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Modular space structure has become a research hotspot in the aerospace field. In the microgravity and weak damping space
environment, modular space structures may continuously vibrate due to the transient excitation caused by satellite attitude
adjustment or space debris impact, which will make the structure unstable. Therefore, a passive vibration control method
based on band gap design is proposed for the modular space structures. Firstly, a modular spectral element model based on the
super element is established, and the modular spectral element model is expanded into modular space structures. Then, band
gap characteristics of the modular space structure are analyzed and optimized to improve the wave isolation ability. The
numerical simulation shows that the elastic wave in the band gap can be effectively isolated and the band gap is significantly
improved by optimizing structural parameters.

1. Introduction

Deployable space structures have been widely used in aero-
space due to the advantages of lightweight and large ratio
of deployed and folded volumes. With the development
toward large-scale, high-precision, and on-orbit assembling
[1], the modularization structure has become a popular
structural form for deployable space structures. Modular
space structures belong to a class of dynamical systems with
weak damping and large flexibility. It is well known that this
type of system will continuously vibrate under complex
space environments, such as the transient excitation caused
by satellite attitude adjustment or space debris impact.
Therefore, control methods [2–5] must be considered to
eliminate the vibration.

For space structures, the vibration control method can
be divided into two categories: active and passive control.
Active control [6–8] introduces an automatic control system
with an additional power supply to dampen the vibration
amplitude. It can provide optimal vibration control effect
under some specific conditions, but the control system is
complex, and it is hard to obtain enough power in space.
Passive control, in contrast, needs no additional power sup-

ply, and it has the advantages of low cost, high reliability,
broadband vibration reduction, and so on.

So far, some scholars have investigated the passive con-
trol methods for space structures. Bishop and Striz [9] stud-
ied an optimal configuration method of viscous dampers for
a modular frame structure based on the genetic algorithm.
Xu et al. [10] proposed a hybrid optimization model com-
bining the evolutionary algorithm with the simulated
annealing algorithm to solve the configuration problem of
viscoelastic dampers. Kim et al. [11] investigated a magne-
torheological (MR) damper-based intelligent passive control
system for mitigating the vibration of stay cables. It was
found that the vibration reduction effect was slightly better
than conventional MR dampers. Tong and Zhao [12] inves-
tigated the optimization of multiple tuned mass dampers
(TMDs) to reduce vibrations of flexible structures. Preu-
mont et al. [13] studied the vibration reduction analysis of
the modular frame structure based on the piezoelectric
vibration absorber. It can be found that the damping vibra-
tion reduction with surface damping layers [14], discrete
dampers, and vibration absorbers [15] has been widely used
in space structures. However, the damping vibration reduc-
tion needs to be equipped with many dampers to achieve a
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better control effect, which will increase the additional mass
of the system.

It is noted that modular space structures have the prop-
erty of periodic arrays, that is, band gaps. That is to say, we
can optimize the structure material and geometric parame-
ters to tune the position and width of the band gaps so that
the self-vibration-suppression capability can be improved
[16]. Inspired by this, we take the basic unit of modular
space structures as a super element composed of various
materials so that we can improve the elastic wave isolation
ability by artificially optimizing the band gap.

At present, the band gap of periodic structures can be
analyzed by the finite element method (FEM) [17, 18], the
finite difference method [19], the plane wave expansion
method [20], the traveling wave method [21], the transfer
matrix method [22], the spectral element method (SEM)
[23–26], etc. Thereinto, SEM is proposed and applied to
truss-type space structures by U. Lee and J. Lee [27]. Dut-
kiewicz and Machado [28] analyzed vibrations of an over-
head transmission line in a damping environment. Jeong
et al. [29] investigated the vibration analysis of a multi-
span beam subjected to a moving point force by SEM.
The SEM has the advantages of low computational cost
and accurate calculation results. So, the SEM is used to
build the dynamic model for the gap band analysis of
modular space structures.

However, in the optimization iteration process, a large
number of frequencies need to be calculated over and over
again, which results in a huge amount of computation. What
is worse, there are too many structural parameters to opti-
mize the gap band effectively. Therefore, a super element
model is first established and grouped for modular struc-
tures to obtain a fast and accurate calculation. Then, sensi-
tivity analysis is carried out to select sensitive parameters
and eliminate invalid design variables for the band gap opti-
mization model. Compared with traditional damping vibra-
tion reduction methods, the proposed method realizes the
vibration control without additional mass and cost. This
paper provides a new idea for the vibration control of the
modular space structure.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the basic unit of modular space structures.
In Section 3, the basic unit is taken as a super element, and
its dynamic spectral element model is established. Section
4 reveals band gap characteristics of modular space struc-

tures. In Section 5, the band gap is optimized to improve
the wave isolation ability of modular space structures. Some
conclusions are summarized in Section 6.

2. Problem Statement

As shown in Figure 1, the basic unit structure of modular
space structures is mainly composed of upper beams, lower
beams, outer and central beams, diagonal beams, joints,
and the cable net structure. The modular space structure is
formed by a basic module structure through the periodic
array, which is a form of the periodic structure. Periodic
structures have band gap characteristics [26], and the prop-
agation of elastic waves is prohibited within a certain fre-
quency band. The band gap characteristic of the periodic
structure is related to the structure’s material and geometry
properties and the number of periods. So, the modular space
structure can exhibit different characteristics of band gaps of
elastic wave propagation, by adjusting the magnitude of
cross-section, structure dimension, and pretensions of the
element. To effectively reveal the characteristics of elastic
wave propagation of this complex structure, we derive the
spectral element matrixes of the 3D cable and beam ele-
ments and the dynamic spectral element model of the basic
unit based on SEM. The basic unit structure is the smallest
repeating unit in the modular space structure, as shown in
Figure 1. Then, to reduce the calculation, the super element
of the basic unit structure can be obtained by the dimension
reduction process. Finally, the spectral element model of the
modular space structure can be obtained by periodically
expanding the super element according to the topological
connection relationship.

3. Spectral Element Method

3.1. Spectral Element Matrix for 3D Beams. In this paper, the
spectral element matrix of the beam element is derived
based on the Euler-Bernoulli beam assumptions. The
assumption is that the additional deflection changes caused
by shear deformation are not considered. According to the
theoretical analysis of the Euler-Bernoulli beam and the
force-displacement relationship [20], the spectral finite ele-
ment equation for the flexural motion of the beam can be
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Figure 1: Basic unit structure of modular space structures.
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where fQi Mi Qj MjgT is the generalized force vector, Qi

and Qj are cross forces of nodes, and Mi and Mj are

moments of the beam element. fWi Φi W j ΦjgT is the dis-
placement vector,Wi and Wj are spectral node displace-
ments, and Φi and Φj are cross-section corner of the
beam element. E is the elastic modulus, Iy is the sectional
area moment of inertia about the neutral axis, L is the
length of the beam element, and SBðωÞ is the spectral ele-
ment stiffness matrix of the flexural wave of 3D beams,
which characterizes the relationship of the flexural wave
between displacement and force in the frequency domain.
The subitems of SBðωÞT are
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where kF =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2ρA/EIz4

p
is the wave number of the flexural

motion of the beam.
The longitudinal motion can be obtained as

Ni

N j

8<
:

9=
; = EA

L

kLL cot kLLð Þ −kLL csc kLLð Þ
−kLL csc kLLð Þ kLL cot kLLð Þ

" #
Ui

U j

2
4

3
5

= EA
L

SR kL, Lð ÞTd = SR ωð Þd,
ð3Þ

where Ni and Nj are the nodal longitudinal forces. Ui and

U j are the nodal longitudinal displacements. kL =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2ρA/EA

p
is the wave number for the longitudinal motion,

ρ is the mass density, A is the sectional area, and SRðωÞ is the
spectral element stiffness matrix of the longitudinal wave of
3D beams, which characterizes the relationship of the longi-
tudinal wave between displacement and force in the fre-
quency domain.

The torsional motion can be obtained as
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where Ti and T j are the nodal torsional moments. Φi and Φj

are the nodal torsional angles, and G = E/ð2ð1 + μÞÞ is the
shear modulus, μ is the Poisson’s ratio, IP is the polar
moment of inertia, and kT =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2ρIP/GIP

p
is the wave num-

ber for the torsional motion, and STðωÞ is the spectral ele-
ment stiffness matrix of the torsional wave of 3D beams,
which characterizes the relationship of the torsional wave
between displacement and force in the frequency domain.

The spectral element matrix of 3D beam elements can be
obtained by assembling longitudinal, torsional, and flexural
spectral element matrixes of the Euler-Bernoulli beam as

SLB ωð ÞdLB = FL
B, ð5Þ

where SLBðωÞ is the spectral element stiffness matrix of the
3D beams in the element coordinate system, and it can also
be written as

SLB ωð Þ = SLB11 SLB12

sym SLB22

" #
, ð6Þ

where SLB11, S
L
B12, and SLB22 can be expressed as
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where SRij and STijði, j = 1, 2Þ are the subitems of the spec-
tral element stiffness matrixes of longitudinal and torsional
motion of the Euler-Bernoulli beam, respectively, and SBij
ði, j = 1, 2, 3, 4Þ is the subitems of the spectral element stiff-
ness matrix of flexural motion of the Euler-Bernoulli
beam.

The spectral element matrix of the 3D beams in the
global coordinate system can be obtained by transformation
of coordinates as

SGB ωð Þ = TT
r S

L
B ωð ÞTr , ð10Þ

where Tr is the coordinate transformation matrix and SGB ðωÞ
is the total spectral element stiffness matrix of 3D beams in
global coordinate system.

3.2. Spectral Element Matrix for 3D Cables. Cables involved
in the cable net structure are simulated by strings of which
the longitudinal vibration equation of the tension cable is
consistent with the Bernoulli-Euler beam. The spectral ele-
ment equation of the transverse vibration of the tension
cable can be given as follows.
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where Hi and Hj are the nodal transverse forces.Wi andWj

are the nodal transverse displacements. kCT =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2ρA/T

p
is

the wave number of the transverse motion. T is the preten-
sion, which provides the transverse stiffness of the tension
cable. SCTðωÞ is the spectral element stiffness matrix of the
transverse wave of 3D cables, which characterizes the trans-

verse motion relationship of 3D cables between displace-
ment and force in the frequency domain. The subitems of
SCTðωÞT are

SCT11 = SCT22 = kCTLð Þ cot kCTLð Þ,
SCT12 = SCT21 = − kCTLð Þ csc kCTLð Þ:

ð12Þ

The spectral element stiffness matrix of 3D cables can be
obtained by assembling the transverse and longitudinal
spectral element matrixes as

SLC ωð ÞdLC = FL
C , ð13Þ

where SLCðωÞ is the spectral element stiffness matrix of the
3D cables, and it can also be written as

SLC ωð Þ = SLC11 SLC12
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" #
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L
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where SRij and SCTijði, j = 1, 2Þ are the subitems of the spec-
tral element matrixes of longitudinal and transverse motion
of the tension cable, respectively.

The spectral element matrix of the 3D cables in the
global coordinate system can be obtained by transformation
of coordinates as

SGC ωð Þ = TT
r S

L
C ωð ÞTr , ð16Þ

where TT
r is the coordinate transformation matrix and SGCðωÞ

is the total spectral element stiffness matrix of 3D cables in
global coordinate system.
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Figure 2: Equivalent super element.

Table 1: Material parameters.

Properties Frame Joints Cable net

Material type Carbon fiber Aluminum alloy Aramid fiber

Section type Hollow circle section Solid circle section Solid circle section

Radius (m)
Outer diameter 0.015
Inside diameter 0.0135

0.03 0.001

Elastic modulus (GPa) 370 72 20

Poisson’s ratio 0.3 0.33 0.3

Density (kg/m3) 1800 2730 1450

Pretension (N) 0 0 1
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Figure 3: Frequency response comparison between FEM and SEM.
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3.3. Spectral Element Matrix of the Super Element. In order
to improve computational efficiency, a degree reduction
method is used to reduce the dimensionality of the spec-
tral element matrix. As shown in Figure 2, the internal
nodes of original composite beams ② can be presented
by two end nodes. The spectral element equation of orig-
inal composite beams ② in the global coordinate system
can be written as

�SB2ii �SB2ij

�SB2ji �SB2jj

" # �di
�dj

( )
=

�f i

0

( )
, ð17Þ

where �di and �dj are the boundary and internal nodal dis-
placements of original composite beams ②, respectively,
and �f i is the boundary force vector.

According to the principle of condensation, the equiva-
lent beam ② can be deduced as

�SGB2 ωð Þ�d = �f , ð18Þ

where the spectral element matrix of equivalent beam ② is

�SGB2 ωð Þ = �SB2ii − �SB2ij �SB2jj
� �−1�SB2ji: ð19Þ

The spectral element matrixes of equivalent beams ①

and ③ are similar to that of the equivalent beam ② and
can be shown as

�SGBn ωð Þ = �SBnii − �SBnij �SBnjj
� �−1�SBnji n = 1, 3ð Þ: ð20Þ

Specifying material parameters of the super element
shown in Table 1 and applying the displacement excitation
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d = 0:001eiωt m at node P, we can obtain the frequency
response at node R by solving the spectral element model.
The comparisons of the results obtained by the finite ele-
ment simulation with our numerical results are shown in
Figure 3.

It is found that the results of FEM are almost consistent
with SEM from 0 to 100Hz, while they gradually deviate
from 100Hz to 200Hz. The reason for this difference is that
FEM has truncation errors if the refined mesh number is
insufficient, while SEM uses the precise wave solution in
the frequency domain. Compared with FEM, SEM has
no truncation error, so it can obtain accurate calculation
results with a smaller number of elements, thereby reduc-
ing the amount of calculation and improving the calcula-
tion efficiency.

4. Band Gap Analysis of Modular
Space Structure

The super element can be used as the basic element to
expand into a periodic structure. The vibration transmis-
sion rate is defined as Equation (21) and used to
evaluate the attenuation characteristics of the periodic
structure.

T = lg w0
wi

� �
, ð21Þ

where w0 and wi are the output and input displace-
ments, respectively.
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The structure formed by extending the super element
along one dimension is shown in Figure 4. The displacement
excitation is applied at node P along the positive y-axis. The
y-axis vibration transmission rate of node R is solved and
shown in Figure 5.

It can be seen that the vibration transmission rate of
node R is attenuated sharply from 455Hz to 564Hz, and this
frequency range is called as a band gap. The depth of band
gap is the value at which the vibration transmission rate
within the band gap is the largest, as shown in Figure 5. As
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the number of super elements is increased from 3 to 6 and
10, the depth is increased by 36.69% and 72.9%, respectively,
but the position and width of the band gap are basically the
same.

The vibration distributions of the modular space struc-
ture at 400Hz and 500Hz are shown in Figure 6. It can be
seen that the whole structure vibrates at 400Hz, which
means that the elastic wave can move to the far end. How-
ever, the vibration at 500Hz is limited near the excitation
source that means the elastic wave can be effectively isolated
at the band gap.

5. Optimal Design of the Band Gap of Modular
Space Structure

5.1. Sensitivity Analysis. The band gap of the structure may
be affected by structural parameters such as element cross-
sections, structure size, and cable forces, as shown in
Figure 7. The material parameters of the structures in this
section are the same as those in Table 1.

At first, the influence of aluminum alloy section radius
on the band gap is studied. It can be seen from Figure 8 that
when increasing the aluminum alloy section radius Ar by
33.3%, 66.7%, and 100%, the lower limit frequency of the
first band gap is decreased by 24.55%, 35.71%, and
40.91%, and the width of the band gap is increased by
69.23%, 97.44%, and 39.74%, respectively. It can be found
that with the increase of the aluminum alloy section
radius, the band gap shifts towards low frequency, the
width of the band gap first increases and then decreases,
but the depth is almost not changed. Changes in structural
parameters may cause little vibration attenuation between
specific frequencies in the band gap, which is called sur-
face localization as shown Figure 8(b). It means the vibra-
tion is transmitted with a low attenuation rate in the
frequencies.

Then, the aluminum alloy joints are embedded in the
carbon fiber beams to form a terminal laminated beam
structure. As shown in Figure 9, when the thickness h of
the embedded part is set as 0mm, 3mm, 7mm, and
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10.5mm, respectively, the band gap will slightly shift
towards low frequency, but the width and the depth of the
band gap are not changed. The phenomenon may be that
the equivalent stiffness of the embedded part is much more
minor than the stiffness of the aluminum alloy joint, which
has little effect on the band gap.

As shown in Figure 10, the carbon fiber tube is designed
as two different section elements. As shown in Figure 11,
when the mean value of the outer diameters is set as
0.015m, 0.0156m, and 0.0169m, the difference ΔCr is set
as 0mm, 1.25mm, 2.5mm, and 3.75mm, respectively. The
lower limit frequency of the first band gap is increased by
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Figure 11: Corresponding to the change of the section outer diameter difference: (a) vibration transmission rate of node R; (b) the first band
gap.
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13.19%, 17.14%, and 20.00%, and the width of the band gap
is increased by 3.67%, 9.17%, and 11.01%, respectively. It can
be found that with the increase of the difference ΔCr , the
band gap will gradually shift towards high frequency, the
first band gap width increases, and the depth steadily
decreases.

As shown in Figure 12, when the length of the upper
beams and the lower beams is synchronously increased by
10%, 20%, and 30%, respectively, the lower limit frequency
of the first band gap is decreased by 2.20%, 7.69%, and
9.01%, respectively, and the width of the band gap is
increased by 2.75%, -19.43%, and -38.53%, respectively. It
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Figure 12: Corresponding to the change of the length of upper and lower chord beams: (a) vibration transmission rate of node R; (b) the
first band gap.
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can be found that with the increase of the length of the
upper beams and the lower beams, the band gap will shift
towards low frequency, the first band gap width first
increases and then decreases, and the depth is gradually
decreased.

As shown in Figure 13, when the lengths of the outer
beams and center beams are synchronously increased by
10%, 20%, and 30%, respectively, the lower limit frequency
of the first band gap is decreased by 1.76%, -0.66%, and
-4.40%, respectively, and the width of the band gap is
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Figure 13: Corresponding to the change of the length of outer beams and center beams: (a) vibration transmission rate of node R; (b) the
first band gap.
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increased by 31.19%, 33.94%, and 14.68%, respectively. It
can be found that with the increase of the lengths of the
outer beams and center beams, the band gap does not move
substantially, the width of the band gap has a significant
change, and its value first increases and then decreases,
and the depth is gradually increased.

As shown in Figure 14, when the cable pretensions Ts
are set as 1N, 3N, and 5N, respectively, the vibration
amplitudes of the modular space structure at low frequen-
cies are changed slightly. However, the position, the width,
and the depth of the band gap are not changed. The rea-
son is as follows. According to Bloch’s theorem, the band
gap of the structure is mainly related to the wave number
k (i.e., the material parameter of the structure) and the
effective length. The cable pretension can affect the struc-
tural parameters to a certain extent, thus affecting the
wave number k. So, it was considered a factor in the sen-
sitivity analysis. However, it has little effect on the band
gap due to the low pretension of the cable in the deploy-
able space structure.

5.2. Optimization Design. The above analysis illustrates that
we can optimize the aluminum alloy section radius, the
lengths of the upper and lower beams, and the lengths
of the central and outer beams to change the position
and the width of the band gap. In order to improve the
wave isolation characteristics of the modular space struc-
ture, we comprehensively consider the influence of these
parameters and establish the following band gap optimiza-

tion model with the ratio of the lower limit of the band
gap to the width as the objective function. In addition,
to ensure that the change of component size has little
effect on the structure’s overall size change, the beam
length’s value range is selected to be between 1 and 1.1
of the original length. The value range of the joint radius
is between 1 and 1.5 of the original size.

Find L = 1 + að ÞL1 1 + bð ÞL2 rf g,

min  RB = f1
f2 − f1

s:t:

a ∈ 0,0:1½ �
b ∈ 0,0:1½ �
L1 = 0:126m
L2 = 1:114m
r ∈ 0:03,0:045½ �:

8>>>>>>>><
>>>>>>>>:

ð22Þ

where L1 represents the length of the upper and lower
chord beams, L2 represents the length of the outer and
central beams, r is the section radius of the aluminum
alloy joints, f1 is the lower limit of the band gap, and f2
is the upper limit of the band gap.

The calculation process of the optimization algorithm
is shown in Figure 15. Firstly, the optimization variables

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

–20

–15

–10

–5

0

5
V

ib
ra

tio
n 

tr
an

sm
iss

io
n 

ra
te

 (d
B)

Ts = 1N
Ts = 3N
Ts = 5N

455 564

Figure 14: The vibration transmission rate of node R corresponding to the change of cable pretension.
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are brought into the spectral element model in Section 3, and
the frequency-domain response curve of the model is calcu-
lated. Then, the first band gap information of the structure is
obtained through the frequency domain response curve,
including the bandwidth and the lower limit frequency of

the band gap. Next, the objective function is calculated by
Equation (22) and returned to the SA algorithm to obtain a
new set of optimization variable values. Repeat the above pro-
cess until it satisfies the optimization termination condition
and outputs the result.
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For the optimization model of Equation (22), obtain-
ing the optimal global solution is considered at first. In
addition, the computational efficiency of the algorithm is
considered. The simulated annealing algorithm can obtain
the optimal global solution of the optimization model
without falling into the optimal local solution. The method
also has high computational efficiency. Therefore, the
optimization model is solved by the simulated annealing

algorithm. The initial parameters are set as [0,0,0.03].
Figure 16 shows that the optimal result can be obtained
after 30 iterations. At this time, the optimal length of the
upper and lower beams and the central and outer beams
and the optimal radius of the aluminum alloy joint are
1.087L1, 1.009L2, and 0.0442m, respectively. In this case,
the band gap is shifted to the low frequency as shown in
Figure 17. It is illustrated that optimization of the
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structural parameters can significantly change the position
of the band gap.

6. Conclusions

This paper studies a passive vibration control analysis of the
modular space structure based on band gap design. Through
the band-gap sensitivity analysis of the modular space struc-
ture, some key influence factors on the band gap are firstly
illustrated. And then, a band gap optimization model is
established to improve the wave isolation characteristics of
the modular space structure. According to the simulation
results, some conclusions can be summarized as follows:

(a) The band gap exists in modular space structures. As
the number of basic units increases, the vibration
transmission rate of the modular space structure will
be decreased

(b) The position and the width of the band gap are
greatly influenced by structural parameters, includ-
ing the aluminum alloy section radius, the length
of the upper and lower beams, and the length of
the central and outer beams

(c) The elastic wave in the band gap can be effectively
isolated, and manual optimization of the structural
parameters can significantly change the position of
the band gap. That is to say, wave isolation charac-
teristics of the modular space structure can be
improved by optimizing the structural parameters
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