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Reducing satellite failures and keeping satellites healthy in orbit are important issues. Current satellite systems have developed
modules to detect anomalies on board. However, they only target a subset of anomaly types and heavily rely on expert
knowledge. To address these limitations, this paper proposes a data-driven anomaly detection framework to detect point
anomalies. We first propose the Deviation Divide Mean over Neighbors (DDMN) method to figure out the fake anomaly
problem caused by data errors in the satellite telemetry data. Then, we use the Long Short-Term Memory (LSTM), a deep
learning method, to model the multivariable time-series data, and a Gaussian model to detect anomalies. We applied our
approach to the telemetry data collected from sensors on an in-orbit satellite for more than two years and demonstrate its
superiority. Moreover, we explored what conditions could lead to false alarms. The approach proposed has been deployed to
the ground station to monitor the health status of the in-orbit satellites.

1. Introduction

An anomaly, by definition, is an event that differs from the
usual behavior of the system data. Analyzing satellite telem-
etry data and conducting anomaly detection have been
important subjects in the development of aeronautics and
astronautics. Satellite is a complex system composed of
many components that are interrelated and mutually
restricted. However, unlike other complex systems, the hard-
ware monitoring of satellites is difficult, and a single failure
in a component or a subsystem may be fatal to the system.
Consequently, it is highly important to check the behavior
of the satellite during all its lifecycle to detect the divergences
as soon as possible [1].

The Out-Of-Limit (OOL) method which consists of
defining a nominal range, with lower and upper thresholds,
is widely used in current satellites. One or more of the
parameter acquisitions exceeding an upper or lower thresh-
old will trigger an alarm. However, modern satellites are
becoming increasingly sophisticated and complex. Deter-
mining the health state of these systems using the OOL

checking method is not sufficient as the number of sensors
and component interactions grow. Firstly, this method is
not robust enough to detect the various types of anomalies
that may occur in the telemetry data. Secondly, it requires
a significant amount of domain knowledge and expertise
from operators of each abnormal behavior expected, each
monitoring being explicitly programmed to detect a particu-
lar anomaly signature [2–6].

In order to address the shortcomings of the current
telemetry monitoring system, data-driven methods have
been proposed [7–12]. The main idea behind these methods
is to use the telemetry stored to create a mathematical model
of the nominal behavior of the satellite, since the anomalous
events in this reference telemetry are rare. Unlike OOL
methods, data-driven methods generate models from data
and diagnosis directly from vast newly acquired telemetry,
rather than building it based on human expertise. Data-
driven methods can work effectively with dozens of parame-
ters and determine if the current satellite system or subsystem
behavior is nominal or not. These data-driven methods, ide-
ally, do not make any assumption on the parameter behavior
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during an anomaly or during the nominal functioning of the
satellite. The model formed by data-driven techniques is also
easy to update. It can be applied to a wide variety of systems
even by a person without expert knowledge of them [13, 14].

When applying the data-driven methods to an actual
satellite system, however, it is mandatory to choose an
appropriate statistical model for representing the normal
system behavior [7, 15]. This is not a trivial work because
a satellite system is very complex and its telemetry data
include many aspects, such as the fake anomaly problem.

This study gives a general anomaly detection framework
for satellite telemetry. We make the following three contri-
butions. First, we propose the Deviation Divide Mean over
Neighbors (DDMN) method to handle the fake anomaly
problem in satellite telemetry, which can be applied to both
continuous variables and discrete variables. Then, we utilize
a deep learning model, the long short-term memory (LSTM)
networks, to model the multitelemetries time-series data of
satellite and a Gaussian model to conduct the anomaly
detection. Second, we applied the proposed approach to a
two-and-a-half-year dataset from an in-orbit satellite with
real anomalies. Through the extensive experiments, we prove
the effectiveness of our anomaly detection framework. Third,
in the experiment, we discover that three types of data can
result in false alarms, which are fake anomalies, unknown inci-
dents, and sparse samples. This is helpful for understanding
the nature of false alarms and provides valuable information
for further studies of anomaly detection problems.

2. Approach

2.1. Fake Anomaly Detection. Satellite telemetry data is usu-
ally composed of thousands of telemetries and occasionally
contain exceptionally erroneous values when transmitted
back to the ground, which we call fake anomalies. Fake
anomalies are not caused by system failures but by errors
in data conversion or transmission. Fake anomalies are dis-
criminated from the true anomalies and should not be the
target of anomaly detection. Before using a machine learning
method, it is critical to remove the fake anomalies since they
will damage the learned model. Fake anomalies are common
in satellite telemetry data. Hence, removing fake anomalies
is not a trivial work.

Figure 1 shows two telemetry variables with fake anom-
alies. For example, in Figure 2(a), the values of fake anoma-
lies are close to -30, while normal values are larger than 5. A
straightforward method to remove these fake anomalies is by
defining an upper bound and a lower bound. However, it
does not work for fake anomalies within the range as in
Figure 2(b).

Notably, the fake anomalies rarely and randomly appear
in the telemetry data and are very different from their neigh-
boring time steps. Accordingly, we propose the Deviation
Divide Mean over Neighbors (DDMN) method. Specifically,
for a K-dimensional collection X with T samples, we use the
indicator variable st,k to denote if sample t of telemetry
parameter k, i.e., xt,k, is a fake anomaly. The DDMN method
is as follows:

st,k = DDM nextð Þ
t,k >H

� �
& DDM priorð Þ

t,k >H
� �

, ð1Þ

where DDMðnextÞ
t,k calculates the deviation dividing mean

over the next N sliding windows as in equation (2), DD
MðpriorÞ

t,k calculates the deviation dividing mean over the prior
M sliding windows as in equation (3), and the operator &
represents AND operation.

DDM nextð Þ
t,k =

xt,k − μ nextð Þ

μ nextð Þ

����
����, ð2Þ

DDM priorð Þ
t,k =

xt,k − μ priorð Þ

μ priorð Þ

����
����: ð3Þ

In equations (2) and (3), μðnextÞ denotes the mean of
values in the next N time slices, i.e., μðnextÞ = ð1/NÞ∑N

n=1
xt+n,k, and μðpriorÞ denotes the mean of values in the previous
M time slices, i.e., μðpriorÞ = ð1/MÞ∑M

m=1xt−m,k. xt,k is a fake

anomaly if st,k = 1 satisfying a condition that both DD
MðpriorÞ

t,k and DDMðnextÞ
t,k are larger than a given threshold H.

Otherwise, st,k = 0 indicates xt,k is normal. DDMN can be
applied to both continuous variables and discrete variables.
When applied to discrete variables, it is necessary to encode
it into numbers such as 1.1 and 1.2. In the experiments, we
empirically set M = 8, N = 8, and H = 2.

The algorithm of DDMN is described in Algorithm 1.
Specifically, given the data collection X, calculate the indica-
tor variable st,k for each value xt,k based on equation (1). If
st,k = 1, i.e., xt,k is a fake anomaly, remove the sample xt,∗
from X and update the length L based on the new dataset
XðnewÞ. If st,k = 0, i.e., xt,k is normal, update t to move to
the next sample. After one round of calculation, return the
preprocessed dataset XðnewÞ with fake anomalies removed.

2.2. LSTMModel. A satellite system or each of its subsystems
usually has a number of different operating modes and
changes from one mode to another over time. However,
when an exception occurs, the system will work in a failure
operating mode that the model never saw before. This paper
utilizes the Long Short-Term Memory (LSTM) networks, a
deep learning model, to learn the frequently observed oper-
ating from the data. LSTMs have been proved to be
extremely suitable for processing time-series data [10, 11,
16, 17]. Since the anomalous events in the telemetry are rare,
LSTM will be trained on a nominal dataset.

Deep learning is a distributed feature learning method.
The main idea is to extract the essential characteristics of
data by multiple progressive training layers. LSTMs are a
kind of neural network especially dealing with time-series
data. LSTMs allow storage of subsequent states in different
time intervals through the periodic connection of the hidden
layer nodes where the parameters are shared among the dif-
ferent parts of the model. LSTMs can make full use of histor-
ical information and the time-dependent relationship of the
modeling signal [18].
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(a) Telemetry variable a
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(b) Telemetry variable b

0 20000 40000 60000 80000 100000 120000
Time (min)

Other test samples
False alarm samples

0.0

0.2

0.4

0.6

N
or

m
al

iz
ed

 v
al

ue

0.8

1.0

(c) Telemetry variable c
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(d) Telemetry variable d
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(e) Telemetry variable e

0 20000 40000 60000 80000 100000 120000
Time (min)

Other test samples
False alarm samples

0.0

0.2

0.4

0.6

N
or

m
al

iz
ed

 v
al

ue

0.8

1.0

(f) Telemetry variable f

Figure 1: Continued.
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A typical LSTM neural network cell is configured mainly
by four gates: input gate, cell gate, forget gate, and output
gate. Each cell contains information at time step t on the
observations that have been obtained in this step. The read-
ing and modification of memory unit in LSTMs are realized
by controlling the input gate, the forget gate, and the output
gate. They are generally described by sigmoid or tanh func-
tions [19]. Gates and cell update and output are defined as
follows:

f t = σ Wf · ht−1, xt½ � + bf
� �

, ð4Þ

it = σ Wi · ht−1, xt½ � + bið Þ, ð5Þ
ct = tanh Wc · ht−1, xt½ � + bcð Þ, ð6Þ
ot = σ Wo ht−1, xt½ � + boð Þ, ð7Þ
ht = ot ∗ tanh ctð Þ, ð8Þ

where σ is the sigmoid function, i is the input gate activation
vector, f the forget gate activation function, o is the output
gate activation function, and c the cell activation function.
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(g) Telemetry variable g
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(h) Telemetry variable h

Figure 1: Eight telemetry variables in the testing data (red triangles are false alarm samples).

–30

0 2000 4000 6000
Time (min)

8000 10000

–25

–20

–15

–10

–5

Va
lu

e

0

5

(a) Telemetry variable A

–10

0 10000 20000 30000
Time (min)

40000 50000 60000

Va
lu

e

0

10

20

30

40

50

60

(b) Telemetry variable B

Figure 2: Telemetry variables with fake anomalies.

Input: dataset X:
Output: dataset Xnew

1/∗Initialization ∗ /
2 t =M, L = ∣X ∣
3 for telemetry k ∈ ð1, KÞ in dataset X do
4 while t ∈ ð1, TÞ < ðL −NÞ do
5 calculate the DDMðnextÞ

t,k using equation (2)

6 calculate the DDMðpriorÞ
t,k using equation (3)

7 calculate the indicator variable st,k using equation (1)
8 if st,k = 1 then

9 update X to XðnewÞ by removing xt,∗ from X
10 L = ∣XðnewÞ ∣
11 else if st,k = 0 then
12 t = t + 1
13 return XðnewÞ

Algorithm 1: Deviation Divide Mean over Neighbors (DDMN).
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W is the weight matrix from each cell to gate vector. h is the
output of the unit. Specifically, at each time step, the LSTM
unit receives input from the current state xt,⋆ and the hidden
state ht−1 of the LSTMs from the previous time step. When
receiving the input information, each gate will operate on
data from different sources and its activation function deter-
mines whether it is active. After the forget gate f t and the
input gate it are transformed by the sigmoid function, they
are encoded to the state of the memory cell to form a new
memory cell state ct . Finally, the memory cell state ct forms
the output ht of the LSTM unit by the operation of the tanh
function and the dynamic control of the output gate ot [?].

In our scenario, the next time step of the time series
telemetry data will be predicted based on the prior L′ steps
by LSTMs. After comparing the predicted value with the
actual value to judge the deviation degree, the anomalies
are determined, which we will discuss in the next section.

2.3. Anomaly Detection. When the model parameters have
been estimated from the training data, the learned model
can be utilized to generate the errors between the true value
yt and the predicted value ŷt at time t as et = ∣yt − ŷt ∣ . How-
ever, this score does not indicate whether the sample is
anomalous or normal.

To set a reasonable threshold to discriminate anomalous
samples from normal ones, we estimate a Gaussian model
Nðμ′, σ′Þ from the training error using maximum likelihood
estimation. Then, for any value et , we define its anomaly
score as at = jðet − μ′Þ/σ′j. If at >H ′, xt is considered as an
anomaly. In the real application, we set the threshold H ′ = 2.

3. Experiment

3.1. Dataset and Settings. The dataset used in the experiment
comes from an in-orbit satellite. Two-and-a-half-year data
with more than 1.3 million samples regarding 8 telemetries
are contained in the dataset. The reason we use this dataset
is that a failure occurred during this period. We label the
anomalies based on the occurring and end time of the fail-
ure. Finally, 0.15% of data samples are labeled as anomalous
and the rest are normal. We use the early 80% data for train-
ing, which only contains the nominal data, and the remain-
ing 20% data for testing that contains anomalies. Only the
training dataset is preprocessed using the DDMN algorithm
proposed in Section 2. For parameters in LSTMs, we sum-
marize them in Table 1.

3.2. Metrics. We use the precision, recall, and F1-score to
evaluate the performance of our approach. The mathemati-
cal representations of these metrics are calculated as follows:

Precision = TP
TP + FP

, ð9Þ

Recall =
TP

TP + FN
, ð10Þ

F1‐score = 2 × Precision × Recall
Precision + Recall

, ð11Þ

where TP (True Positive) represents the number of teleme-
tries correctly classified as anomalous, TN (True Negative)
represents the number of telemetries correctly classified as
normal, FP (False Positive) represents the number of telem-
etries incorrectly classified as anomalous, and FN (False
Negative) represents the number of telemetries incorrectly
classified as normal.

3.3. Fake Anomaly Detection. We qualitatively compare the
result of training dataset before and after fake anomalies’
removal in Figure 3. It is observed that fake anomalies are
common to satellite telemetries and obscure the real struc-
ture of data. After removing fake anomalies by the proposed
DDMN method, the telemetry values return to the normal
range as in Figure 3(b).

For a quantitative evaluation, we compare DDMN with
the following methods:

(i) DDMðnextÞ: calculate the deviation dividing mean of
the next N time steps as in equation (2)

(ii) DDMðpriorÞ: calculate the deviation dividing mean of
the prior M time steps as in equation (3)

(iii) Absolute Z-SCORE [20]: calculate the absolute
value of deviation dividing standard deviation of
the prior M time steps as in

Z‐SCOREt,j =
xt,j − μ priorð Þ

σ priorð Þ

�����

�����, ð12Þ

where μðpriorÞ is the mean of values in the previous M
time slices, i.e., μðpriorÞ = ð1/MÞ∑M

m=1xt−m,j, σðpriorÞ is the

corresponding standard deviation, i.e., σðpriorÞ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∑M

m=1ðxt−m,j − μðpriorÞÞ2Þ/ðM − 1Þ
q

, and xt,j is detected

as a fake anomaly when Z‐SCOREt,j >H

(iv) K-means [18]: K-means is a clustering method con-
figured with two components, where we assume that
only two clusters are in the dataset. One is normal,
and the other one represents the fake anomaly. K
-means determines the label for each sample based
on its Euclidean distance to each cluster

Table 1: Configurations of the LSTMs.

Parameters Configuration

Hidden layers 4

Units in hidden layers 128, 64, 32, 32

Batch size 32

Input length L′ 20

Dropout 0.2

Optimizer Adam

Loss function Mean absolute error
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(v) Gaussian Mixture Model (GMM) [18]: GMM is a
clustering method configured with U clusters, where
we assume that normal data are centered in only
one cluster but fake anomalies fall into different
clusters as illustrated in Figure 1. U is determined
by the Bayesian information criterion [21] from
the training dataset. GMM determines the label for
each sample based on its generative probability from
each cluster

For the ground truth, we label a certain amount of seg-
ments in each telemetry variable. As a result, 287 out of
21644 samples are labeled as fake anomalies. We calculate
the average precision, recall, and F1-score over 8 telemetry
variables for each method. The comparison result is shown
in Table 2. First, DDMN achieves 100% precision in differ-
ent settings of H. Second, DDMN always achieves a high
F1-score over 90%. Third, DDMN achieves the highest F1-
score of 0.969 when H = 2, which improves DDMðnextÞ, DD
MðpriorÞ, Z-SCORE, GMM, and K-means by 93%, 92%,
30%, 61%, and 126%, respectively. Last but not the least,
DDMN is robust to the variation of threshold H. In contrast,
DDMðnextÞ, DDMðpriorÞ, and Z-SCORE get a low precision
when H is small because they tend to detect the rapidly
changing values as fake anomalies. GMM and K-means per-
form worst in recall because they accidentally assign fake
anomalies to the normal cluster.

3.4. Anomaly Detection. In this section, we evaluate the
LSTMs trained on the dataset containing fake anomalies
and the dataset after fake anomalies are removed by DDMN,
which we call LSTMs and LSTMs-DDMN, respectively. In
the real application, we set threshold the H ′ = 2. However,
for a comprehensive comparison, we compared them over
different settings of H ′ in terms of precision, recall, and
F1-score. The results are shown in Table 3. As we can see,
LSTMs-DDMN outperforms LSTMs on different settings
of threshold H ′ in both recall and F1-score. Particularly,
when H = 4, LSTMs-DDMN improves LSTMs in terms of
recall and F1-score by 49% and 27%, respectively. This is
reasonable since training with the contaminated dataset
has a negative effect on the learned model. In addition,

LSTMs-DDMN is more robust to the variation of threshold
compared to LSTMs. This is because, when H ′ gets larger,
the F1-score of LSTMs-DDMN only drops from 0.995 to
0.904, while LSTMs drop from 0.981 to 0.713. From the per-
spective of entropy, the learned model of LSTMs-DDMN
has a higher certainty compared to the LSTMs. In summary,
first, it is not appropriate to train LSTMs with a satellite
telemetry dataset containing fake anomalies. Second, the
LSTMs-DDMN is effective in anomaly detection for satellite
telemetry data.

0.0 0.2 0.4 0.6
Time (min)

0.8 1.0 1e6

(a) Before removal

Time (min)
0.0 0.2 0.4 0.6 0.8 1.0 1e6

(b) After removal

Figure 3: DDMN for fake anomalies’ removal: (a) values of 8 telemetries over time before fake anomalies’ removal; (b) values of 8
telemetries after fake anomalies’ removal.

Table 2: DDMN and the compared methods in precision, recall,
and F1-score.

(a)

H
DDMN DDM nextð Þ

Precision Recall F1-score Precision Recall F1-score

2 1.0 0.939 0.969 0.34 0.947 0.501

2.5 1.0 0.936 0.967 0.654 0.946 0.773

3 1.0 0.928 0.963 0.654 0.945 0.773

3.5 1.0 0.919 0.956 0.654 0.923 0.766

4 1.0 0.9 0.951 0.654 0.907 0.76

(b)

H DDM priorð Þ Z-SCORE
Precision Recall F1-score Precision Recall F1-score

2 0.342 0.953 0.504 0.707 0.891 0.788

2.5 0.653 0.951 0.774 0.706 0.89 0.787

3 0.653 0.946 0.773 0.814 0.837 0.825

3.5 0.653 0.924 0.765 0.814 0.837 0.825

4 0.653 0.908 0.760 0.814 0.837 0.825

(c)

GMM K-means
Precision Recall F1-score Precision Recall F1-score

0.668 0.547 0.601 0.41 0.447 0.428
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3.5. False Alarm Study. False alarms, i.e., false positives, are
normal data but predicted as anomalous. Compared with
the OOL method, a weakness of the data-driven method is
the false alarm problem. An anomaly detection system with
too many unexpected false alarms is not suitable for the real
application.

Figure 1 reports the normalized variables in the test data,
where the false alarm samples are marked with red triangles
generated by LSTM-DDMN. Based on the observation, we
discover that three situations trigger the false alarms: (1) fake
anomalies, for example, the single deviated samples in
Figures 1(d) and 1(e); (2) unknown incidents such as the
continuous drop in Figures 1(a), 1(e), 1(f), and 1(g); (3)
sparse samples that are normal but rarely seen in the train-
ing dataset. For fake anomalies, they inevitably lead to false
alarms because they are essentially some kind of anomalies.
They can be avoided by engineering approaches such as a
multidecision method. For unknown incidents, they may
be caused by unknown events in the satellite or space. Inves-
tigating the reason can help to understand the status of the
satellite. For sparse samples, they are usually generated when
the satellite changes from one mode to another, which lead
to infrequent samples. Some error smoothing methods were
proposed to figure out this problem [11]. In summary,
although the deep learning approach inevitably brings some
false alarms, they are able to detect anomalies and provide
valuable information to the operators about what is occur-
ring in the system.

4. Related Work

4.1. Anomaly Detection Methods. Anomalies can be classified
into the following three categories: point, contextual, and
collective [18]. Point anomalies refer to individual data
instances that fall within low-density regions of values. Con-
textual anomalies refer to anomalous data instances in a spe-
cific context. Collective anomalies refer to a collection of
anomalous data instances with respect to the entire dataset.
This paper mainly focuses on point anomalies.

The Out-Of-Limit (OOL) is a knowledge-driven
method. However, the OOL method is not sufficient for
the modern complex satellite systems with a huge number
of sensors. To explore potential improvements over OOL
approaches, data-driven methods are developed by learning
knowledge from data using various machine learning
approaches. These approaches include dimensionality reduc-
tion approaches [7, 22, 24], clustering-based approaches
[8, 23–25], and nearest neighbor methods [26–28].

Deep learning, a subset of machine learning, has been
widely used for satellite anomaly detection problem [10].
These approaches can be categorized into (1) prediction
based and (2) reconstruction based. A typical prediction-
based approach is Long Short-Term Memory (LSTM).
LSTM has been proved to be effective in detecting anomalies
using expert-labeled telemetry anomaly data from the Soil
Moisture Active Passive (SMAP) satellite and the Mars Sci-
ence Laboratory (MSL) rover, curiosity [11]. They also pro-
posed a complementary unsupervised and nonparametric
anomaly thresholding approach and false-positive mitiga-
tion strategies. The exponentially weighted average method
is used to generate smoothed errors. Convolution LSTM
with Mixtures of Probabilistic Principal Component Ana-
lyzers is developed for anomaly detection from Korea
Multi-Purpose Satellite 2 (KOMPSAT-2) [16]. They
employed both neural networks and probabilistic clustering
to improve the anomaly detection performance. Statistics
characteristics such as mean and standard deviation are
extracted as the input of convolution LSTM. Bayesian LSTM
[17] is proposed which attached the Bayesian principles to
the LSTM. Then, an autoencoder is used to measure the
uncertainty of samples for anomaly detection. Different
approaches of LSTM based on one-to-one, many-to-one,
and many-to-many network architectures are evaluated to
explore the best anomaly detection structure [29]. A typical
reconstruction-based approach is autoencoder [30] which
compresses the input data into a lower-dimensional space
and reconstructs the original data again from this represen-
tation. The reconstruction error is used to highlight the
anomalous degree of data samples [17]. Autoencoder also
can be used to denoise input data and extract new features
which are then regarded as new features to feed into anom-
aly detection models [31]. Different from these works, we
propose a general anomaly detection framework solving
problems of fake anomaly detection and anomaly detection
in satellite telemetry at the same time.

4.2. Anomaly Detection System in Aerospace Industry. NASA-
Ames developed the Inductive Monitoring System (IMS)
using clustering to extract a data model of the nominal telem-
etry data. Nominal telemetry parameter values are run
through a clustering algorithm to identify nominal regions.
When new telemetry data arrives, its distance to the nearest
nominal region is measured, which provides a measure of a
point anomaly relative to the well-defined clusters [28, 32].
Several evolutions of it have been created such as the Anomaly
Monitoring Inductive Software System (AMISS) and Ames to

Table 3: Comparison of LSTMs with LSTMs-DDMN in precision, recall, and F1-score.

H Precision Recall F1-score

2 0.994 0.994 0.968 0.997 0.981 0.995

2.5 0.998 0.998 0.963 0.986 0.975 0.992

3 0.999 0.999 0.914 0.957 0.955 0.978

3.5 0.999 0.999 0.761 0.892 0.864 0.943

4 0.999 0.999 0.553 0.825 0.713 0.904

LSTMs LSTMs-DDMN LSTMs LSTMs-DDMN LSTMs LSTMs-DDMN
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support the International Space Stations fight operations [4].
Nearest neighbor-based approaches have been employed by
NASA’s Orca tool [2] and also on board the Space Shuttle
and the International Space Station [26], as well as the
XMM-Newton satellite [33]. Automated Telemetry Health
Monitoring System (ATHMoS), developed by the German
Aerospace Center, used concepts behind the LoOP and Intrin-
sic Dimension Outlier Score (IDOS) outlier detection algo-
rithms to create the Outlier Probability Via Intrinsic
Dimension (OPVID) algorithm. This algorithm assigns an
outlier probability that is computed via the local (continuous)
Intrinsic Dimension (ID) of each point [3]. Autoencoder is
also utilized to reduce the dimensions of input data. The Euro-
pean Space Agency (ESA) built the novelty detection system
[6] that employed the density-based Local Outlier Probability
(LoOP) algorithm [34] which assigns a probability to each new
sample that novel telemetry behavior occurred during its
respective time interval. The Japan Aerospace Exploration
Agency (JAXA) developed a probabilistic clustering and
dimensionality reduction method based on MPPCA [35] to
model the high-dimensional, multimodal, and heterogeneous
data and applied it to the telemetry data of the small demon-
stration satellite 4 (SDS-4) for anomaly detection [7].

5. Conclusion

This paper introduces an anomaly detection framework
including a Deviation Divide Mean over Neighbors
(DDMN) algorithm for fake anomaly detection and a
LSTM-based anomaly detection approach. Through exten-
sive experiments, we prove the superiority of DDMN com-
pared with other unsupervised methods for fake anomaly
detection. We also demonstrate the effectiveness of LSTMs
based on DDMN for anomaly detection, i.e., LSTMs-
DDMN. More than that, we discover that three types of data
can result in false alarms, which are fake anomalies,
unknown incidents, and sparse samples. For future work,
we will collect more satellite data containing anomalies to
evaluate our approach.

Data Availability

The data used in the research is from in-orbit satellites. But
it has not been made public yet.
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