Research Article

Finite-Time Orbit Control for Spacecraft Formation with External Disturbances and Limited Data Communication

Lei Xing,1 Dechao Ran,2 Jian Zhang,3 and Li Huang4

1Research Center of Satellite Technology, Harbin Institute of Technology, Harbin 150001, China
2National Innovation Institute of Defense Technology, Chinese Academy of Military Science, Beijing 100000, China
3Shanghai Institute of Satellite Engineering, Shanghai 200000, China
4Beijing Aerospace Automatic Control Institute, Beijing 100000, China

Correspondence should be addressed to Lei Xing; xinglei@hit.edu.cn

Received 25 October 2021; Revised 11 January 2022; Accepted 15 March 2022; Published 9 May 2022

Academic Editor: Angelo Cervone

Copyright © 2022 Lei Xing et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This work addresses the finite-time orbit control problem for spacecraft formation flying with external disturbances and limited data communication. A hysteretic quantizer is employed for data quantization in the controller-actuator channel to decrease the communication rate and prevent the chattering phenomenon caused by the logarithmic quantizer. Combined with the adding one power integrator method and backstepping technique, a new finite-time tracking control strategy with adaptation law is designed to ensure that the closed-loop system is practical finite-time stable, and that the tracking errors of relative position and velocity are bounded within finite-time despite with limited data communication and external disturbances. Finally, an example is shown to validate the effectiveness of the proposed finite-time tracking controller.

1. Introduction

Spacecraft formation flying (SFF) is a concept that the functionality of traditional large spacecraft is replaced by a group of less-expensive, smaller, and cooperative spacecraft [1, 2]. In recent years, the study of spacecraft formation control has gradually become an active area of research owing to the reason that SFF is a primary technology for modern space missions, such as deep space exploration, spacecraft on-orbit servicing, and deep space imaging [3–6]. So far, a rich body of orbit control strategies for SFF has been presented, and the relative dynamic model of these strategies can be roughly categorized into two types, namely, linear dynamic model and nonlinear dynamic model [7, 8]. Considering the linearizing of relative dynamic model can induce model errors, various control schemes based on the nonlinear relative dynamic model for spacecraft formation flying have been proposed [9–12].

It is to be noticed that all aforementioned control schemes can only guarantee the asymptotical stability of the controlled systems. A fast convergence rate is an essential demand for SFF. In the past few years, the finite-time control method has been widely adopted to design controllers for various nonlinear systems since it can guarantee the controlled systems have better disturbance rejection property, faster convergence rate, and higher precision control performance compared with the asymptotic control [13–16]. To date, the finite-time method has been found successfully applied to handle the spacecraft control problem [17, 18]. The design approaches for finite-time control for spacecraft main include three type approaches, namely, the adding one power integrator technique, the terminal sliding mode method, and the homogeneity theorem. However, the few studies have focused on finite-time orbit control based on the adding one power integrator technique for spacecraft formation.

Despite the fact that the mentioned research results above can ensure the controlled system finite-time stability, most of the existing finite-time control strategies focused on traditional large spacecraft, in which the bandwidth of the communication channel is assumed to be not limited. However, in modern spacecraft formation control system,
data communication between different modules is usually executed by wireless networks, which means that the bandwidth of the communication channel is limited [19, 20]. Although the use of wireless networks brings many advantages, such as lighter weight, implementation, and installation with less cost, some new challenges have inevitably been introduced, for example, data missing, communication time delay, and quantization effect [21–24]. It is well known that when the data of the control module is transmitted to the actuator module by limited communication networks, the quantization errors caused by signal quantization have unavoidably emerged. If the effect of quantization errors is not compensated effectively, the control performance may be degraded or even let the system unstable. Therefore, it is desirable to design a new controller considering limited data communication for network-based spacecraft formation control systems. Recently, the attitude control problem with limited data communication for spacecraft has been studied in [25]. Unfortunately, the study concentrated on finite-time control for SFF with limited data communication is scarce.

Motivated by the above discussion, the finite-time orbit control for SFF with limited data communication will be investigated. The main contribution of this work can be summarized as follows: (1) a novel finite-time tracking controller for SFF is proposed such that the tracking errors are bounded within finite time, in which the external disturbances are considered. (2) Compared with some existing finite-time controllers designed based on the terminal sliding mode method [26–28], the advantage of our method is that it can avoid noncontinuous and singular problem by using the backstepping approach and the adding one power integrator technique. (3) The needed communication rate is decreased by employing the hysteresis quantizer to quantify the control data, in which the chattering phenomenon induced by the logarithmic quantizer can be successfully prevented.

The rest of the paper is organized as follows. The modeling and preliminaries are given in Section 2. In Section 3, the main results are presented. In Section 4 and Section 5, the illustrative example and conclusions are presented, respectively.

2. Modeling and Preliminaries

2.1. Spacecraft Formation Flying Dynamic Model. The nonlinear relative motion dynamics of SFF can be described as follows [29]:

\[
\begin{align*}
\dot{x} - 2ny - ny - n^2y = & -\frac{\mu x}{\|R + q_1(t)\|^3} - \frac{u_{11}}{m_i} + \frac{u_{12}}{m_f} + \frac{u_{13}}{m_f}, \\
\dot{y} + 2nx - nx - n^2x = & -\frac{\mu y}{\|R + q_1(t)\|^3} + \frac{\mu r}{\|R\|^3} + \frac{u_{21}}{m_i} + \frac{u_{22}}{m_f} + \frac{u_{23}}{m_f}, \\
\dot{z} + & \frac{\mu z}{\|R + q_1(t)\|^3} + \frac{u_{31}}{m_i} = uz + \frac{u_{32}}{m_f},
\end{align*}
\]

(1)

where \(q_1(t) = [x, y, z]^T\) is the relative position from the follower spacecraft to the leader spacecraft in the local coordinate frame, \(u(t) = [u_{11}, u_{12}, u_{13}]^T\) and \(u(t) = [u_{11}, u_{12}, u_{13}]^T\) are the control inputs of the follower spacecraft and leader spacecraft, respectively, \(m_f\) and \(m_l\) denote the mass of the follower spacecraft and leader spacecraft, respectively, \(w(t) = [w_1, w_2, w_3]^T\) denotes the bounded external disturbance, \(\mu\) denotes the Earth gravitational constant, \(n\) denotes the orbit angular velocity of the leader spacecraft, and \(R = (0, r, 0)^T\) is the position vector from the inertial coordinate attached to the center of Earth to the leader spacecraft described in the local coordinate frame.

The position tracking error \(e_1(t)\) and velocity tracking error \(e_2(t)\) are defined as

\[
e_1(t) = q_1(t) - q_{id} = [e_{11}, e_{12}, e_{13}]^T, \quad e_2(t) = \dot{q}_1(t) - \dot{q}_{id} = [e_{21}, e_{22}, e_{23}]^T,
\]

(2)

where \(q_{id} = [x_d, \dot{x}_d, \ddot{x}_d]^T\), \(q_{id} = [x_{d2}, \dot{x}_{d2}, \ddot{x}_{d2}]^T\) m, and \(q_{id} = [x_{d3}, \dot{x}_{d3}, \ddot{x}_{d3}]^T\) m/s are the relative velocity vector, desired position state, and desired velocity state, respectively.

Then, the error relative motion dynamics of SFF can be described as follows:

\[
\begin{align*}
\dot{e}_1(t) & = e_2(t), \\
\dot{e}_2(t) = f(q_1, q_2, \dot{q}_{id}) + \frac{1}{m} (u(t) + w(t)),
\end{align*}
\]

(3)

where

\[
f(q_1, q_2, \dot{q}_{id}) = \begin{bmatrix}
f_1(q_{11}, q_{21}, \dot{q}_{id}) \\
f_2(q_{12}, q_{22}, \dot{q}_{id}) \\
f_3(q_{13}, q_{23}, \dot{q}_{id})
\end{bmatrix} = \begin{bmatrix}
2ny + \dot{y} + n^2x - \frac{\mu x}{\|R + q_1(t)\|^3} + \frac{u_{11}}{m_i} - \dot{x}_d \\
-2nx + \dot{x} + n^2y - \frac{\mu y}{\|R + q_1(t)\|^3} + \frac{\mu r}{\|R\|^3} - \frac{u_{21}}{m_i} - \dot{y}_d \\
\frac{\mu z}{\|R + q_1(t)\|^3} - \frac{u_{31}}{m_i} - \dot{z}_d
\end{bmatrix}.
\]

(4)

Assumption 1. The desired states \(q_{id}\) and \(q_{2id}\) are assumed to be bounded, and their first two-order time derivatives are assumed to be bounded.

Definition 2. The solution of (3) can be regarded as finite-time bounded or practical finite-time stable if for all \(e(0) = e_0\), and there exists \(v > 0\) and \(T_r(v, e_0) < \infty\), such that \(\|e(t)\| < \tilde{v}\) for \(t \geq T_r\).
Lemma 3 (see [30]). For $x_i \in \mathbb{R}$, $i = 1, \cdots, m$ if $q > 1$, we have

$$\left(\sum_{i=1}^{m} |x_i| \right)^q \leq 2^{q-1} \sum_{i=1}^{m} |x_i|^q,$$

$$\left(\sum_{i=1}^{m} |x_i| \right)^{q/2} \leq \sum_{i=1}^{m} |x_i|^{q/2}.$$

Lemma 4 (see [31]). If α and β be positive constants, then $c(\gamma, \delta) > 0$ is a real-valued function. We have

$$|y|^\alpha |z|^\beta \leq \frac{\alpha c(\gamma, \delta)}{\alpha + \beta} |y|^\alpha + \frac{\beta c(\gamma, \delta)}{\alpha + \beta} |z|^\beta.$$

2.2. Fuzzy-Logic Systems. The IF-THEN rules of the FLSs are constructed:

$$R^i : \text{if } x_1 \in \mathcal{F}_1, x_2 \in \mathcal{F}_2, \cdots, x_n \in \mathcal{F}_n, \text{ then } y \in \mathcal{O},$$

where $x = [x_1, \cdots, x_n]^T \in \mathbb{R}^n$ is the input of FLSs, $y \in \mathbb{R}$ is the output of FLSs, and \mathcal{F}_i and \mathcal{O} are the fuzzy sets associate with the membership functions $\mu_{\mathcal{F}_i}(x_i)$ and $\mu_{\mathcal{O}}(y)$, respectively. $m = 1, 2, \cdots, k$ and k are the number of rules. Then, the FLSs can be expressed as

$$y(x) = \sum_{i=1}^{k} \Lambda_i \prod_{i=1}^{n} \mu_{\mathcal{F}_i}(x_i),$$

where $\Lambda_i = \max_{y \in \mathcal{O}} \mu_{\mathcal{O}}(y)$, and the fuzzy basis functions can be expressed by

$$\xi_m(x) = \frac{\prod_{i=1}^{n} \mu_{\mathcal{F}_i}(x_i)}{\sum_{k=1}^{K} \prod_{i=1}^{n} \mu_{\mathcal{F}_i}(x_i)}.$$

Let $A^T = [A_1, A_2, \cdots, A_k]$ and $\xi^T(x) = [\xi_1, \xi_2, \cdots, \xi_k]$. Based on (9), we have $\xi^T(x)\xi(x) < 1$. Then, considering (8) and (9), we can obtain

$$y(x) = A^T \xi(x).$$

Moreover, we can obtain the following property when the membership function is the Gaussian function.

Lemma 5 (see [32]). If $f(x)$ is a continuous function defined on a compact set Ω, then there exists an FLSs for any given positive constant $\varepsilon^* > 0$ satisfying

$$\sup_{x \in \Omega} |f(x) - A^T \xi(x)| \leq \varepsilon^*,$$

where A^* is the optimal parameter vector.

It is well known that FLSs have been used to deal with the uncertainties of nonlinear control systems owing to their universal approximation ability. In this paper, the FLSs will be used to approximate $\Omega(\mathcal{R}_2)$.

2.3. Hysteresis Quantizer. In this paper, the hysteresis quantizer $Q(\cdot)$ is introduced to quantify the control signal, which can be expressed as follows [33]:

$$Q(u_i) = \begin{cases} u_{ik} \text{ sgn} (u_i) & \text{if } \frac{u_{ik}}{1 + \eta} < |u_i| < \frac{u_{ik}}{1 - \eta}, \
\hat{u}_{ik} < 0, \\
\frac{u_{ik}}{1 - \eta} \leq |u_i| \leq \frac{u_{ik}}{1 + \eta}, \
\hat{u}_{ik} > 0, \\
u_{ik} (1 + \delta) \text{ sgn} (u_i) & \text{if } u_{ik} < |u_i| \leq \frac{u_{ik}}{1 - \eta}, \
\hat{u}_{ik} < 0, \\
0, & \text{if } 0 \leq |u_i| < \frac{u_{\min}}{1 + \eta}, \
\hat{u}_{ik} < 0, \\
\frac{u_{\min}}{1 + \eta} \leq |u_i| \leq u_{\max}, \
\hat{u}_{ik} > 0, \\
\text{othercase} & \end{cases}$$

where

$$u_{ik} = \rho^{(1-k)} u_{\min}, \
k = 1, 2, \cdots n,$$

and $u_{\min} > 0, 0 < \rho < 1$, and $\eta = 1 - \rho/1 + \rho$. $Q(u_i)$ is in the set of $U = \{0, \pm u_{\min}, \pm u_{ik} (1 + \delta)\}$. The size of the dead-zone for $Q(u_i)$ is determined by u_{\min}. The map of the hysteresis quantizer $Q(u_i)$ for $u_i > 0$ is given in Figure 1.*

Remark 6. The parameter ρ can be considered as a measure of quantization density. From (13), it is well known that the smaller ρ is, the coarser the quantizer becomes. Furthermore, η approaches 1 while ρ approaches zero, and then $Q(u_i)$ will have fewer quantization levels since u_i ranges over that interval [34]. Thus, the needed communication rate between the actuator module and control module is lower.

Remark 7. Unlike the logarithmic quantizer, additional quantization levels have been added in (12) to prevent oscillations. Besides, the parameter ρ chosen should be based on a principle that the controlled system is stable can be ensured.

To facilitate the next controller design, the hysteresic quantizer $Q(u_i)$ is decomposed into the following form:

$$Q(u_i) = \phi_i(t) u_i + d_i(t),$$

where $\phi_i(t)$ and $d_i(t)$ are nonlinear functions.

Lemma 8. The nonlinear blue functions $\phi_i(t)$ and $d_i(t)$, respectively, satisfy

$$1 - \eta \leq \phi_i(t) \leq 1 + \eta, \
l_{d_i(t)} \leq u_{\min}.$$
Proof. From Figure 2 and according to the sector-bound properties, for \(|u_i| \geq u_{\text{min}} \), we have
\[
(1 - \eta)u_i \leq Q(u_i) \leq (1 + \eta)u_i(t).
\]
(16)

For \(|u_i| \leq u_{\text{min}} \), when \(Q(u_i) = 0 \), one has
\[
0 = \phi_i(t)u_i + d_i(t).
\]
(17)

Define
\[
\phi_i(t) = \begin{cases}
\frac{Q(u_i)}{u_i}, & |u_i| > u_{\text{min}} \\
0, & |u_i| > u_{\text{min}} \\
1, & |u_i| \leq u_{\text{min}}
\end{cases},
\]
(18)

Then, \(Q(u_i) = \phi_i(t)u_i + d_i(t) \) holds, where \(\phi_i(t) \) and \(d_i(t) \) satisfy (15).

2.4. Control Objective. The objective of this paper is to develop a finite-time adaptive tracking controller \(u(t) \) such that the position state \(q_1(t) \) and velocity state \(q_2(t) \) can track the desired state \(q_{1d} \) and \(q_{2d} \) in finite-time, and that the tracking error states \(e_1(t) \) and \(e_2(t) \) are finite-time bounded with limited data communication and external disturbances.

3. Main Results

In this section, a novel finite-time orbit tracking control strategy for formation spacecraft will be proposed. To facilitate the control strategy propose, the intermediate variables

\[R_{1i}, R_{2i} \]

is defined as follows:
\[
R_{1i} = e_i^{1/\alpha_i} - \sigma_i^{1/\alpha_i}, \quad R_{2i} = e_i^{1/\alpha_i} - \sigma_i^{1/\alpha_i}, \quad i = 1, 2, 3,
\]
(19)

where \(\alpha_i = 1, \quad 0 < \alpha_i = 1 + \tau < 1, \) and \(\tau = -m/n < 0 \) be the ration of an even integer \(m \) and an odd integer \(n \). \(\sigma_i \) and \(\sigma_i \) are the virtual controller. Under the backstepping method framework, the control strategy develop procedure is described as follows:

Step 1. Propose of virtual control law \(\sigma_1 \) and \(\sigma_2 \).
Consider a Lyapunov function candidate as $V_1 = \sum_{i=1}^{3} \int_{\alpha_i}^{e_{\alpha_i}} (s^{1/\alpha_i} - \sigma_i^{1/\alpha_i})^{2-\alpha_i} ds$.

Design the virtual controller σ_i, as follows:

$$\sigma_i = 0. \quad (20)$$

The derivative of V_1 is obtained as follows:

$$\dot{V}_1 = \sum_{i=1}^{3} \mathcal{R}_{1i}^{2-\alpha_i} \dot{e}_{\alpha_i} \leq 3 \mathcal{R}_{1i}^{2-\alpha_i} (e_{\alpha_i} - \sigma_i) \leq 2 \mathcal{R}_{1i}^{2-\alpha_i} |e_{\alpha_i}|^{2-\alpha_i}$$

and then applying Lemmas 3 to 5 yields

$$\mathcal{R}_{1i}^{2-\alpha_i} (e_{\alpha_i} - \sigma_i) \leq \mathcal{R}_{1i}^{2-\alpha_i} (e_{\alpha_i} - \sigma_i) \leq 2 \mathcal{R}_{1i}^{2-\alpha_i} |e_{\alpha_i}|^{2-\alpha_i} \leq 2 \mathcal{R}_{1i}^{2-\alpha_i} |e_{\alpha_i}|^{2-\alpha_i} + \mathcal{R}_{2i}^{2-\alpha_i}$$

where $\zeta = \alpha_3 (2 - \alpha_3)^{(2-\alpha_i)/\alpha_i} > 0$ is a positive constant. The virtual control scheme is proposed as

$$\sigma_i = -2 \zeta \mathcal{R}_{1i}^{2-\alpha_i}. \quad (23)$$

Then substituting (22) and (23) into above (21)

$$\dot{V}_1 \leq \sum_{i=1}^{3} \mathcal{R}_{1i}^2 + \sum_{i=1}^{3} \mathcal{R}_{1i}^2 \sigma_i + \sum_{i=1}^{3} \mathcal{R}_{2i}^2 \sigma_i \leq \sum_{i=1}^{3} \mathcal{R}_{1i}^2$$

$$\leq \sum_{i=1}^{3} \mathcal{R}_{1i}^2$$

Step 2. Propose of controller u_i.

Consider the Lyapunov function as follows:

$$V = V_1 + \omega + 1/2 \sum_{i=1}^{3} \mathcal{R}_{2i}^2$$

where $0 < \alpha_2 + r < 1$

$$\omega = \sum_{i=1}^{3} \int_{\alpha_2}^{e_{\alpha_2}} (s^{1/\alpha_2} - \sigma_i^{1/\alpha_2})^{2-\alpha_2} ds. \quad (26)$$

The time derivative of ω is derived as

$$\dot{\omega} = \sum_{i=1}^{3} \mathcal{R}_{1i}^{2-\alpha_2} \dot{\sigma}_i + \sum_{i=1}^{3} (2 - \alpha_2) \frac{d(\sigma_i^{1/\alpha_2})}{dt} \int_{\alpha_2}^{e_{\alpha_2}} (s^{1/\alpha_2} - \sigma_i^{1/\alpha_2})^{1-\alpha_2} ds. \quad (27)$$

Note that

$$\int_{\alpha_2}^{e_{\alpha_2}} (s^{1/\alpha_2} - \sigma_i^{1/\alpha_2})^{1-\alpha_2} ds \leq |e_{\alpha_2}|^{1-\alpha_2} |e_{\alpha_2} - \sigma_i| \leq 2 |e_{\alpha_2}| |e_{\alpha_2}|^{1-\alpha_2} - 2 |e_{\alpha_2}|^{1-\alpha_2}. \quad (28)$$

Based on (28), we have

$$\begin{align*}
(2 - \alpha_2) \frac{d(\sigma_i^{1/\alpha_2})}{dt} \int_{\alpha_2}^{e_{\alpha_2}} (s^{1/\alpha_2} - \sigma_i^{1/\alpha_2})^{1-\alpha_2} ds
\leq (2 - \alpha_2) 2^{1-\alpha_2} |e_{\alpha_2}|^{1-\alpha_2} \delta \leq \chi(\xi, \sigma_i).
\end{align*} \quad (29)$$

Substituting (29) into the time derivative of V, it yields

$$\dot{V} = \dot{V}_1 + \dot{\omega} + \sum_{i=1}^{3} \mathcal{R}_{2i}^2 \dot{\sigma}_i \leq \sum_{i=1}^{3} \mathcal{R}_{2i}^2 - \sum_{i=1}^{3} \mathcal{R}_{1i}^2 + \sum_{i=1}^{3} \mathcal{R}_{2i}^{2-\alpha_2} \dot{\sigma}_i$$

$$\leq \sum_{i=1}^{3} \mathcal{R}_{2i}^2 + \chi(\xi, \sigma_i) + \sum_{i=1}^{3} \mathcal{R}_{2i}^2 \leq \sum_{i=1}^{3} \mathcal{R}_{2i}^2 + \chi(\xi, \sigma_i)$$

$$\leq \sum_{i=1}^{3} \mathcal{R}_{2i}^2 + \chi(\xi, \sigma_i)$$

The controller u_i is designed as

$$u_i = -\frac{m}{1 - \eta} \mathcal{R}_{2i}^2 (\ell, \dot{\psi}_i + 1) + f_i(q_{1i}, q_{2i}, q_{2idi}) \quad (31)$$

The adaptive law of $\dot{\psi}_i$ is designed as

$$\dot{\psi}_i = \xi \mathcal{R}_{2i}^2 - \mu \dot{\psi}_i \quad (32)$$

where $\xi > 0$ and $\mu > 0$ are designed parameters. Substituting (31) into (30) yields

$$\dot{\psi}_i = \xi \mathcal{R}_{2i}^2 - \mu \dot{\psi}_i \quad (33)$$
Let \(\Omega(\mathbf{r}_2) = \mathbf{r}_2^{-1}(c_{0}^2 + c_{1}^2 + c_{2}^2) \) (Lemma 3 to 4). Then, (33) can be rewritten as

\[
\dot{V} \leq - \sum_{i=1}^{3} \mathbf{r}_{1i}^2 - \frac{3}{2} \sum_{i=1}^{3} \mathbf{r}_{2i}^2 (\epsilon_i \tilde{\psi}_i + 1) - \sum_{i=1}^{3} \psi_i \tilde{\psi}_i + \sum_{i=1}^{3} \mathbf{r}_{2i}^{-1} \Omega(\mathbf{r}_2) - \sum_{i=1}^{3} \mathbf{r}_{1i}^{-1} \Omega(\mathbf{r}_2).
\]

(34)

By using the approximation ability of FLSs in Lemma 5, we have

\[
\Omega(\mathbf{r}_2) = \phi_i^T \mathbf{r}_2 \tilde{\xi}_i + \epsilon_1.
\]

(35)

For convenience, let

\[
\Omega = \phi_i^T \tilde{\xi}_i + \epsilon_1 \leq \phi_i^T \tilde{\xi}_i + \Gamma_i,
\]

(36)

where \(\phi_i^T \) is the optimal fuzzy weight vector, \(\epsilon_1 \leq \epsilon_1^* \), with \(\epsilon_1^* \) being a positive constant, \(\tilde{\xi}_i = [\phi_i^T, \epsilon_1^*] \) and \(\tilde{\xi}_i = [\xi_i^*, 1] \). According to Lemmas 3 to 4, and noting that \(0 < \xi_i^* \leq 1 \), one has

\[
\mathbf{r}_{2i}^{-1} \Omega \leq |\mathbf{r}_{2i}|^{-1} \psi_i^{1-2} \leq \epsilon_i \mathbf{r}_{2i}^2 \psi_i + \Gamma_i,
\]

(37)

where \(\psi_i = \psi_i - \tilde{\psi}_i, \psi = (\sqrt{2} \| \psi_i \|_2^{2(1-\tau)}) \), and \(\xi_i > 0 \) are positive design parameters, \(\Gamma_i = (1 + r/2) ((2/1 - \tau) \xi_i)^{-\tau/1+\tau} \), and \(\tilde{\psi}_i \) is the estimate of the parameter \(\psi_i \). Substituting (32) and (37) into (34) yields

\[
\dot{V} \leq - \sum_{i=1}^{3} \mathbf{r}_{1i}^2 - \frac{3}{2} \sum_{i=1}^{3} \mathbf{r}_{2i}^2 (\epsilon_i \tilde{\psi}_i + 1) - \sum_{i=1}^{3} \psi_i \tilde{\psi}_i + \sum_{i=1}^{3} \epsilon_i \mathbf{r}_{2i}^2 \psi_i

+ \sum_{i=1}^{3} \Gamma_i \leq - \sum_{i=1}^{3} \mathbf{r}_{1i}^2 - \frac{3}{2} \sum_{i=1}^{3} \mathbf{r}_{2i}^2 (\epsilon_i \tilde{\psi}_i + 1)

- \sum_{i=1}^{3} \psi_i (\mathbf{r}_{2i}^2 - \mu_i \tilde{\psi}_i) + \sum_{i=1}^{3} \epsilon_i \mathbf{r}_{2i}^2 \psi_i + \sum_{i=1}^{3} \Gamma_i \leq - \sum_{i=1}^{3} \mathbf{r}_{2i}^2

- \sum_{i=1}^{3} \mathbf{r}_{2i}^2 + \sum_{i=1}^{3} \mu_i \tilde{\psi}_i + \sum_{i=1}^{3} \Gamma_i.
\]

(38)

The main theorem of this paper is presented as follows.

Theorem 9. Consider the dynamic model of SFF described by (1) with the hysteretic quantizer given in (14). If the controller is designed as (31), and the adaptation law is given in (32), then the tracking errors \(\epsilon_i \) and \(\epsilon_{2i}, i = 1, 2, 3 \) will converge into a region of the origin within finite-time.
The leader spacecraft and follower spacecraft mass are $m_l = 1$ kg and $m_f = 1$ kg, respectively. For simplicity, the leader spacecraft is assumed in a circular reference orbit of radius 6728 km. The input control force is limited as $u_i \leq u_{\text{max}} = 1 \text{ N}$. Figure 6 shows the quantized control force for the finite-time controller (31). The response curves of position tracking errors is within ϵ_1 at 500 s. The initial relative position and velocity are $q_{10} = [250, -50, 0]^T$ m and $q_{20} = [0, 0, 0]^T$ m/s, respectively. The external disturbance is $w(t) = [0.01 \cos (0.5t), 0.01 \cos (0.5t), 0.01 \cos (0.5t)]$. The parameters of the finite time control scheme (31) and the adaptation law (33) are chosen as $\xi_i = 0.001$, $\mu_i = 0.001$, $\psi_i(0) = 0.01$, $i = 1, 2, 3\alpha_1 = 1$, $\alpha_2 = 3/5$, and $\alpha_3 = 1/5$, and the quantization parameters are designed as $\rho = 0.4$, $u_{\text{min}} = 0.000001$.

The tracking errors ϵ_{1i} and ϵ_{2i}, $(i = 1, 2, 3)$ of the finite-time controller (31) are shown Figures 3 and 4, respectively. As observed from Figure 2, the position tracking errors can converge to almost zero with 150 s, and the position tracking errors is within $|\epsilon_{1i}| < 0.01$ m at 500 s. The control force is given in Figure 5, which force magnitude is limited to 1 N. Figure 6 shows the quantized control force for the finite-time controller (31). The response curves of $\tilde{\psi}_i$ are shown in Figure 7. Clearly, the simulation results verify the validity of the hysteresis quantizer and illustrate the efficiency of the proposed finite-time control scheme.

4. Illustrative Example

In this section, an illustrative example is shown to illustrate the efficiency of the proposed finite-time control scheme.
Figure 4: Response curves of velocity tracking errors.

Figure 5: Response curves of control force.
Figure 6: Response curves of quantized control force.

Figure 7: Response curves of the adaptive parameter $\psi_i, i = 1, 2, 3$.
5. Conclusion

In this paper, the problem of finite-time orbit control for SFF with limited data communication and external disturbances was studied. We have applied the hysteretic quantizer to quantize the data of the controller-actuator channel to decrease the communication rate. By combining with the adding one power integrator method and the backstepping technique, a finite-time adaptive controller has been developed. Under the proposed control strategy, the effects of quantization errors and external disturbances have been eliminated. Moreover, the finite-time stability of the controlled system and bounded of tracking errors of position and velocity within finite time are guaranteed by the developed controller. Finally, an example has been shown to illustrate the effectiveness of the proposed control strategy. Future work will focus on dealing with the finite-time tracking control problem for SFF with actuator faults.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

