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Establishing an accurate, fast, and low-risk flutter boundary prediction method is of great significance for flight vehicle design. In
this paper, a ground flutter boundary prediction method (GFBP) based on experimental structural frequency response functions
(FRFs) is proposed. A low-order multi-input multi-output (MIMO) aeroelastic system is established by combining the structural
FRFs acquired from a ground test and the calculated unsteady aerodynamic FRFs in physical coordinates. The multivariable
Nyquist criterion is used to predict the flutter boundary. A fixed-root aluminum plate wing is selected as the research model. A
GFBP experiment is carried out for the wing’s normal state, leading-edge clump weight state, and trailing-edge clump weight
state. The feasibility and accuracy of the proposed method are verified by comparison with theoretical flutter results, in which
the errors of flutter speed and frequency in the test statistics are no more than 1.7%. In a simulation model established by the
proposed method, Monte Carlo simulation is used to study the influence of deviations in the mode frequency and damping of
the structural FRFs and deviations in the positions of excitation and measurement points in the ground test. The experiment
and simulation results show that the proposed method can predict the flutter boundary accurately with accurate positions of
excitation and measurement points, and it has good robustness to deviations in the mode frequency and amplitude of the
structural FRFs.

1. Introduction

Flutter is a self-excited vibration of elastic structures that
involves the interaction of elastic forces, inertial forces, and
unsteady aerodynamic forces. This phenomenon is common
in flight vehicles and may lead to serious flight accidents.
Therefore, flutter boundary prediction using numerical analy-
sis, physical tests, or semiphysical and seminumerical methods
has been a continual serious concern for aviation researchers.

Numerical prediction of the flutter boundary is based on
numerical models of structures and unsteady aerodynamics.
The accuracy of flutter boundary prediction is determined
by the accuracies of the structural models and the aerody-
namic calculations. To improve the structural models, there
have been many studies of semi-physical and semi-
numerical methods based on the modal test. In the 1980s,
Dreisbach [1] established a vibration and flutter boundary
prediction method that can directly use the modal parame-
ters (mode frequency, damping, and shape) identified by

the modal test or update numerical structural models using
these parameters. The concept of semi-physical and semi-
numerical flutter analysis using experimental modal param-
eters has been extensively developed. Canfield et al. [2] used
experimental modal parameters to optimize a finite element
model (FEM). Zuñiga et al. [3] compare the influence of the
FEM updated by experimental mode analysis and opera-
tional mode analysis on the flutter results. Pankaj et al. [4]
and Chajec [5] directly incorporated experimental modal
parameters into commercial software (NASTRAN or
ZAERO) to predict the flutter boundary. In addition, there
is a time-domain method for flutter analysis based on the
structural state space model identified by MIMO modal test
data. Zeng et al. [6] used this time-domain subspace identifi-
cation method to establish a multi-input and multi-output
(MIMO) structural state space model, which they combined
with an unsteady aerodynamic state space model to perform
time-domain flutter analysis. Current semi-physical and
semi-numerical methods and equivalent model identification
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methods are used to establish the modal parameter model or
state space model of the structure, which introduce identifica-
tion errors in addition to the errors in the experimental data.
These cumulative errors have a great impact on the accuracy
of flutter boundary prediction.

For physical tests, in addition to the traditional wind
tunnel test and flight test based on scaled or real models, a
ground flutter simulation test (GFST) method, also called
the dry wind tunnel method, based on unsteady aerody-
namic real-time loading has attracted attention in recent
years [7]. Distributed unsteady aerodynamic forces are cal-
culated from structural vibration data obtained at several
measurement points (MPs) as a result of excitation at several
excitation points (EPs). The concentrated forces are loaded
on the real structure in real time through force loading
equipment. Zeng et al. [7] applied the GFST method to a
rectangular flat wing and a long straight wing based on the
mixed sensitivity H∞ force control. However, with high-
order H∞ control, there is a restriction on the extent to
which the number of EPs can be increased, making it
difficult to apply this control method to complex models.
Xu et al. also conducted some studies on improving the opti-
mization method for EPs and MPs [8] and on new methods
for the variable structure control [9] and the inverse
dynamic model control [10] in force controller design. The
orders of these force controllers are lower than H∞ control,
but it is still difficult to extend them to complex models with
more EPs. Hu et al. [11], Wang and Fan [12], and Zhang
et al. [13] have made contributions to the GFST method in
terms of condensation of aerodynamic forces, force control-
ler design, and test error interference. For force loading,
instead of an electromagnetic exciter, Yun and Ham [14,
15] used a direct drive linear actuation (DDLA) motor con-
trolled by a simple inverse dynamic method. These studies
show that the most serious problem with GFST lies in the
design of the force controller. Force control errors have a
significant influence on the accuracy of flutter boundary pre-
diction. Further engineering application of this method,
based as it is on a highly coupled multi-input multioutput
(MIMO) system, is restricted by difficulty in realizing accu-
rate force control.

In this study, a ground flutter boundary prediction
(GFBP) method based on the structural frequency response
functions (FRFs) acquired from a ground test is proposed.
A low-order MIMO aeroelastic system is established by
combining the experimental structural FRFs and the calcu-
lated aerodynamic FRFs in physical coordinates, and the
multivariable Nyquist criterion is used to predict the flutter
boundary. The structural FRFs acquired from the ground
test of real structures contain more dynamical information
and fewer identification errors than those obtained by iden-
tifying the modal parameters or the state space model. The
proposed method adopts the same aerodynamic force con-
densation method as the GFST method, but it does not need
real-time loading of aerodynamic forces, thereby avoiding
the complex and difficult design of a MIMO force controller.
Taking a fixed-root aluminum plate wing as the research
model, the feasibility and accuracy of the proposed method

are verified by comparison with theoretical flutter results.
A simulation model established by the proposed method is
used to study the effects of deviations in the mode frequency
of the structural FRFs, deviations in the mode damping of
the structural FRFs, and deviations in the positions of EPs
and MPs in the test.

2. Methods

2.1. Principle of GFBP Method. Figure 1 shows a flow chart
of the GFBP method, which involves the following steps:

(1) Taking a real flight vehicle as the test model, a lim-
ited number of EPs and MPs are optimized

(2) The structural FRFs are acquired from a ground test,
which is performed by placing vibration sensors
(laser displacement sensors, acceleration sensors,
etc.) at the MPs and exciting each EP in turn

(3) Establishing the aerodynamic model: using a
frequency-domain unsteady aerodynamic calcula-
tion method and aerodynamic force condensation
method, the aerodynamic FRFs in physical coordi-
nates are established

(4) From a combination of the experimental structural
FRFs and the calculated unsteady aerodynamic
FRFs, a low-order MIMO aeroelastic system is estab-
lished, and the multivariable Nyquist criterion is
used to predict the flutter boundary

The core of the GFBP method is to introduce the exper-
imental structural FRFs into the frequency-domain flutter
boundary prediction method. Compared with numerical
models, the accuracy of structural dynamic characteristics
is higher. In this paper, the research subject is limited to
the linear flutter boundary prediction of flight vehicles, such
as the linear flutter of wings, tails, and all-movable rudders.
The nonlinear flutter phenomena such as limit cycle oscilla-
tions and chaos motions of nonlinear structures do not
belong to the scope of this paper. In terms of aerodynamics,
the proposed method uses mature frequency-domain
unsteady aerodynamic calculation methods, needs to obtain
the aerodynamic forces in physical coordinates, and uses the
aerodynamic force condensation method to reduce the
dimension of the aeroelastic system. The accuracy of the
proposed method is limited by the accuracy of the aerody-
namic method used.

2.2. Acquisition of Structural FRFs. Different from the modal
test, the ground test here can also be named as frequency
response test, which does not need to identify the modal
parameters of the structure but only used to obtain the struc-
tural FRFs EmeðωÞ of the excitation forces at the EPs to the
displacements at the MPs. From the perspective of structural
and aerodynamic interaction, the structural FRFs represent
the transmission characteristics from the unsteady aerody-
namic forces at EPs to the displacements at MPs. The
ground test can be carried out with commercial modal test-
ing hardware and commercial software (e.g., LMS SCADAS
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data acquisition system and LMS Test.Lab software [16]). It
should be noted that the locations of EPs and MPs cannot be
given arbitrarily and need to be optimized for the accuracy
of unsteady aerodynamic condensation.

Assuming that the numbers of EPs and MPs are Ne
and Nm in the test, respectively, the dimensions of fe
and zm are Ne × 1 and Nm × 1, respectively, and the
dimension of EmeðωÞ is Nm ×Ne. The structural subsystem
is shown in Figure 2.

In the ground test, the excitation force is applied at each
EP in turn, and the displacement at each MP is collected at
the same time to obtain the structural FRFs. The excitation
force is generally applied by an electromagnetic exciter,
and the excitation force signal is collected by a force sensor.
The commonly used excitation signals include burst random
signal, linear sweep signal, and step-sine signal. The dis-
placement signals can be collected directly by laser displace-
ment sensors, or acceleration sensors can be used to collect
acceleration signals that require frequency-domain integra-
tion for estimation of the structural FRFs.

In the signal processing, all kinds of FRF identification
methods can be used. Commonly used methods include
the H1 and H2 methods [17], which are used in the com-
mercial modal testing software LMS Test.Lab, i.e.,

H1 ωð Þ = Sf z ωð Þ
Sf f ωð Þ ,

H2 ωð Þ = Szz ωð Þ
Szf ωð Þ ,

ð1Þ

where Sf f ðωÞ and SzzðωÞ are the single-sided spectra of the
auto correlation of input signal and output signal, respec-
tively, Sf zðωÞ and Szf ðωÞ are all the single-sided spectra of
the cross correlation of input and output signal, and ω is
the simple harmonic oscillation frequency.

In the simulation model of the proposed method, the
structural FRFs can be established from the dynamical func-
tion of the FEM:

Eme ωð Þ =Φm ω2M + iωC +K
� �−1ΦT

e , ð2Þ

where M, C, and K are the generalized mass matrix, the
generalized damping matrix, and the generalized stiffness
matrix, respectively, and Φm and Φe are the mode shapes
of the MPs and EPs, respectively, which can be interpolated
from the mode shape of the FEM.

2.3. Acquisition of Aerodynamic FRFs. In the proposed
method, we need to obtain the unsteady aerodynamic FRFs
in physical coordinates; the time-domain highly accurate
computational fluid dynamics method based on Navier-
Stokes equations can not be used directly. Therefore, the
frequency-domain unsteady aerodynamic methods are used
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Figure 1: Flow chart of GFBP method.
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in this paper, which are fast, and with the development of
theory, the accuracy generally meets the needs of engineer-
ing applications. For subsonic and supersonic speeds, the
frequency-domain unsteady aerodynamic methods com-
monly employed in engineering can be used, such as the
subsonic and supersonic doublet-lattice method (DLM)
[18–20], ZONA6 [21], ZONA7 [22], and piston theory [23,
24]. The ZEUS developed by ZONA Technology, Inc. with
Euler equation solver as the underlying aerodynamic force
generator is a high accuracy method [25], which can be used
in the transonic aerodynamic calculation.

It should be noted that for the proposed method, only
the aerodynamic influence coefficient (AIC) matrix in phys-
ical coordinates needs to be calculated, and the generalized
AIC matrix in generalized mode coordinates used in classi-
cal flutter analysis does not need to be obtained.

For an aeroelastic system with Na aerodynamic grids, the
relationship between the aerodynamic forces fa at the pres-
sure points and the displacements zc and their streamwise
derivatives zc′ at the control points can be expressed as

fa =
1
2 ρV

2A kð Þ
zc
zc′

" #
, ð3Þ

where ρ is the atmospheric density; V is the flight speed; and
fa, zc, and zc′ all have dimensions Na × 1. The AIC matrix
AðkÞ in physical coordinates has dimensions Na × 2Na.
The dimensionless reduced frequency k is equal to ωL/V ,
where L is the reference chord length. At a given flight speed
V and frequency ω, the AIC matrix AðkÞ can be obtained by
interpolation.

In order to facilitate the implementation of the ground
test, the number of the EPs and the MPs is generally much
less than the number of aerodynamic grids. Aeroelastic sys-
tem is the coupling of structural subsystem and aerodynamic
subsystem, so it is necessary to ensure that their dimensions
are consistent. Therefore, we adopt the aerodynamic force
condensation method to obtain the FRFs from the displace-
ment zm at the MPs in response to the aerodynamic forces fe
at the EPs. The condensate aerodynamic subsystem is shown
in Figure 3.

The spline interpolation methods commonly employed
in general aeroelastic analysis can be used for the interpola-
tion of displacement and force, including, among others, the
infinite plate spline method (IPS) [26] and the thin plate
spline method (TPS) [27].

zc and its streamwise derivation zc′ can be interpolated
from zm:

zc
zc′

" #
=

Gcm

Bcm

" #
zm, ð4Þ

where Gcm and Bcm are the displacement interpolation
matrices, with dimensions Na ×Nm.

za can be interpolated from the displacement ze at
the EPs:

za =Gaeze, ð5Þ

where Gae is the displacement interpolation matrix, with
dimensions Na ×Ne.
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Aerodynamic subsystem

1
2 𝜌V2Aem (k)

Figure 3: Aerodynamic subsystem.
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According to the principle of virtual work, the relation-
ship between the aerodynamic forces at the pressure center
and those at the EPs can be obtained as

fe =GT
aefa: ð6Þ

On substituting Equations (4) and (6) into Equation (3),
the aerodynamic forces are obtained as

fe =
1
2 ρV

2Aem kð Þzm, ð7Þ

where the condensate AIC matrix AemðkÞ can be written as

Aem kð Þ =GT
aeA kð Þ

Gcm

Bcm

" #
: ð8Þ

In order to apply the GFBP method in this paper, we
take the DLM (subsonic and supersonic) as an example to
calculate the unsteady aerodynamic FRFs, in which AemðkÞ
can be expressed as

Aem kð Þ =GT
aeSD

−1 i
k
L
Gcm + Bcm

� �
, ð9Þ

where S is the area matrix of the aerodynamic grids and D is
the aerodynamic coefficient matrix, all of which have dimen-
sion Na ×Na. i is the imaginary unit.

2.4. Optimization of EPs and MPs. Accuracy of aerodynamic
force condensation is closely related to the number and loca-
tions of the EPs and the MPs. Therefore, it is necessary to
optimize the locations of the EPs and the MPs. The
optimization principle is that of minimizing the error
between the interpolated mode shape and the original mode

shape (the target mode shape) of the aerodynamic grids.
This optimization principle is adopted because the smaller
the mode shape error, the more accurate will be the aerody-
namic force [10].

The relationship between the mode shape of the MPs
and the mode shape (and the mode slope) of the aerody-
namic control points is

�Φc

�Φc′

" #
=

Gcm

Bcm

" #
Φm, ð10Þ

where the mode shape Φm at the MPs can be interpolated
from the experimental mode shape or assumed mode shape,
�Φc is the interpolated mode shape of the aerodynamic con-
trol points, and �Φc′ is the mode slope.
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The relationship between the mode shape of the EPs and
that of the aerodynamic pressure center is

�Φa =GaeΦe, ð11Þ

where the mode shape Φe at the EPs can be interpolated
from the experimental mode shape or assumed mode shape
and �Φa is the interpolated mode shape of the aerodynamic
pressure center.

A genetic algorithm is used to optimize the locations of
the EPs and MPs. The objective functions are expressed as

objm = �Φc −Φc

� �
η

�� ��
F
+ �Φc′ −Φc′

� �
η

��� ���
F
,

obje = �Φa −Φa

� �
η

�� ��
F
,

ð12Þ

where Φc, Φc′, and Φa are the target mode shapes (and mode
slopes) (which can be interpolated from the experimental
mode shape or assumed mode shape). According to practical
engineering experience and the flutter characteristics of the
research model, the mode weight coefficient matrix η is
manually set to represent the importance of each-order
mode in the optimization.

It should be noted that the ground test of the proposed
method is different from the GFST. The GFST needs to load
unsteady aerodynamic forces on the real structure in real
time. Therefore, the numbers and locations of the EPs and
MPs are greatly limited by the model size, instrument size,
and force control method. In this study, the test only needs
to obtain the structural FRFs from the displacements at the
MPs in response to the forces at the EPs, which imposes less
stringent limitations on the number and locations of the EPs
and MPs than the GFST.

2.5. Flutter Boundary Prediction

2.5.1. Low-Order MIMO Aeroelastic System. The structural
FRFs (Figure 2) and the aerodynamic FRFs (Figure 3) are
coupled to establish a low-order MIMO aeroelastic system,
which is actually a feedback system, as shown in Figure 4.
The inputs of the aerodynamic subsystem are the displace-
ments at the MPs, and the outputs are the concentrated
aerodynamic forces at the EPs. The FRFs of the aerodynamic
subsystem are obtained by calculation. The inputs of the
structural subsystem are the exciting forces at the EPs, and
the outputs are the displacements at the MPs. The FRFs of
the structural subsystem are obtained from a ground test
of the real structure.

The flight speed can be regarded as the feedback gain in
the MIMO system. When the flight speed is zero, the system

is open-loop and stable. When the flight speed is less than
the flutter speed, the system always remains stable. When
the flight speed exceeds the flutter speed, dynamical instabil-
ity of the system occurs.

2.5.2. Multivariable Nyquist Criterion in GFBP. In this study,
the multivariable Nyquist criterion [28] is used to analyze
the stability of the MIMO aeroelastic system and predict
the flutter speed and frequency.

The open-loop FRF of the MIMO aeroelastic system at
the flight speed V is

T V , ωð Þ = −
1
2 ρV

2Eme ωð ÞAem kð Þ: ð13Þ

The return difference matrix (RDF) is

D V , ωð Þ = I −
1
2 ρV

2Eme ωð ÞAem kð Þ: ð14Þ

When det DðV , ωÞ ≠ 0, the closed-loop FRF of the
system is

H V , ωð Þ =D−1 V , ωð ÞEme ωð Þ: ð15Þ

Table 1: Three lowest-order mode frequencies of the wing.

Order
Normal state (Hz) Leading state (Hz) Trailing state (Hz)

Mode shape
FEM Test FEM Test FEM Test

1 16.48 16.46 15.50 15.55 15.50 15.56 1st bending mode

2 47.35 47.38 43.16 43.28 43.16 43.27 1st torsional mode

3 101.75 101.13 98.94 98.48 98.94 98.52 2nd bending mode
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Figure 8: Locations of the EPs and the MPs.
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From Equations (13)–(15), the following relationship
can be established:

det D V , ωð Þ = ϕc V , ωð Þ
ϕo V , ωð Þ , ð16Þ

where ϕcðV , ωÞ is the closed-loop characteristic
polynomial and ϕoðV , ωÞ is the open-loop characteristic
polynomial.

Exchanging EmeðωÞ and AemðkÞ is equivalent to the
GFBP method, and so the following identity can be obtained:

det Im −
1
2 ρV

2Eme ωð ÞAem kð Þ
	 


= det Ie −
1
2 ρV

2Aem kð ÞEme ωð Þ
	 


:

ð17Þ

In this identity, the dimensions of the matrix expressions
inside the square brackets, i.e., DðV , ωÞ, on the left- and
right-hand sides are different: Nm ×Nm and Ne ×Ne, respec-
tively. Therefore, it is possible to select the DðV , ωÞ with the

lower dimension according to the number of EPs and MPs
in the test and thereby improves the calculational efficiency.

The Nyquist curve ΓðV , ωÞ is a closed contour drawn by
det DðV , ωÞ as ω transverses from −∞ to ∞. Let encDðV , ωÞ
denote the number of encirclements of the origin ð0, i0Þ made
by the curve ΓðV , ωÞ. The number of encirclements of the ori-
ginmade by ϕcðV , ωÞ is denoted by encϕcðV , ωÞ, which is equal
to the number of closed-loop right-half-plane zeros nc. The
number of encirclements of the origin made by ϕoðV , ωÞ is
denoted by encϕoðV , ωÞ, which is equal to the number of
open-loop right-half-plane poles no. Referring to Equation
(16), the following equation can be obtained:

encD V , ωð Þ = encϕc V , ωð Þ − encϕo V , ωð Þ = nc − no: ð18Þ

A necessary and sufficient condition for the stability of the
closed-loop system is that the closed-loop characteristic polyno-
mial has no closed right-half-plane zeros (nc = 0). Then, from
Equation (18), the multivariable Nyquist criterion for the stabil-
ity of the closed-loop system is that the number of clockwise

Exciter

Acceleration sensor

E1 E2

E3 E4

(a) Normal state

(b) Leading state (left) and trailing state (right)

Figure 10: Ground test of the three states.
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encirclements relative to the origin made by ΓðV , ωÞ plus the
number of open-loop right-half-plane poles must be zero, i.e.,

encD V , ωð Þ + no = 0: ð19Þ

In particular, for this MIMO aeroelastic system, because the
structural subsystem is stable (the system is open-loop stable),
ϕoðV , ωÞ has no open-loop right-half-plane poles (no = 0).
The multivariable Nyquist criterion can then be represented as

encD V , ωð Þ = 0: ð20Þ

In the proposed method, to avoid repetitive drawing of the
Nyquist curve to judge whether it encircles the origin ð0, i0Þ,
this task is converted one of judging the minimum distance
from det DðV , ωÞ to the origin. The flutter boundary prediction
process is shown as a flow chart in Figure 5 and involves the fol-
lowing steps:

(1) Take as given quantities, ranges of flight speed, and
analysis frequency that cover the possible ranges of
flutter speed and frequency

(2) For each given flight speed, calculate the minimum
distance dðV , ωÞ from det DðV , ωÞ to the origin
within the analysis frequency range

(3) Within the flight speed range, obtain the d - V curve
(as shown in Figure 6), judge the nonzero minimum
value dðVF , ωFÞ, and take the flight speed corre-
sponding to this minimum value as the flutter speed
VF , and take the corresponding frequency as the
flutter frequency ωF

To speed up the search for VF and ωF , the flight speed
range can be divided into two areas: a large-range rough
search area and a small-range fine search area.

3. Research Model and Experiment

3.1. Model Parameters. In the flutter phenomenon of flight
vehicles, the most common is the linear flutter of wings, tails,
and all-movable rudders. In the numerical method, gener-
ally, the aerodynamic model can be simplified into flat plates
with a certain geometry, and the structural model can also be
simplified under the condition of ensuring the consistency of
the mass and stiffness [29]. For such realistic problems, the
fixed-root plate is a representative research model, which
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can reflect the structural and aerodynamic characteristics of
wings, tails, and all-movable rudders. In the flutter boundary
prediction of the fixed-root plate model using the GFBP
method, the optimization method of EPs and MPs, the
unsteady aerodynamic calculation and condensation
method, and the experimental acquisition method of struc-
tural FRFs are consistent with the flutter boundary predic-
tion of real flight vehicles. The research model used in this
paper is shown in Figure 7, a fixed-root aluminum plate
wing, with a thickness of 5mm, a chord length of 400mm,
and a half-span length of 500mm. The states we study
include the normal state, the leading-edge clump weight
state (leading state), and the trailing-edge clump weight state

(trailing state). The barycenters of the leading-edge and
trailing-edge clump weights are located at the coordinates
(20, 480) mm and (380, 480) mm , respectively, and the
weight is 95.7 g. It is a typical bending-torsional flutter
model with coupling of the first bending mode and the first
torsional mode. The FEM is established by 25 × 20 grids of
quadrilateral structural elements, which are used for theoret-
ical flutter boundary prediction via V − gmethod and estab-
lishing the simulation model of the proposed method. In
order to improve the accuracy of the results of V − g
method, the FEM is updated by the hammering modal test
values. The three lowest-order mode frequencies of the three
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states are listed in Table 1. It can be seen that the FEM
values are in good agreement with the test values, so the
theoretical flutter results can be used as the standard results
of the model.

In order to verify the feasibility and accuracy of the pro-
posed method, the same unsteady aerodynamic calculation
method as that used in the theoretical V − g method is
adopted. The difference is that the condensate unsteady
aerodynamic FRFs in physical coordinates need to be used
in the proposed method, while the generalized AIC matrix
in generalized mode coordinates is used in the theoretical
method. The aerodynamic models for the three states are
established by the subsonic and supersonic DLM, in which
the aerodynamic grids are 8 × 8, the atmospheric density is
taken as 1.225 kg/m3, and the Mach number is set differ-
ently. For the normal state, the calculated Mach number
includes 0.2, 0.4, 0.6, and 1.5. For the leading state and trail-
ing state, the calculated Mach number is only 0.2. Combined
with the interpolation matrices (Gae, Gcm, and Bcm), the con-
densate AIC matrix AemðkÞ in physical coordinates is com-
puted for a selected range of reduced frequencies (k) and
then expands by interpolation to a large number of frequen-
cies (ω) as required for the flutter boundary prediction.

3.2. Locations of the EPs and MPs. A genetic algorithm is
used to optimize the locations of the EPs and the MPs,
which are the same in the three states. Considering both
the implementation efficiency of the ground test and the pre-
diction accuracy of the flutter boundary, the numbers of EPs
and the MPs are both set to four (Ne = 4, Nm = 4). The wing
model is divided into 25 × 20 structural grids. Along the flow
direction, the wing tip nodes are numbered 1–21, the root
nodes are numbered 526–546, and the other nodes are num-
bered from small to large in this order.

Take the non-edge nodes as the search area. Considering
that this is a bending-torsional flutter with coupling of the
first bending mode and the first torsional mode, therefore,
only the three lowest-order modes are considered, and the
weight coefficient η is set as diag ð100%, 100%, 5%Þ. Accord-
ing to the optimization objective functions proposed in
Equation (12), the locations of the EPs and MPs optimized
by the genetic algorithm are shown in Figure 8. The num-
bers of EPs (E1–E4) are 390, 237, 248, and 52, and the num-
bers of MPs (M1–M4) are 107, 32, 76, and 125.

It should be noted that for such a fixed-root plate, a
number of virtual EPs and MPs can be selected at the root
of the fixed support, which can effectively improve the
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Figure 13: GFBP curves of normal state at Ma = 0:2.

Table 2: Comparison of GFBP results and theoretical results for the three state.

State Ma
Flutter speed (m/s) Flutter frequency (Hz)

GFBP Theoretical GFBP Theoretical

Normal state

0.2 250.5 251.6 30.54 30.98

0.4 250.4 251.4 30.00 30.11

0.6 250.0 251.2 28.72 28.45

1.5 344.3 347.9 29.22 29.01

Leading state 0.2 282.7 279.7 27.39 27.23

Trailing state 0.2 227.6 225.5 30.34 30.10
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accuracy of the interpolation matrices Gae, Gcm, and Bcm.
This improvement makes the calculation of aerodynamic
FRFs more accurate and eventually provides more accurate
flutter boundary prediction results. Since the mode shape
of the virtual EPs and MPs is zero, the corresponding
structural FRFs are equal to zero according to Equation
(12), and they do not need to be considered when estab-
lishing the MIMO aeroelastic system. When using the
multivariable Nyquist criterion, it is only necessary to
establish the Nm ×Ne matrix EmeðωÞ and the Ne ×Nm
matrix AemðkÞ.

Figure 9 shows a comparison of the results for the three
lowest-order mode shape (and mode slope). The interpo-
lated mode shapes and mode slopes (�Φa, �Φc, and �Φc′) are

in good agreement with the target modes. The first bending
mode and the first torsional mode correspond well to the
target modes because these modes are relatively simple and
the weight coefficient is set to 100%. For the second bending
mode, because this mode is relatively complex and the
weight coefficient is only set to 5%, the interpolated errors
are relatively obvious, but this mode has little influence on
the flutter results.

3.3. Implementation of the Ground Test. The structural FRFs
of the plate wing were obtained from a ground test. An elec-
tromagnetic exciter was used to excite each of the four opti-
mized EPs, and the acceleration signals of the four MPs were
collected at the same time. The FRF from the excitation force
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signal of a single EP to the displacement signal of a single
MP was obtained by frequency-domain integration and
was then combined into the structural FRFs with dimensions
Nm ×Ne.

Photographs of the test implementation are shown in
Figure 10. Figure 10(a) shows the four EPs excited in the
normal state, and Figure 10(b) shows single-point excitation
in the leading and trailing states. A TIRA S 51110-M electro-
magnetic exciter was used, the force signals were measured
by a PCB 208C02 force sensor, and the acceleration signals
were collected by PCB 333B30 acceleration sensors. All mea-
surements and estimation of the FRFs were accomplished by
the LMS SCADAS III data acquisition system and the LMS
Test.Lab software package.

In order to verify the quality of the experimental struc-
tural FRFs, in the normal state, the theoretical values were
calculated according to Equation (2), the structural charac-
teristics were obtained from the FEM, and the damping ratio
of the three lowest-order modes was set to 0.5%.

When obtaining the structural FRFs, a burst random
excitation signal was used. As Figure 11 shows, the length
of the time-domain signal of one excitation was 8 s. The
high-quality structural FRFs were obtained by the H1
method and averaging 20 times. Figure 12 shows a compar-
ison of theoretical and experimental values of the structural
FRFs (E12 and E14). It can be seen that the ground test can
provide high-quality structural FRFs. In the locally enlarged
view at the first bending mode, there are deviations in the
mode frequency and amplitude between the experimental
and theoretical values, which are mainly due to the addi-
tional stiffness of the exciter and the additional mass of the
sensors. The amplitudes of the FRFs are also affected by
the difference in damping between the experimental and
theoretical models, deviations in the positions of the EPs
and MPs, and the method for estimating the FRFs. The obvi-
ous frequency difference between E12 and E14 shows that the
additional stiffness caused by the exciter is different at differ-
ent positions.
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4. Results and Discussion

4.1. Prediction Results for Data from a Single Ground Test.
Combined with the experimental structural FRFs and the
unsteady aerodynamic FRFs, the MIMO aeroelastic system
is established, and the multivariable Nyquist criterion is used
to predict the flutter boundary. The GFBP results and theo-
retical results are shown in Table 2. It can be seen that the
flutter boundary prediction results for the three states at dif-
ferent Mach numbers are in good agreement with the theo-
retical values. The experimental structural FRFs acquired
from a single ground test are suitable for flutter boundary
prediction at different Mach numbers.

For the normal state, the GFBP curves at Mach 0.2 are
shown in Figure 13. Referring to the theoretical flutter
results, the analysis speed range is 248–253m/s, the speed
step is 0.1m/s, and the analysis frequency range is

10–60Hz. The minimum distance between det DðV , ωÞ
calculated from the test data and the origin ð0, i0Þ is
1:3 × 10−9 at the flutter speed 250.5m/s. Figure 13(b)
is the Nyquist curve at this critical speed.

A further illustration of the flutter results at Mach 0.2 for
the three states is shown in Figure 14. The GFBP method can
accurately reflect the trends of variation of flutter speed and
frequency with the clump weight located in different places.
The errors in the flutter speed for the normal, leading, and
trailing states are -0.44%, 1.07%, and 0.93%, respectively,
while the errors in the flutter frequency are -1.42%, 0.59%,
and 0.80%, respectively.

4.2. Dispersion of Prediction Results with Data from Multiple
Ground Tests. To avoid the errors and uncertainties of a sin-
gle test, six groups of burst random signals with different
excitation force peaks were used in the ground test. In this
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way, the test data from the four EPs can be combined to
obtain 1296 groups of structural FRFs. Similarly, there are
1296 groups of GFBP results at Mach 0.2.

For the errors between the GFBP results of the 1296
group compared with the theoretical results, the box dia-

gram shown in Figure 15 can be drawn, in which the maxi-
mum and minimum values of the errors are marked. It can
be seen that for the three states, the results of multiple tests
with different peak excitation forces fluctuate within a small
range. The maximum errors in the flutter speed compared
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with the theoretical values for the three states are -0.60%,
1.65%, and 1.30%, respectively, while the maximum errors
in the flutter frequency are -1.65%, 1.43%, and 1.03%,
respectively. The GFBP results with data from multiple
ground tests are stable and reliable.

4.3. Influence of Deviations in the Structural FRFs. In the
ground test, there are deviations in the mode frequency
and amplitude between the experimental and theoretical
FRFs. During the implementation of the test, deviations in
the actual positions of EPs and MPs will also lead to errors
in the FRFs. In the simulation system for the normal-state
research model established by the proposed method, the
mode frequency, the mode damping (reflecting amplitude
deviation), and the positions of EPs and MPs are each ran-
domly perturbed, and Monte Carlo simulation is used to
count the flutter boundary prediction results. The unbiased
GFBP results for the normal-state simulation model at Ma
= 0:2 are shown in Figure 16, namely, the d - V curve rep-
resenting the minimum distance from det DðV , ωÞ to the
origin and the Nyquist curve at the flutter speed. For the
unbiased results, the flutter speed is 250.3m/s, and the flut-
ter frequency is 30.90Hz.

4.3.1. Deviations in the Mode Frequency. To get close to the
real situation of the ground test, considering that the mode
frequencies obtained at different EPs are affected differently
by the additional stiffness of the exciter and the additional
mass of the sensors, the frequency of each-order mode
obtained at each EP is subjected to independent random
perturbations. The random perturbation of each-order mode
frequency is given by

f = υf0,

υ ∼N 1:0, r
2

� �2� �
,

ð21Þ

where f0 is the nominal mode frequency of the normal state,
f is the perturbation mode frequency, υ is a random variable
satisfying a Gaussian distribution, and ±r represents the
mode frequency perturbation range of the 95% confidence
interval. Two perturbation ranges of 1% and 2% are consid-
ered in the analysis; here, 2% is the maximum range of mode
frequency deviation in the test of the plate wing.

Using Monte Carlo simulation, 4000 groups of samples
were randomly generated, and the GFBP results of each group
were counted by the kernel smoothingmethod. The probability
density function (PDF) of the flutter speed is shown in
Figure 17. When the frequency deviation conforms to a Gauss-
ian distribution, the predicted flutter speed also conforms to a
Gaussian distribution. For the 1% perturbation range, themean
flutter speed is 250.3m/s, the 95% confidence interval is 247.6
to 253.0m/s, and the error in the 95% confidence interval rela-
tive to the unbiased state is ±1:1%. For the 2% perturbation
range, the mean flutter speed is 250.3m/s, the 95% confidence
interval is 244.8 to 255.8m/s, and the error in the 95% confi-
dence interval relative to the unbiased state is ±2:2%.

The analysis of the frequency deviation shows that the
maximum possible frequency deviation range in the test
has little influence on the GFBP results. The proposed
method has good robustness and can give accurate flutter
boundary prediction results.

4.3.2. Deviations in the Mode Damping. The deviation of
mode damping is mainly used to reflect the amplitude

210 220 230 240 250 260 270 280 290
Flutter speed (m/s)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

PD
F

Figure 19: PDF of flutter speed: deviations in the positions of EPs and MPs.

16 International Journal of Aerospace Engineering



deviation of the structural FRF. Considering that the ampli-
tude deviation at different EPs is different, to be closer to the
real situation, the damping ratios of the three lowest-order
modes obtained at each EP are subjected to independent
random perturbations. The nominal damping ratio is 0.5%,
and the perturbation damping ratio is given by

ξ = υξ0,

υ ∼N 1:0, r
2

� �2� �
,

ð22Þ

where υ is a random variable satisfying a Gaussian distribu-
tion and ±r represents the mode damping perturbation
range of the 95% confidence interval. Two perturbation
ranges of 20% and 60% are considered in the analysis.

Using Monte Carlo simulation, 4000 groups of samples
were randomly generated, and the GFBP results of each
group were counted by the kernel smoothing method. The

PDF of the flutter speed is shown in Figure 18. It can be seen
that the smaller the perturbation of the damping ratio, the
smaller is the variance of the flutter speed. For the 20% per-
turbation range, the mean flutter speed is 250.3m/s, and the
95% confidence interval is 249.8 to 250.8m/s. For the 60%
perturbation range, the mean flutter speed is 250.3m/s, the
95% confidence interval is 248.7 to 251.9m/s, and the error
in the 95% confidence interval relative to the unbiased state
is ±0:64%. This result indicates that for this kind of explosive
flutter, damping has little effect on the flutter speed. When
the GFBP method is used to predict the flutter boundary,
there is a large allowable deviation in the damping or, more
directly, the amplitude of the structural FRFs.

4.3.3. Deviations in the Positions of the EPs and MPs. In the
test, owing to artificial measurement errors, the actual posi-
tions of the EPs and MPs may deviate from the theoretical
values. To study the influence of these deviations on the
GFBP results, the position coordinates of the EPs and MPs
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are randomly perturbed. The perturbation range is a circular
area, with center at the theoretical coordinates and radius
5mm (1.0% of the maximum characteristic length of the
model). The perturbed coordinates are used to calculate
the structural FRFs, while the aerodynamic FRFs are still cal-
culated using the theoretical coordinates.

Four thousand groups of GFBP results were randomly
generated and counted by the kernel smoothing method.
The PDF of the flutter speed is shown in Figure 19 and
can be seen to conform to a Gaussian distribution. The mean
value of the flutter speed is 251.2m/s, the 95% confidence
interval is 232.5 to 269.9m/s, and the error relative to the
unbiased state is -7.1% to 7.8%. It can be seen that the posi-
tion deviation has a great influence on the flutter boundary
prediction results. The reason is that in the calculation of
the aerodynamic FRFs, the theoretical coordinates of EPs
and MPs are used to construct the interpolation matrices
Gae, Gcm, and Bcm, while the obtained structural FRFs devi-
ate from the unbiased state.

Considering the different influences of the EPs and MPs
in the aerodynamic calculation, their positional coordinates
are perturbed separately, although the perturbation range
remains unchanged, and 4000 groups of samples are still
generated randomly. The PDFs of the flutter speed in the
two perturbation cases are shown in Figure 20. The mean
flutter speed of the EP position deviation is 250.4m/s, the
95% confidence interval is 245.1 to 255.7m/s, and the error
relative to the unbiased state is -2.1% to 2.2%. The mean
flutter speed of the MP position deviation is 251.2m/s, the
95% confidence interval is 233.2 to 269.1m/s, and the error
relative to the unbiased state is -6.8% to 7.5%, which is close
to the simultaneous perturbation results for the EPs and
MPs. This result shows that compared with the positional
accuracy of the EPs, that of the MPs has a greater impact
on the GFBP results.

The study shows that when obtaining the structural
FRFs from the test, attention should be paid to the positional
accuracy of EPs and MPs, especially that of the MPs. In a
ground test of a real wing, the accuracy of the positional
coordinates can be guaranteed by the high-precision dimen-
sional measuring equipment.

5. Conclusions

In this paper, a ground flutter boundary prediction method
based on the structural FRFs acquired from a ground test
has been proposed. Combined with experimental structural
FRFs and calculated unsteady aerodynamic FRFs in physical
coordinates, a low-order MIMO aeroelastic system has been
established, and the multivariable Nyquist criterion has been
used to predict the flutter boundary. The ground test can be
carried out with commercial modal testing hardware and
commercial software, and the accuracy of frequency-
domain unsteady aerodynamic calculation methods com-
monly used in engineering generally meets the needs of
industrial applications, which make this method very attrac-
tive for engineering applications. Compared with the previ-
ous flutter boundary prediction methods, the proposed
method has several contributions. Firstly, compared with

the numerical method base on the numerical structural
model, the structural FRFs obtained from the ground test
of the real structure can more accurately reflect the real
dynamic characteristics. Secondly, the experimental struc-
tural FRFs have fewer identification errors than the modal
parameters and state space model identified from test data.
Finally, compared with the GFST method, there is no risk
of instability and no need to use the complex and difficult
MIMO force controller in the ground test, which makes
the proposed method safe and easy to implement, and
avoids the influence of force control error on the flutter
boundary prediction results.

A GFBP experiment of an aluminum plate wing has been
carried out. The structural FRFs are acquired from ground
tests with different excitation peaks. The unsteady aerody-
namic FRFs are calculated by subsonic and supersonic
DLM in physical coordinates. When the numbers of EPs
and MPs are both four, the maximum errors of the flutter
speed and frequency in the test statistics for the normal state,
leading state, and trailing state compared with the theoretical
values are no more than 1.7%, which verifies the feasibility
and accuracy of the proposed method. The structural FRFs
acquired from a ground test can be used to flutter boundary
prediction at different Mach numbers.

For the common structural FRF errors in the ground
test, including deviations in the mode frequency, deviations
in the mode damping, and the position deviations of EPs
and MPs, a simulation model of the proposed method has
been established in this paper. The results of a perturbation
analysis of the simulation system show that deviations in the
mode frequency of the structural FRFs have limited impact
on the accuracy of the proposed method. Deviations in the
damping (represent the amplitude of the structural FRFs)
also have little impact for this kind of explosive flutter. Devi-
ations in the positions of MPs have a much greater impact
on the flutter boundary prediction results than deviations
in the positions of EPs, and so the positional accuracy of
the MPs needs to be guaranteed in the ground test.
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