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In this paper, the tracking control of the air-breathing hypersonic vehicle with model parameter uncertainties and actuator faults
is studied. Firstly, a high-order linearization model is used to build an adaptive terminal sliding mode that eliminates chattering
and provides increased robustness for unknown disturbances in the system. Second, a fault-tolerant control method mixing the
radial basis function neural network with adaptive sliding mode control is suggested, with the addition of a hyperbolic tangent
function to avoid controller input saturation. Finally, the stability of the controller is proved strictly by the Lyapunov theory,
and the robustness and effectiveness of the controller are further verified by numerical simulations of the longitudinal model of
the hypersonic vehicle.

1. Introduction

Air-breathing hypersonic vehicles (ABHV) are an appealing
technology for military and low-cost space access needs. The
aerodynamic properties of ABHV make flight control more
susceptible to parameter errors and actuator faults than tra-
ditional flying aircraft at high attitude and Mach numbers.
Strong fault-tolerant control systems should therefore be
created for ABHVs to guarantee flight safety [1]. Various
researchers have been researching hypersonic vehicle model-
ling since the 1990s, which is used to describe the dynamic
characteristics of hypersonic vehicles. Marrison and Stengel
suggested a high-fidelity longitudinal dynamics model based
on the universal hypersonic vehicle developed at NASA
Langley Research Center [2]. Strong nonlinear, time-vary-
ing, and nonminimum phase characteristics are the main
features of a hypersonic vehicle. The longitudinal dynamics
of ABHV are linearized to higher order [3]. Many sophisti-
cated control techniques [4], including adaptive control
[5], backstepping control [6], predictive control [7], fuzzy
control [8], and feedback linearization control [9], can be
employed to form fault-tolerant controllers for ABHV.

Sliding mode control is one of the most appealing non-
linear control tools among all types of control approaches.

The feedback linearization model is used to construct an
adaptive sliding mode controller with model uncertainty
[10]. Because the linear sliding mode surface can only con-
verge exponentially, the integral sliding mode controller is
employed to achieve finite-time state convergence [11].
Based on this finite-time integral sliding mode surface, a
simplified smooth second-order sliding mode approach law
can realize synchronous convergence to zero [12]. In
addition, finite-time convergence of states can be realized
by terminal sliding mode, and unknown actuator faults can
be estimated by adaptive law [13]. In the meantime, the slid-
ing mode observer (SMO) may be used to assess actuator
fault information and model uncertainty, and the estimation
error converges in a finite amount of time [14] .

In actuality, system uncertainty and actuator faults are
difficult to model. For dynamics that cannot be modeled,
neural networks have been shown to be able to approximate
any continuous function [15]. The typical way is always to
build the feedback controller according to the model and
then use the neural network to estimate the system distur-
bance to adjust the control input [16] . It is easy to convert
model parameter uncertainties into system disturbances
using neural network compensation to increase the robust-
ness of the feedback controller [17]. In some cases [18],
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neural networks may approximate the model function and
gain function for a nonlinear system, hence increasing
robustness [19]. Further, the control input may be defined
as a new object function [20], and a radial basis function
neural network may also be employed to approximate it.
As a result, the uncertainty induced by actuator failure
may be predicted using a neural network [21, 22].

Despite substantial advances in fault-tolerant hypersonic
vehicle management, the accompanying literature analysis
demonstrates that there is still room for improvement [23,
24]. For example, just the actuator failure was analyzed,
ignoring bias and outage failures. Although the failure
observer’s assistance was used to estimate failure informa-
tion, the overall system’s stability was not revealed, making
it impossible to assess the process’s condition at any time.
We investigate the failure tracking control of a hypersonic
vehicle employing terminal sliding mode theory and a neural
network approach in this research [25–29]. In this paper, a
fault-tolerant control (FTC) method combining radial basis
function neural network (RBFNN) and adaptive terminal
sliding mode (ATSM) is proposed, which can track the
ABHV trajectory of an ABHV in the presence of air density,
mass, and moment of inertia uncertainties as well as actuator
faults. The main contributions of this paper are as follows:

(1) This scheme resolves the coupling problem in
MIMO systems like ABHV, which has theoretical
implications

(2) The RBFNN may approximate the actuator’s fault
characteristics and provide the hyperbolic tangent
function to prevent saturation of the control input,
thus assuring the control system’s practical applica-
tion value

(3) This fault-tolerant control scheme ensures the
ABHV closed-loop control system’s stability and
allows for a fast and effective reaction to the refer-
ence trajectory

The arrangement of this paper is as follows:
In Section 2, the longitudinal dynamics model of ABHV

is input and output linearized, as well as actuator fault
modelling and control input antisaturation processing.
Then, Section 3 introduces the prior knowledge of RBFNN
and the relevant lemma needed for controller design. The
FTC scheme based on RBFNN is designed for the control
model in Section 2. In Section 4, the ABHV model with
and without faults is numerically simulated. Finally, this
paper is summarised in Section 5.

2. Problem Statements

The longitudinal model of the ABHV is described as fol-
lows [8]:

_V = T cos α −D
m

− g sin γ,

_h = V sin γ,

_γ = L + T sin α

mV
−

g
V

−
V
r

� �
cos γ,

_α = q − _γ,

_q =
My

Iyy
,

ð1Þ

where V is the flight velocity, α is the angle of attack, h is the
flight altitude, γ is the flight path angle (FPA), and q is the
pitch rate. Iyy is the moment of inertia, m is the ABHV’s

mass, g = μ/ðRe + hÞ2 is the gravitational acceleration, and
Re is the earth’s radius. L is the lift force, T is the thrust of
engine, D is the resistance, and M is the pitching moment.
These forces, torques, and coefficients of ABHV are as
follows:

L = 0:5ρV2SCL, CL = 0:6203α,

D = 0:5ρV2SCD, CD = 0:6450α2 + 0:0043378α + 0:003772,

T = 0:5ρV2SCT ,

CT =
0:02576ϕ, ϕ < 1,

0:0224 + 0:00336ϕ, ϕ ≥ 1,

(

M = 0:5ρV2S�cCM , CM = CM αð Þ + CM qð Þ + CM δð Þ,

CM αð Þ = −0:035α2 + 0:036617α + 5:3261 × 10−6,

CM qð Þ = �c
2V q −6:796α2 + 0:3015α − 0:2289

À Á
,

CM δð Þ = 0:0292 δe − αð Þ,
ð2Þ

where δe is the elevator angular deflection and ϕ is fuel-to-air
ratio. In fact, the actuator output is bounded and can be
expressed as ϕ ∈ ½ϕmin, ϕmax� and δe ∈ ½δmin, δmax�, where
ϕmin, ϕmax, δmin, and δmax are known constants. A second-
order system describes the dynamics of the engine [11]:

€ϕ = −2ζωn
_ϕ − ω2

nϕ + ω2
nϕc, ð3Þ

where ϕc signifies the control input demand, ωn means the
engine dynamics’ natural frequency undamped, and ζ is the
damping ratio. Because the control input is bound by Equa-
tion (4), the following hyperbolic tangent function is used
to avoid control input saturation:

ϕL =
ϕmin − ϕmaxj j

2 tanh 2ϕc − ϕmin + ϕmaxð Þ
ϕmin − ϕmaxj j

� �
,

δL =
δmin − δmaxj j

2 tanh 2δe − δmin + δmaxð Þ
δmin − δmaxj j

� �
:

ð4Þ
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Actuator faults can generally be described as a linear
model:

uF = kFuL + dF , ð5Þ

where uF is the control signals under faults, uL = ½ϕL δL�T is
the saturation input, kF = diag ðkF1

 kF2Þ is the fault gain

matrix, and dF = ½dF1
 dF2

�T is the vector of fault deviation.

3. Controller Design

Lemma 1 (approximation based on RBFNN). The following
RBFNNs can estimate an unknown smooth nonlinear func-
tion f ðxÞ on a compact set:

f xð Þ =W∗Th xð Þ + ε, ð6Þ

where x is the input of network, W∗T is the ideal weight
matrix, hðxÞ is the convolution vector, and ε is the approxi-
mation error. hðxÞ = ½h1h2 ⋯ hl�T is chosen as the convolu-
tion formula:

hj xð Þ = exp
x − cj
 2

2b2j

 !
, j = 1, 2,⋯l, ð7Þ

where cj and bj are the center and width of the j-th neuron,
respectively, and l is the node number of the neural networks.

In Figure 1, the FTC scheme framework combining RBFNN
and ATSM proposed in this paper is shown.

In order to track ABHV’s reference velocity Vd and

reference altitude hd , the state variable is set to x =
½V γ α q ϕ  _ϕ h�T , the input variable to u =
½δeϕc�T , and the output variable to y = ½V h�T . The tracking
errors can be defined as eV =V − Vd and eh = h − hd .

The high-order linearization model of ABHV is shown
as follows:

V 3ð Þ

h 4ð Þ

" #
=

f V

f h

" #
+

b11 b12

b21 b22

" #
ϕc

δe

" #
, ð8Þ

where f V , f h, b11, b12, b21, and b22 are defined in [11]. The
auxiliary variables [13] are introduced as

e1 =
eV + _eV

eh + _eh +€eh

" #
,

e2 = _e1 =
_eV +€eV

_eh +€eh +    ⃛eh

" #
:

ð9Þ

Considering the influence of parameter uncertainty and
external disturbance, the system can be defined as follows:

_e1 = e2,
_e2 = f xð Þ + g xð Þu + d,

ð10Þ

where f ðxÞ, gðxÞ, and d are known in [13] as follows:

f xð Þ =
V 3ð Þ

d

h 4ð Þ
d

0@ 1A −
f V xð Þ
f h xð Þ

 !
+ e2 xð Þ −

_eV xð Þ
_eh xð Þ

 !
,

g xð Þ =
b11 b12

b21 b22

" #
,

d =
d1

d2

" #
,

u =
φc

δe

" #
:

ð11Þ

Assumption 2. There exists a positive value du with an
unknown upper bound, such that the system disturbance d
satisfies:

dk k∞ ≤ du: ð12Þ

Because the state variables and aerodynamic parameters
are practically bounded, the disturbance d is a function of
them and has a certain range of values.

Actuator DynamicsATSM

RBFNN

V, h

Vd, hd

𝜎

u

s x

Figure 1: Control scheme.
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In order to satisfy Lemma 1, a terminal sliding manifold
is chosen as follows:

s = e2 + kae1 + kbP e1,
q
p

� �
,

P e1,
q
p

� �
= sign e11

À Á
e11
�� ��q/p  sign e21

À Á
e21
�� ��q/ph iT

,
ð13Þ

where s = ½s1 s2�T , e1 = ½e11 e21�T , e2 = ½e12 e22�T , ka, and kb
are positive constants. When q and p are positive odd
numbers, and p > q, the sliding mode is Hurwitz.

The law of the sliding mode approach is as follows:

_s = −k1 sign s1ð Þ  sign s2ð Þ½ �T − k2s, ð14Þ

where k1 and k2 are positive constants.
Since the system disturbance d cannot be accurately

obtained, a robust term d̂ is introduced in the form of

d̂ = d̂
2
us +

1
4 λ

2
1s, ð15Þ

where d̂u is the estimated value of du and λ1 is a positive con-
stant. The estimated error of du is defined as ~du = du − d̂u.

Considering system (13), create a Lyapunov function by
following these steps:

L1 =
1
2 s

Ts + 1
2
~d
2
u: ð16Þ

The derivative of L1 can be obtained:

_L1 = sT _s + ~du
_~du

= sT f xð Þ + g xð Þu + d + kae2 + kb _P e1,
q
p

� �� �
− ~du

_̂du,

_P e1,
q
p

� �
= q
p
sign e11

À Á
e11
�� �� q/pð Þ−1e12 sign e21

À Á
e11
�� �� q/pð Þ−1e22

� �T
:

ð17Þ

Applying Assumption 2 and the approach law (14), the
ATSM system’s input is constructed as follows:

us = g−1 −f − d̂ − kae2 − kb _P e1,
q
p

� ��
− k1 sign s1ð Þ sign s2ð Þ½ �T − k2s

�
:

ð18Þ

By substituting the derivative from Equation (18) into
Equation (17), the following may be deduced:

_L1 ≤ −k1 sk k1 − k2s
Ts + dusk k1 − sT d̂

2
us +

1
4 λ

2
1s

� �
− ~du

_̂du:

ð19Þ

The adaptive law of parameters d̂u is chosen as

_̂du = λ21s
Ts − λ2d̂u, ð20Þ

where λ2 is positive constant.
Substituting Equation (20) into Equation (19), the fol-

lowing inequality relation can be obtained:

dusk k1 − d̂
2
us

Ts −
1
4 λ

2
1s

Ts − ~duλ
2
1s

Ts ≤
du
4λ1

: ð21Þ

Therefore, Equation (19) can be simplified as

_L1 ≤ −k1 sk k1 − k2s
Ts + du

4λ1
−
1
2 λ2

~d
2
u +

1
2 λ2d

2
u −

1
2 λ2d̂

2
u

≤ −k2s
Ts −

1
2 λ2

~d
2
u +

du
4λ1

+ 1
2 λ2d

2
u

≤ − min k2,
1
2 λ2

� �
L1 +

du
4λ1

+ 1
2 λ2d

2
u:

ð22Þ

Taking into account the actuator faults and saturations,
the system (10) can be represented as follows:

_e1 = e2,

_e2 = f xð Þ + g xð Þ u − σ xð Þð Þ + d,
ð23Þ

where σðxÞ = u − uF are the errors between the control
inputs and the control signals under faults.

The RBFNN is used to estimate σðxÞ the disturbance
term given by the following:

σ =W∗Th xð Þ + ε: ð24Þ

The estimate error of σ can be described as

~σ = σ − bσ = ~W
T
h + ε, ð25Þ

where Ŵ is the estimate value of W∗ and ~W =W∗ − Ŵ is
the estimated error.

Assumption 3. The approximation error ε is supposed to be
bound by an unknown positive constant ε0 as follows:

εk k∞ ≤ ε0: ð26Þ
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According to Equation (18), the actual input of the FTC
scheme is constructed as follows:

u = g−1 −f − d̂
T
u d̂us −

1
4 λ

2
1s − kae2 − kb _P e1,

q
p

� ��
− k1 sign s1ð Þ  sign s2ð Þ½ �T − k2s

�
+ Ŵ

T
h xð Þ:

ð27Þ

For the system (23), the Lyapunov function L2 corre-
sponding to Equation (16) is created:

L2 = L1 +
1
2 tr

~W
T
Γ−1 ~W

� �
: ð28Þ

The derivative of L2 can be found as follows:

_L1 = sT _s − ~du
_̂du − tr ~W

T
Γ−1 _̂W

� �
: ð29Þ

Applying Equations (20), (23), and (27), the time deriv-
ative of L3 can be written as

_L2 ≤ −k1 sk k1 − k2s
Ts −

1
2 λ2

~d
2
u +

du
4λ1

+ 1
2 λ2d

2
u

− sTg ~W
T
h − sTgε − tr ~W

T
Γ−1 _̂W

� �
:

ð30Þ

The adaptive adjustment law for Ŵ is chosen as follows:

_̂W = −Γ hsTg + λ3Ŵ
� �

, ð31Þ

where λ3 is a positive constant and Γ is a diagonal positive
matrix.

Substituting Equation (31) into Equation (30), the time
derivative of L3 can be written as

_L2 ≤ −k1 sk k1 − k2s
Ts −

1
2 λ2

~d
2
u +

du
4λ1

+ 1
2 λ2d

2
u

− sTg ~W
T
h − sTgε − tr ~W

T
hsTg + λ3 ~W

T
Ŵ

� �
:

ð32Þ

When k1 > kεT0 gk∞, Equation (32) can be rewritten as:

_L2 ≤ −k1 sk k1 − k2s
Ts −

1
2 λ2

~d
2
u +

du
4λ1

+ 1
2 λ2d

2
u

+ λ3tr ~W
T
Ŵ

� �
:

ð33Þ

According to the unequal relationship,

2 ~WT ~W = ~W
T
W∗ − Ŵ
À Á

+ W∗ − Ŵ
À ÁT

W

= ~W
T
W∗ − ~W

T ~W + Ŵ
T
W∗ − Ŵ

T
Ŵ

=W∗TW∗ − ~W
T ~W − Ŵ

T
Ŵ,

tr ~W
T
Ŵ

� �
= W∗k k2 − ~W

 
2 − Ŵ
 

2

≤
1
2 W∗k k2 − ~W

 
2

� �
:

ð34Þ

Substitute into Equation (32) to obtain

_L2 ≤ −k2s
Ts −

1
2 λ2

~d
2
u −

1
2 λ3

~W
 

2 +
du
4λ1

+ 1
2 λ2d

2
u

+ 1
2 λ3 W∗k k2:

ð35Þ

When λ4 is the largest eigenvalue of the matrix Γ−1,

trð ~WT
Γ−1 ~WÞ ≤ λ4k ~Wk2, the following relationships exist:

_L2 ≤ −kLL2 + Δ, ð36Þ

where kL =min fk2, ð1/2Þλ2, λ3/λ4g and Δ = ðdu/4λÞ +
ðð1/2Þλ2kduk2Þ + ðð1/2Þλ3kW∗k2Þ.

The solution to formula (35) is as follows:

L2 tð Þ ≤ L2 0ð Þe−kLt + Δ

kL
≤ L2 0ð Þ + Δ

kL
 ∀t ≥ 0: ð37Þ

According to Equations (22) and (37), it can be seen that
all signals in the closed-loop control system are bounded.
The state tracking errors eV , eh, e1, and e2, as well as the
estimation errors of the disturbance’s upper bound du and
the neural network weights W∗, are bounded. Based on
Lyapunov theory, the stability of this closed-loop system is
uniformly ultimately stable and exponentially converge to a
bounded neighbourhood of the system original point.

4. Simulation Results

In order to verify the effectiveness of the proposed control
strategy, according to the dynamics models of Equations
(1), (2), and (3), and by referring to the parameters of refer-
ence [2], simulation is carried out to make the aircraft track
the given altitude command and speed command. The initial
values of the states are set as V0 = 15060ft/s, h = 110000ft,
γ = 0rad, α = 0:0312rad, ϕ = 0:1802, _ϕ = 0, and q = 0rad/s.
The step command is Vd = 15160ft/s and hc = 112000ft.
The reference commands of Vr and hr are calculated as
follows:

_xi = xi+1 i = 1, 2,⋯,n − 1ð Þ,

_xn = λnxd −
d
dt

+ λ

� �n

x1,
ð38Þ
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Figure 2: Continued.
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with λV = 0:5 and λh = 0:3. To verify the robustness of the
controller, the model parameters are processed as follows:
Δm = −0:03, ΔIyy = −0:03, Δ�c = 0:03, Δce0 = 0:03, Δρ0 =
0:03, and ΔS0 = 0:03. The external disturbances [11–13]
are given as d1 = 0:002 sin ð0:1tÞ and d2 = 0:01 sin ð0:2tÞ.

The design parameters of the ATSM controller method
in this paper are, respectively, set as kα = 5, kb = 0:01, p = 3,
q = 1, k1 = 5, k2 = 10, λ1 = 1:5, λ2 = 0:02, and λ3 = 0:01. The
design parameters of the FTC method in this paper are,
respectively, set as kα = 3, kb = 0:1, p = 3, q = 1, k1 = 10,
k2 = 10, λ1 = 1:5, λ2 = 0:02, λ3 = 0:01Ŵ0 = 011×2, Γ = 200
I11×11, and bj = 100.

The center value matrix C = ½C1C2 ⋯ C11� of the Gauss-
ian basis function is chosen as

C5×11 = A5×6 B5×5½ �,

A5×6 =

14000 14200 14400 14600 14800 15000
−0:0175 −0:0140 −0:0105 −0:0070 −0:0035 0
−0:0873 −0:0698 −0:0524 −0:0349 −0:0175 0

0 0:1000 0:2000 0:3000 0:4000 0:5000
100000 102000 104000 106000 108000 110000

2666666664

3777777775
,

B5×5 =

15200 15400 15600 15800 16000
0:0035 0:0070 0:0105 0:0140 0:0175
0:0175 0:0349 0:0524 0:0698 0:0873
0:6000 0:7000 0:8000 0:9000 1:000
112000 114000 116000 118000 120000

2666666664

3777777775
:

ð39Þ

Example 1 (the failure-free simulation analysis between
ATSM and FTC). In the example, the parameters of
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Figure 2: Response curves of the ABHV’s variables without the actuator faults.
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Figure 3: Continued.
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Equation (5) are set as kF = 0 and dF = 0. The range of con-
trol input is set as 0 ≤ ϕc ≤ 1 and −30 ≤ δe ≤ 30ðdegÞ. The
simulation results are shown in Figure 2.

The tracking curves of velocity and altitude can be
obtained from Figures 2(a) and 2(b), allowing the ATSM
controller to track the reference command with a small
tracking error. It is visible from Figures 2(a)–2(c) that the
states converge to steady-state values in a brief period.
Figures 2(d) and 2(e) show the control inputs of fuel-to-air
ratio and deflection in the limit range, which are smooth.
Figure 2(f) describes the curves of the adaptive parameters
in the case of unknown uncertainties. The NN weight adap-
tion and estimate values fluctuate quickly owing to tracking
errors, as seen in Figures 2(g) and 2(h), and the variables
converge to a constant in a limited amount of time.

Example 2 (the failure-tolerant simulation analysis between
ATSM and FTC). In the example, the range of control input

is set as in Example 1, and the parameters of Equation (5)
are set as follows:

kF tð Þ =
0, t < 40s,

0:5 0:3½ �T , t ≥ 40s,

(

dF tð Þ =
0, t < 40s,

0:001 0:001½ � ∗ sin 0:2t + π

6
� �

, t ≥ 40s:

8<:
ð40Þ

The simulation results are shown in Figure 3.
The hypersonic vehicle is marginally impacted by veloc-

ity and altitude in time-varying fault conditions, as seen in
Figures 3(a)–3(c). Figures 3(e) and 3(f) illustrate the curves
of the input signal. From Figure 3(d), when simulating for
40 s, the actuator faults occur, the ATSM controller adjusts
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Figure 3: The response curves of the ABHV’s variables under the actuator faults.
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the control gain rapidly, and the control input is out of the
lower bound of the fuel-to-air ratio. The results of simula-
tion show that the amplitude of deviation can be reduced
with the method and improve the convergence of the states.
From Figures 3(g)–3(i), it can be seen that the FTC scheme
has a strong fault-tolerant capacity to adjust the adaptive
parameters and the NN estimate values online and handle
failure effectively under the occurrence of failure.

5. Conclusions

In this paper, the ABHV longitudinal model’s parameter
uncertainties, external disturbances, and actuator defects
are investigated using radial basis function neural networks
(RBFNN) and adaptive sliding mode (ATSM). The input-
output linearization approach is used to create an adaptive
terminal sliding mode controller based on the simplified
nonlinear dynamics model of a hypersonic vehicle, which
achieves speed and altitude tracking convergence in a short
time. A fault-tolerant control (FTC) system was created to
further tackle the actuator defect problem, and RBFNN
was employed to simulate the unknown actuator dynamics.
The Lyapunov theorem verifies the closed-loop system’s uni-
formly ultimate stability. The FTC scheme is numerically
simulated. The analysis and simulation findings reveal that
the fault-tolerant control system described in this study
can provide quick tracking response and has high resilience
in the presence of actuator faults.

Data Availability

The model parameters of the numerical simulation used to
support the findings of this study have been deposited in
the “Design of robust control systems for a hypersonic air-
craft” repository (doi:10.2514/2.4197).
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