L is Lipschitz constant.

Considering the input saturation constraint of the actua-
tor, Equation (11) can be deformed as:

_x1 = x2,
_x2 = F+ Bsat uð Þ +D:

(
ð15Þ

The trajectory tracking control problem is intended to
design an effective controller that drives the stratospheric
satellite to track the desired trajectory with fast convergence
rate, high accuracy, and strong robustness. More specifically,
the control objective can be concretely described as follows:
x0 and the desired state xd , develop the appropriate control
law u for system (15) subject to the external disturbances
and input saturation, such that the finite-time convergence
of tracking errors with satisfactory tracking precision can
be achieved.

3. Control Design

In this section, a novel robust finite-time controller based on
BNFTSMC scheme is presented for the trajectory tracking of
the stratospheric satellite subject to time-varying disturbance
and input saturation. A third-order ESO is designed to esti-
mate the velocity state and time-varying disturbance. On the
basis of the anti-windup compensator, an auxiliary system is
constructed to compensate for the saturation difference
directly. Finally, based on the measurability of the system
output and the estimations of the system velocity state and

external disturbance, the BNFTSMC strategy with the auxil-
iary system is developed for designing the trajectory tracking
controller. The designed flight control scheme for trajectory
tracking of a stratospheric satellite is illustrated in Figure 2.

3.1. ESO Design. In general, the output of the stratospheric
satellite system can be directly measured by sensors, while
the other state variables are difficult to obtain directly. For
dealing with the problem caused by the unmeasurable states,
an extended state observer (ESO) is proposed, where x2 and
D are regarded as extended states. x2 is online estimated by
the designed ESO and used for providing velocity informa-
tion for the controller design. D̂ is the estimated value of
D, and is used to compensate for the effect of system,
improving the robustness and adaptability of the closed-
loop system.

Define z1 = x1, z2 = x2/lz3 =D/l2. By differentiating the
state variables z1, z2, and z3, the stratospheric satellite system
given by Equation (15) can be rewritten as a third-order
equation of system states.

_z1 = lz2,

_z2 =
1
l
F z1, z2ð Þ + 1

l
B z1ð Þsat uð Þ + lz3,

_z3 = _D,

8>>><>>>: ð16Þ

where l is the designed scaling gain.
Let ẑ1, ẑ2, and ẑ3 denote the estimated values of z1, z2,

and z3, respectively. Then, the observation errors are defined
as ~z1 = ẑ1 − z1, ~z2 = ẑ2 − z2, and ~z3 = ẑ3 − z3. Then, for the
stratospheric satellite system (15), a third-order ESO is con-
structed as

~z1 = z1 − ẑ1,
_̂z1 = lẑ2 + a1hl~z1,

_̂z2 =
1
l
F z1, ẑ2ð Þ + 1

l
B z1ð Þsat uð Þ + lẑ3 + a2h

2l~z1,

_̂z3 = a3h
3l~z1,

8>>>>>><>>>>>>:
ð17Þ

where h is a gain constant, which satisfies h > l. a1, a2, and
a3 are positive constants, which satisfy the following

Table 1: Controller parameters.

Parameter Value Parameter Value

l 10 r1 Diag (8.7, 8.7, 8.7, 0.03, 0.03, 0.03)

h 50 r2 Diag (0.5, 0.5, 0.5, 0.8, 0.8, 0.8)

a1 3 k1 1.2

a2 3 k2 1.0885

a2 0.005 ρ Diag (0.2, 0.2, 0.2, 0.2, 0.2, 0.2)

c1 Diag (0.2, 0.2, 0.2, 0.2, 0.2, 0.2) η Diag (0.2, 0.2, 0.2, 0.2, 0.2, 0.2)

c2 Diag (0.2, 0.2, 0.2, 0.2, 0.2, 0.2)
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Figure 4: Trajectory tracking results in three-dimensional space.
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Hurwitz matrix:

A =

−a1 1 0

−a2 0 1

−a3 0 0

2664
3775 ð18Þ

Comparing Equations (16) and (17), the error differen-
tial system of the ESO is derived.

_~z1 = −a1hl~z1 + l~z2,

_~z2 = −a2h
2l~z1 + l~z3 +

1
l
F z1, z2ð Þ − F z1, ẑ2ð Þð Þ,

_~z3 = −a3h
3l~z1 + _D

8>>>><>>>>:
ð19Þ

In order to facilitate the stability analysis, the error dif-
ferential system in scalar form can be obtained as

_~z1i = −a1hl~z1i + l~z2i,

_~z2i = −a2h
2l~z1i + l~z3i +

1
l
Fi z1, z2ð Þ − Fi z1, ẑ2ð Þð Þ,

_~z3i = −a3h
3l~z1i + _Di tð Þ:

8>>>><>>>>:
ð20Þ

Let us introduce _εj = h3−i~zjðj = 1, 2, 3Þ. The above sys-

tem can be transformed as

_ε1 = lh ε2 − a1ε1ð Þ,

_ε2 = lh ε3 − a2ε1ð Þ + h
l
Fi z1, z2ð Þ − Fi z1, ẑ2ð Þð Þ,

_ε3 = −lha3ε1 + _Di tð Þ:

8>>><>>>: ð21Þ

Let ε = ½ε1, ε2, ε3�T , ~F= ½0, Fiðz1, z2Þ − Fiðz1, ẑ2Þ, 0�T , and
f = ½0, 0, _Di�T , then Equation (21) can be rewritten as

_ε = lhAε + h
l
~F+ f: ð22Þ

Since A is a Hurwitz matrix, the following Lyapunov
equation can be satisfied.

ATP + PA = −I3×3: ð23Þ

Theorem 8. For the stratospheric satellite system in the
presence of dynamic uncertainty, if the ESO is designed as
Equation (17), the ESO is uniformly ultimately bounded,
and the observation error ze = ½~z1i, ~z2i, ~z3i�T will converge
to a small neighborhood of origin.
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Figure 6: Position tracking responses.
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Proof. Define the Lyapunov function as follows.

V1 = εTPε: ð24Þ

Differentiating Equation (24) with respect to time yields

_V1 = _εTPε + εTP_ε: ð25Þ

Substituting Equation (22) into Equation (25), it follows

_V1 = lh AP + PATÀ ÁTεTε + 2
h
l
εTP~F+2εTPf

= −lhεTε + 2
h
l
εTP~F+ 2εTPf:

ð26Þ

Based on Lemma 3, it is clearly known that

λmin Pð Þ εk k2 ≤V1 ≤ λmax Pð Þ εk k2: ð27Þ

According to Assumption 7 and _εj = h3−i~zj, ðj = 1, 2, 3Þ,

we have

~F
  = Fi z1, z2ð Þ − Fi z1, ẑ2ð Þj j

= L z1 − z1, z2 − ẑ2½ �T
 
= L 0,

ε2
h

h iT 
≤L

ε2k k
h

:

ð28Þ

Referring to Assumption 6 and z3 =D/l2, we can get

fk k = _Di tð Þ
�� �� ≤ δ1

l2
: ð29Þ

Based on Equation (27) and Equation (28), we can get
that

εTP~F≤ εTP~F
  ≤ εT

  Pk k ~F
  ≤ Lλmax Pð Þ ε2

 
h

: ð30Þ
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According to Equation (27) and Equation (29), we have

εTPf ≤ εTPf
  ≤ εT

  Pk k fk k ≤ δ1λmax Pð Þ ε2
 

l2
: ð31Þ

Substituting Equation (30) and Equation (31) into Equa-
tion (26), we can conclude that

_V1 ≤ −lh εk k2 + 2Lλmax Pð Þ εk k2
l

+
2δ1λmax Pð Þ εk k

l2

= − lh −
2Lλmax Pð Þ

l

� �
εk k2+ 2δ1λmax Pð Þ εk k

l2

= − 1 − ℓð Þ lh −
2Lλmax Pð Þ

l

� �
εk k2 − ƛ εð Þ εk k,

ð32Þ

where ƛðεÞ = ℓðlh − ð2LλmaxðPÞ/lÞÞkεk − ð2δ1λmaxðPÞkεk/l2Þ,
0 < ℓ < 1. By selecting the proper value of l, the system stabil-
ity can be guaranteed. For that purpose, assume that ƛðεÞ ≥ 0
, then the following inequation can be obtained.

ℓ lh −
2Lλmax Pð Þ

l

� �
εk k > 2δλmax Pð Þ εk k

l2
> 0: ð33Þ

Then, by defining ϒ = 2δ1λmaxðPÞ/ℓl½l2γ − 2LλmaxðPÞ�,

we can obtain that

l >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lλmax Pð Þ

h

r
,

εk k ≥ϒ > 0:

8><>: ð34Þ

Thus, as long as l satisfies the above inequation, ƛðεÞ > 0
can be ensured. Then, set HðεÞ = ð1 − ℓÞðlh − ð2LλmaxðPÞ/lÞ
Þkεk2 + ƛðεÞkεk, and (32) can be transformed into

_V1 εð Þ < −H εð Þ < 0: ð35Þ

Thus, let ℏ1ðkεkÞ = λminðPÞkεk2 and ℏ2ðkεkÞ = λmaxðPÞ
kεk2. Based on the above analysis, we can get

zk k ≤ εk k ≤ ℏ−11 ℏ2 ϒð Þð Þ =ϒ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmax Pð Þ
λmin Pð Þ

s
: ð36Þ

So, the extended state observer is progressively stable,
and the observation error ~z = ½~z1, ~z2, ~z3�T is bounded and
can converge to the set range.

3.2. BNFTSMC Design. In this section, inspired by Ref. [24]
and Ref. [42], a robust finite-time controller based on the
backstepping technique and NFTSMC method is further
developed. The proposed BNFTSMC strategy combines the
merits of backstepping technique and NFTSMC method.
Then, an auxiliary system is added to the BNFTSMC design
to cope with the saturation problem and achieve favorable
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control performance. Moreover, the linear and angular
velocity and external disturbance deriving from the pro-
posed ESO are provided to construct the BNFTSMC control
law, which alleviates the chattering effectively.

The tracking error dynamics of the stratospheric satellite
system are obtained as follows.

e1 = x1 − xd ,
e2 = x2 − _xd:

ð37Þ

Considering the observation results of the proposed
ESO, the estimated value of e2 can be written as

ê2 = x̂2 − _xd: ð38Þ

A NFTSM surface is selected as follows:

s = e1 + r1 sgnk1 e1ð Þ + r2 sgnk2 ê2ð Þ, ð39Þ

where r1 and r2 are designed positive definite diagonal
matrices and k1 and k2 are positive numbers which satisfy
k1 ≥ k2 and 1 < k2 < 2.

Remark 9 (see [39]). Utilizing the above sliding surface,
when the system states are far from the equilibrium states,
r1 sgnk1ðe1Þ has a dominant position and ensure a high con-
vergence rate, compared with r2 sgnk2ðê2Þ; when the system
states approach the equilibrium states, r2 sgnk2ðê2Þ guaran-
tees finite-time convergence.

To attenuate the negative effect of input saturation
affecting the satellite dynamics, an auxiliary system is intro-
duced to compensate for the saturation problem, which is
constructed as:

_λ1 = −c1λ1 + λ2,
_λ2 = −c2λ2 + BΔu,

(
ð40Þ

where Δu = satðuÞ − u. λ1, λ2 ∈ R6 are the state variables of
the auxiliary system. c1 and c2 are the positive definite diag-
onal matrices to be designed.

Based on the backstepping method, the following change
of coordinates is introduced.

φ1 = e1 − λ1,
φ2 = ê2 − α − λ2:

(
ð41Þ

where the virtual control function α is designed as

α = −c1e1: ð42Þ

Differentiating φ1 with respect to time, we have

_φ1 = ê2 − _λ1: ð43Þ

From Equations (41)–(43), we get

_φ1 = −c1φ1 + φ2: ð44Þ
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A candidate Lyapunov function is defined as

V2 =
1
2
φT
1φ2: ð45Þ

The derivative of V2 is derived as

_V2 = φT
1 _φ1 = −φT

1 c1φ1 + φT
1φ2: ð46Þ

Remark 10.We can see that, once term φT
1φ2 is eliminated in

the following design, _V2 = −φT
1 c1φ1 < 0 can be obtained, and

the states φ1 and φ2 will be asymptotically stable.

Next, differentiating φ2 with respect to time, yields

_φ2 = ê2 − _α − _λ2
= F x1, x̂2ð Þ + B x1ð Þsat uð Þ + D̂ − €xd − _α + c2λ2 − BΔu

= F x1, x̂2ð Þ + B x1ð Þsat uð Þ + D̂ − _α + c2λ2:
ð47Þ

Then, the sliding surface (39) is rewritten as follows.

s = φ1 + r1 sgnk1 φ1ð Þ + r2 sgnk2 φ2ð Þ: ð48Þ

Differentiating Equation (48) and applying Equations
(44) and (47), it yields

_s = _φ1 + k1r1 φ1j jk1−1 _φ1 + k2r2 φ2j jk2−1 _φ2

= −c1φ1 + φ2 + k1r1 φ1j jk1−1 −c1φ1 + φ2ð Þ + k2r2 φ2j jk2−1 _φ2

= −c1φ1 − k1r1c1 sgnk1 φ1ð Þ + φ2 + k1r1 φ1j jk1−1φ2

+ k2r2 φ2j jk2−1 F+ Bu + D̂ − €xd − _α + c2λ2
À Á

:

ð49Þ

Then, the control input of BNFTSMC method is
designed as follows.

u = B−1 −ρs − η sgn sð Þ − F− D̂ + €xd + _α − c2λ2 −
1

k2r2
φ2j j2−k2 1 + k1r1 φ1j jk1−1

� �
sign φ2ð Þ

� �
,

ð50Þ

where ρ is a positive definite diagonal matrix and η is a
designed switching gain matrix.

Remark 11. The proposed BNFTSMC law combines the
merits of the backstepping technique and NFTSMC method,
such that the stratospheric satellite system can achieve sin-
gularity avoidance, strong robustness, and the fast finite-
time convergence.

Theorem 12. Considering the stratospheric satellite system
subject to dynamic uncertainty and input saturation in Equa-
tion (15), if the NFTSM surface is selected as Equation (39).
and the BNFTSMC controller is designed as Equation (50).,
then the system is globally stable, and the tracking errors con-
verge to zero in a finite time.

Proof. Consider the following candidate Lyapunov function
V3

V3 = V2 +
1
2
sTs: ð51Þ

Differentiating the above equation and applying Equa-
tions (46) and (49), the following relation can be computed.

_V3 = _V2+sT _s
= −φT

1 c1φ1 + φT
1φ1 + sT −c1φ1 − k1r1c1 sgnk1 φ1ð Þ + k2r2 φ2j jk2−1 −ks − η sgn sð Þð Þ

� �
:

ð52Þ

Substituting Equation (48) into Equation (52), it follows

_V3 = −φT
1 c1φ1 + φT

1 φ2 + sT −c1φ1 − k1r1c1 sgnk1 φ1ð Þ + k2r2 φ2j jk2−1 −ks−η sgn sð Þð Þ
� �

= −φT
1 c1φ1 + φT

1 φ2 + φ1 + r1 sgnk1 φ1ð Þ + r2 sgnk2 φ2ð Þ
� �T

−c1φ1 − k1r1c1 sgnk1 φ1ð Þ
� �

−k2r2 φ2j jk2−1 sTks + sTηs
À Á

:

ð53Þ

Then, define a positive definite matrix Q, which can be
expressed as follows.

Q =
2c1 + r1c1 φ1j jk1−1 + k1r1c1 φ1j jk1−1 + k1rT1 r1c1 φ1j jk1−1 k1rT2 r1c1 φ2j jk2−1

−I6×6 O6×6

" #
,

ð54Þ

where kQk = k1krT2 r1c1jφ2jk2−1k ≥ 0. Based on the above
equation, _V3 can be transformed into

_V3 = − φT
1 φT

2
Â Ã

Q
φ1

φ2

" #
− k2r2 φ2j jk2−1 sTks + sTηs

À Á
≤ 0:

ð55Þ

On the basis of the Lyapunov stability theory, the system
states φ1 and φ2 will asymptotically converge to the NFTSM
surface sðtÞ = 0. In order to demonstrate that the conver-
gence occurs in finite time, let us introduce τz and τs, which
satisfy the following inequation.

− φT
1 φT

2
Â Ã

Q
φ1

φ2

" #
≤−τTz φ1j j,

−k2r2 φ2j jk2−1 sj jTh + sj jTη
� �

sj j≤−τTs sj j:
ð56Þ

Continuously, Equation (55) can be rewritten as

_V3 = − φT
1 φT

2
Â Ã

Q
φ1

φ2

" #
− k2r2 φ2j jk2−1 sj jTh+ sj jTη

� �
sj j

≤−τTz φ1j j − τTs sj j:
ð57Þ
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Considering the definition of Lyapunov function, Equa-
tion (57) can be converted to

_V3 ≤ −
ffiffiffi
2

p
τTz

φ1j jffiffiffi
2

p −
ffiffiffi
2

p
τTs

sj jffiffiffi
2

p : ð58Þ

According to Lemma 5, define τ as the minimum ele-

ment of the vector ½ ffiffiffi2p
τTz ,

ffiffiffi
2

p
τTs �

T
, and we can get to

_V3≤−
ffiffiffi
2

p
τTz

φ1j jffiffiffi
2

p −
ffiffiffi
2

p
τTs

sj jffiffiffi
2

p

≤−τ
φ1j jffiffiffi
2

p
� �2

+
sj jffiffiffi
2

p
� �2

 !1/2

= −τV1/2
3 :

ð59Þ

Thus, based on Lemma 4, the tracking error will con-
verge to the equilibrium point in a finite time. Based on
the analysis as mentioned above, the proposed control strat-
egy is effective. Moreover, a flowchart of the observer-based
robust finite-time controller design procedure is shown in
Figure 3.

4. Simulation Results

In this section, numerical simulations of the trajectory track-
ing are carried out to confirm the effectiveness of the pro-
posed observer-based robust finite-time control method.
Also, for the purpose of comparison, “BNFTSMC” is used
to represent the proposed controller. The physical parame-
ters of the studied stratospheric satellite are adopted from
Ref. [7]. Subsequently, to validate the performance of the
designed strategy, backstepping sliding mode control
(BSMC) method will be compared by simulations. The con-
troller parameters of BNFTSMC are listed in Table 1.

The stratospheric satellite is initially located at ζ0 =
½−40, 460,−19960�TðmÞ, and its attitude is γ0 = ½0, 0, 0�Tðrad
Þ. The initial body velocity and angular velocity are υ0 =
½4:5, 0, 0�Tðm/sÞ and ω0 = ½0, 0, 0�Tðrad/sÞ. The limitations
of the control inputs are uυ,max = 104 × ½5, 5, 5�T , uυ,min = −
104 × ½5, 5, 5�T , uω,max = 105 × ½5, 5, 5�T , and uω,min = −105 ×
½5, 5, 5�T . The time-varying disturbances, imposed on the

stratospheric satellite, are given as:

D =

0:1 + 0:05 sin 0:1tð Þ
0:1 + 0:05 sin 0:1tð Þ
0:1 + 0:05 cos 0:1tð Þ
10−3 + 10−3 sin 0:1tð Þ
−10−3 + 10−3 cos 0:1tð Þ
10−3 + 10−3 sin 0:1tð Þ

2666666666664

3777777777775
: ð60Þ

The desired trajectory is organized by circle in planar
and helix in space, which is set as

ζd =
500 sin 0:01tð Þ
500 cos 0:01tð Þ
−1t − 20000

2664
3775 mð Þ, ð61Þ

with the desired attitude calculated as

γ0 =
ϕd

θd

ψd

2664
3775 =

0

0

arctan _yd , _xdð Þ

2664
3775 radð Þ: ð62Þ

The simulation results of the trajectory tracking with the
proposed method are illustrated in Figures 4–17. The three-
dimensional helical trajectory tracking results are presented
in Figure 4, while the tracking results projected on x-z plane
and y-z plane are shown in Figure 5. We can observe that the
designed BNFTSMC method and BSMC method are capable
of tracking the spiral trajectory even when the initial location
is far from the reference trajectory. Figures 6 and 7 illustrate
the position tracking responses and attitude tracking
responses with disturbance inputs respectively. It is clear
that the reference trajectory can be accurately tracked using
the proposed BNFTSMC method within 40 s. From
Figures 8 and 9, we can see that although BSMC strategy
can track the predefined path, the tracking performance is
not as good as the proposed method’s, especially in aspects
of tacking accuracy and convergence rate. The time histories
of the linear velocity and angular velocity tracking responses
are displayed in Figures 10 and 11. We can find that all the
velocity changes of the designed controller are smoother
and more continuous. The force inputs and torque inputs
are shown in Figures 12 and 13. The green dotted line repre-
sents the predefined saturated constraints, and all control
inputs are required to be within the limit of the actuator. It
is worth noting that the control inputs of BSMC controller
generate serious chattering on account of the existence of
the designed saturation. Instead, the control forces and tor-
ques computed by the designed controller are smoother,
and the chattering is effectively eliminated. Then, the obser-
vation errors of the system velocity states varying with time
are presented in Figures 14 and 15. The proposed ESO holds
the high estimation accuracies, which are on the order of 10-

Table 2: Performance comparisons of different methods.

Error BSMC BNFTSMC

IAE
ζe 2:1518 × 103 1:5368 × 103

γe 3.1345 1.2536

ITAE
ζe 2:2756 × 104 1:2484 × 104

γe 63.948 18.5927

ISE
uυ 1:5467 × 1011 1:3042 × 1011

uω 1:8409 × 1013 1:0087 × 1013
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7, 10-7, 10-7, 10-8, 10-10, and 10-11. Additionally, it contributes
to the high accuracy of the corresponding control law.
Figures 16 and 17 show the disturbances along with their
estimation of the ESO, in which we can see that the ESO
can well approximate the external disturbance.

Furthermore, to illustrate the results more clearly and
quantitatively, the integrated absolute error (IAE), the inte-
grated time absolute error (ITAE), and the integral of square
error (ISE) are introduced, which are defined as IAE =

Ð t
0je

ðτÞjdτ, ITAE =
Ð t
0tjeðτÞjdτ, and ISE =

Ð t
0uðτÞ

2dτ. These per-
formance indexes of the proposed method and BSMC
method are computed to appraise the transient performance,
the steady-state performance, and the control energy of the
trajectory tracking controllers [7]. The performance com-
parisons of these methods are listed in Table 2. We can
observe that, compared with BSMC method, the designed
method results in the lower IAE and ITAE with consuming
the smaller control energy and providing the better tracking
performance.

5. Conclusion

An observer-based robust finite-time trajectory tracking
control algorithm is presented for the stratospheric satellite
subject to external disturbances and input saturation. Firstly,
an ESO is adopted to be used for the observation of strato-
spheric satellite 6-DOF velocity and external disturbance.
Then, the stability of the ESO is proven through theoretical
derivation. The ESO provides the estimations of the unmea-
surable states with high accuracy. Therefore, due to the ESO
feedforward compensation to the controller, the chattering
of the system is attenuated effectively. Then, a novel
BNFTSMC strategy is proposed, where NFTSM surface is
employed to guarantee the fast transient response and low
tracking error, and backstepping technique is utilized to
design the NFTSMC laws. Besides, the anti-windup tech-
nique is added to the control law to compensate for the sat-
uration difference, which addresses the negative effect of the
saturation problem. Then, based on the Lyapunov theory,
the global stability and finite-time convergence are obtained.
Finally, simulations are carried out to illustrate that the
designed controller is effective and robust for tracking the
reference trajectory with regard to the external disturbance
and actuator saturation. Comparing results shows that the
designed controller can provide high convergence rate and
attenuate the chattering effect effectively without sacrificing
the robustness of the controller.
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