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Efficient and accurate flight trajectory prediction is a key technology for promoting intelligent and informative air traffic
management and improving the operational capabilities and predictability of air traffic. To address the problems in extracting
hidden information from historical trajectory information, the approach must accurately select high-dimensional features
related to the prediction target and overcome the short-term memory of the time series. Herein, we present a novel trajectory
prediction model based on a dual-self-attentive (DSA)-temporal convolutional network (TCN)-bidirectional gated recurrent
unit (BiGRU) neural network. In this model, the TCN provides highly stable training, high parallelism, and a flexible
perceptual domain. The self-attentive mechanism of the TCN structure can focus on features that contribute the most to the
output. After the TCN, the BiGRU network combined with the self-attentive mechanism is used to further bidirectionally mine
the connections between the features and outputs of the trajectory sequence, and a Bayesian algorithm is used to optimise the
hyperparameters of the model for optimal performance. A comparison and validation based on current well-known neural
network models (i.e., CNN, TCN, GRU, and their variants) shows that the DSA-TCN-BiGRU model based on Bayesian
hyperparameter optimisation has the best performance. Therefore, the improved predictive model is applicable and valuable,
providing a basis for future decision trajectory-based operations.

1. Introduction

The continuous growth of air traffic has raised critical chal-
lenges to current air traffic control (ATC) systems, and the
international civil aviation community is undergoing a new
round of ATC system upgrades. In this new generation of
ATC automation systems, a trajectory-based operation
mode has been proposed as the core technology for the next
phase [1]. In response to the global ATC integration require-
ments proposed by the International Civil Aviation Organi-
sation [2, 3], the United States and Europe have taken the
lead in developing future ATC plans including the Single
European Sky Program, U.S. Central Terminal Area Control
Automation System, and Distributed Ground and Air Traf-
fic Management System. Together, they support the opera-
tional concepts for trajectories and performance, forming a

trajectory-based ATC system for providing flight efficiency,
energy savings, and capacity assessments. The key technical
basis of the trajectory-based operation concept is accurate
trajectory prediction [4], as such predictions provide the
most direct reference for aircraft surveillance and control
prognosis. In addition, the management of airspace is
changing from static to dynamic, and the use of automatic
dependent surveil-lance-broadcast (ADS-B) systems for
real-time surveillance. The need for more detailed airspace
management has become even more pressing in light of air-
space delineation and use characteristics. Therefore, the
next-generation ATC system should not only update the
concept of operation, popularise and standardise ADS-B
surveillance technology but also strengthen the independent
research and development of critical technologies to achieve
more automated, intelligent, accurate and safe and efficient
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air traffic management. There is a clear, practical need, and
essential application value for real-time and effective track
prediction through ADS-B data.

Thus, trajectory prediction is an important technology
for new air traffic management automation systems, and
the importance of trajectory prediction technology has
made it a research topic of considerable interest in the
context of ATC systems in recent years. Research into tra-
jectory prediction technology has led to the proposal of
many models for the prediction task. They can be cate-
gorised as follows.

Kinetic model: a kinematic model must consider the per-
formance parameters of the aircraft, stage the flight process,
and establish the corresponding motion equations. Fan et al.
[5] proposed a multiobjective constraint-based aircraft
descent segment track prediction method for improving
the accuracy of aircraft prediction tracks by considering air-
craft performance data, characteristic parameters, flight path
restrictions, and cost index requirements. Li [6] combined
aircraft energy states to simplify the equations of motion
and obtain trajectory characteristics at minimum cost, and
then used an equirectangular trajectory computational
model to fit the flight parameters with the great likelihood
estimation method to achieve a cost-optimised 4D trajectory
prediction. Du et al. [7] constructed a prediction method for
the vertical profile of a continuous aircraft climb while con-
sidering thrust intent using the aircraft full energy equation
and considering the wind speed vector and temperature
information. Pan et al. [8] used a hidden Markov model
(which can predict the future position of an aircraft being
flown every minute in the future), and the validity of the
horizontal and vertical errors was significantly improved rel-
ative to the baseline model. However, the existence of idea-
lised prerequisite assumptions for building a kinematic
discrimination model limits its application scenarios and
prediction accuracy

Data mining models: data mining-based trajectory pre-
diction techniques have become popular as a ‘big data’
research subject in ATC. Ma and Gao [9] clustered historical
trajectories generated by a certain route with typical trajecto-
ries through a clustering algorithm, and then performed a
trajectory correction on the position information at a certain
moment to predict the position information at the next
moment. Zazzaro et al. [10] integrated a clustering algo-
rithm, classification-based supervised learning, and an
uncertainty model to calculate the probability of collision
using Opensky public data, and implemented conflict risk
detection in the terminal area. Carlos et al. [11] obtained
more variable features by preprocessing the trajectory coor-
dinates and flight plan data, and applied them to a k-means
clustering algorithm (to the extent possible) to support a
supervised trajectory classification. Choi et al. [12] combined
a data-driven and physics-based state estimation model and
compared it with a machine learning-only approach, sub-
stantially improving accuracy. However, algorithms based
on state estimation can produce significant errors when
faced with long-term forecasts as they need to consider the
long-term movement features of the model capture model
over time. Ma [13] proposed classifying the trajectories of

different flights using a generalised cluster analysis method
combined with the hidden Markov model to obtain a high-
density 4D trajectory prediction. In general, a data mining
approach can improve the prediction accuracy using differ-
ent clustering algorithms, but it also generates problems
concerning data storage and computational overhead to dif-
ferent degrees

Deep learning models: the development of neural net-
works in deep learning has provided new ideas for nonlinear
models, especially those good at managing time series. Thus,
such networks have been implemented in the study of trajec-
tory prediction [14–16]. Zhou et al. [17] reconstructed and
combined the predictive capabilities of multiple neural net-
works over different time spans to improve prediction accu-
racy. Sahadevan et al. [18] extracted data through sliding
windows and improved the prediction accuracy using a bidi-
rectional long short-term memory (BiLSTM) model to
understand the dependencies of the trajectory data in two
directions, which, in turn, improved the ground system tra-
jectory prediction accuracy. However, the proposed model
has yet to consider the spatial feature extraction of the data.
Tran et al. [19] provided a reliable model for a conflict detec-
tion system by combining encoder–decoder modelling with
tactical intent, and verified that the prediction accuracy
exceeded those of existing models using actual data. In
2020, Lv et al. [20] proposed using a temporal convolutional
network (TCN) for trajectory prediction, and compared it
with a conventional model. They found that the short-term
effect was comparable and the long-term prediction was
improved. Currently, gated recurrent unit (GRU) neural net-
works are primarily used for trajectory predictions [21–23].
Wu et al. [24] proposed to combine GAN networks with
Conv1D, Conv2D, and LSTM networks and verified that
Conv1D-GAN could achieve accurate long-term trajectory
prediction with actual data. The great promise of combined
neural networks in the field of trajectory prediction is
shown. Shafienya and Regan [25] proposed a CG3D model
that fully extracts ADS-B data’s spatial and temporal features
by combining CNN-GRU and 3D-CNN networks. The
uncertainty of the model is also considered, and the com-
bined model has higher prediction accuracy than a single
model. Chen et al. [26] proposed a combination of inception
and LSTM modules for prediction, effectively extracting the
data’s spatio-temporal features. However, the model mainly
considers the reliability condition of localization and the
error is significant. Han et al. [27] used k-means to cluster
similar trajectories, followed by online prediction via GRU
to achieve real-time prediction of trajectories. Ma et al.
[28] proposed a CNN combined with an LSTM network,
which achieved good performance in short-term prediction
but still had a significant error in multistep prediction as
no attention mechanism was used

To achieve more accurate short- and long-term forecasts
and take into account computational efficiency, we adopted
a novel TCN-bidirectional GRU (BiGRU) model based on
an attention mechanism, with the following innovations.

(a) In this study, the TCN model is fused with the
BiGRU model, and a dual-self-attentive (DSA)
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mechanism is introduced. The DSA-TCN-BiGRU
model can extract multisource time-series features
and maintain causal convolutional properties.
High-order trajectory features are extracted by intro-
ducing a dilation convolution to improve the pro-
cessing efficiency of long-time-span memory units.
In addition, the model uses residual linking to trans-
fer the underlying complete features across layers,
thereby enriching the feature results while optimis-
ing the overall network-learning process. Subse-
quently, the BiGRU model combined with the DSA
mechanism can bidirectionally extract the impact
of each time node in the hidden layer state on the
prediction results. The important problems concern-
ing the high-dimensional feature extraction and
long-term dependence of the time series are effec-
tively solved. To the best of our knowledge, this is
the first time that a DSA-TCN-BiGRU model has
been used to forecast aircraft trajectories

(b) The mapping from points in the hyperparameter
space to the model generalisation performance can
be viewed as a complex black-box function with a
high evaluation cost; it is difficult to apply with gen-
eral optimisation methods. We used a Bayesian
Optimisation (BO) algorithm to optimise the hyper-
parameters of the whole model to improve the
model prediction performance and training speed,
thereby overcoming the disadvantages concerning
the time-consumption and low accuracy in manual
parameter tuning

(c) To verify the performance of the model in terms of
track predictions, three sets of comparisons were
made. Particularly, the TCN and DSA mechanisms
were investigated to ensure that the important
track history information was fully utilised in the
extraction of the track data, and that the sequential
nature of the tracks was preserved to compensate
for the shortcomings of the convolutional neural
network (CNN). By comparing the BiGRU model
with the GRU and LSTM, the bidirectional tempo-
ral feature extraction capability of the BiGRU
model was verified, and the time complexity was
simultaneously reduced. In addition, we tested the
model for single-step and multistep prediction,
and the results verified that the DSA-TCN-BiGRU
approach has high stability and track prediction
capability

The remainder of this paper is organised as follows. Sec-
tion 2 analyses the data and preprocessing. Section 3 pre-
sents the DSA-TCN-BiGRU model. Section 4 presents the
experimental and comparative validation results. The final
section concludes this paper.

2. Trajectory Description and data Analysis

As a new technology promoted by the Civil Aviation
Administration of China, the ADS-B technology gener-

ates massive amounts of data that can hide important
aircraft flight information [29]. The dynamic data (gen-
erated in real time) implies the future movement trend
of the aircraft.

2.1. ADS-B Trajectory data Format. An ADS-B message
returns the trajectory information of each vehicle at a certain
point during flight as a series of discrete trajectory points
aggregated into discontinuous trajectory data for each vehi-
cle. The trajectory is represented as follows:

D = D1,D2,⋯,Di,⋯Dnf g: ð1Þ

Here, D denotes the set of aircraft trajectories, i denotes
the trajectory number, i ∈ ½1, n�, n ∈N, n denotes the total
number of trajectories, and Di denotes the flight path of
flight i.

A trajectory consists of a series of multidimensional tra-
jectory points ordered by time.

Di = pi1, pi2,⋯,pij,⋯,pim
n o

: ð2Þ

Here, pij denotes the j multidimensional trajectory point
of trajectory i and m denotes the number of trajectory
points.

The information contained in each waypoint is expressed
as follows:

pij = latt , lont , altt , vt , htf g: ð3Þ

Here, latt denotes the latitude of the aircraft at time t; lont
denotes the longitude of the aircraft at time t; altt denotes the
altitude of the aircraft at time t; vt denotes the speed of the air-
craft at time t; and ht denotes the heading of the aircraft at
time t.

2.2. Data Preprocessing. The ADS-B data are often incom-
plete and inaccurate owing to receiving terminal failures,
communication link delays, and navigation signal losses.
Accordingly, in this study, data with duplicate 3D position
points and time points are deleted to regenerate the trajec-
tory sequence. Missing points were handled by recalculating
the trajectory sequence points in 5-s units using three-spline
interpolation, as shown in Figure 1.

In Figure 1, the red colour represents the trajectory
information after the ADS-B data are parsed. The basic
route characteristics can be obtained, but there are missing
trajectory points in the middle; if there are trajectory missing
points at the edge of the time period when the feature extrac-
tion is conducted, the statistics will have certain errors, and
the validity of the experiment will be questioned. Therefore,
all aircraft trajectory information is interpolated (as shown
in black).

When the amount of data is small, the prediction accu-
racy may be poor owing to overfitting during the deep learn-
ing training process. We construct and expand features by
adding the distance feature G and angle feature δ between
the trajectory point ðxi, yi, ziÞ and centre reference point
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(xo, yo, zo) of the destination to reflect the pilot’s intention,
as shown in

G =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − xoð Þ2 + yi − yoð Þ2 + zi − zoð Þ2

q
, ð4Þ

δ = arctan yi − yo
xi − xo

� �
: ð5Þ

Normalisation: the data are processed using normalisa-
tion, thereby solving the problem of the nonuniformity of
the input data.

X = x − xmax
x − xmin

: ð6Þ

Here, X is the normalised input data, and x is the origi-
nal input data.

2.3. Sample Construction. In the sample construction, we
select the data [30] using sliding windows with a sliding win-
dow size of six to achieve single- and multistep predictions,
as shown in Figure 2.

3. Methods

3.1. Self-Attentive Mechanism. When using neural networks
to process large amounts of sequence data, one can borrow
from the attention mechanism of the human brain and selec-
tively process certain primary information while skipping
secondary information to improve the network performance.
Sequence coding based on convolutional or recurrent neural
networks can only establish local dependencies. One way to
establish long-distance dependencies between the sequences
is to increase the number of layers in the network to obtain
long-distance information interactions through deeper net-
works. The other is to use full connectivity, which, although
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Figure 1: Three-spline interpolation.
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capable of establishing long-distance dependencies, cannot
handle variable-length input sequences. A self-attention
model [31] can dynamically generate weights for handling
variable-length sequences of information and can establish
long-range dependencies.

The self-attention model typically uses a key-value pair
model. The similarity function uses the scaled dot product
as the attention scoring function, as shown in Figure 3.
Assuming that the input sequence X = ½X1,⋯,Xn� and out-

put sequence H = ½h1,⋯,hn�, each input xi is linearly mapped
to three different spaces to obtain the query vector qi, key
vector ki, and value vector vi, respectively. The mapping is
calculated as shown in

Q =WqX ð7Þ
Q =WkX ð8Þ
Q =WvX ð9Þ
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In these equations, Wq, Wk, andWv are the linear map-
ping weight matrices, and Q, K , and V are the query, key,
and value matrices, respectively.

When scaled clicks are used as the attention scoring
function, the output vector sequence is calculated as follows:

H =Vsoftmax KTQffiffiffiffiffiffi
Dk

p
� �

: ð10Þ

Here, Dk is the matrix dimension, and softmax is a func-
tion normalised by the column.

Self-attention models can effectively handle variable-
length time series and establish long-range dependencies [32].

3.2. Self-Attention Temporal Convolutional network. The
TCN networks [33] applied in trajectory prediction have
the following main characteristics: (i) to meet the require-
ments for trajectory prediction, TCN networks have tempo-
ral causality, that is, the current model output is only related

to the past and not to the future; (ii) the output sequence
length of TCN networks applicable to trajectories can be
adjusted arbitrarily; and (iii) multilayer TCN networks have
long memory distances despite their shallow depths.
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Figure 4: Causal dilated convolution structure.
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3.2.1. Causal Dilated Convolution Network. The TCN causal
dilation convolution structure is shown in Figure 4. The
most unique feature of the TCN dilation convolutional
structure is that its specific form is determined by the convo-
lutional kernel and dilation coefficients. The convolution
kernel and dilation coefficients change the form of the
TCN in terms of the number of input elements and distance
from the upper layers of the network, respectively. The
expansion factor P increases exponentially with the depth
of the network, i.e., P = 2r , where r is the number of network
layers. The larger the expansion factor, the larger is the
information extraction range. Therefore, the TCN convolu-
tion can obtain a relatively large perceptual field by building
a relatively small number of layers.

The receptive field of a TCN network neuron, i.e. the
network memory length, is determined by the convolutional
kernel size, dilation coefficient, and number of convolutional
layers. The value of the s operation after the dilation convo-
lution operation is as follows:

F sð Þ = x∗ fð Þ sð Þ = 〠
u−1

i=0
f ið Þ ⋅ xs−di⋅i: ð11Þ

Here, x is the input sequence, ∗ is the convolution oper-
ation, u is the convolution kernel size, f ðiÞ is the ith element

in the convolution kernel, and xs−d∙i is the element of the
input sequence corresponding to the convolution kernel
operation.

3.2.2. Residual Links. In the residual block [34], the output of
a multilayer network F is added to the original input x and
output through the activation function G. The computation
is shown in

y =G x + F xð Þð Þ: ð12Þ

The self-attentive TCN (SATCN) residual module con-
tains the underlying TCN causal expansion convolution
layer, batch normalisation, activation function (LeakyReLu)
and dropout layers. The N residual module structure is
shown in Figure 5.

The normalisation of weights can eliminate the gradient
explosion problem and effectively speed up the computation.
To make the TCN network nonlinear while avoiding gradi-
ent disappearance, the LeakyReLu activation function is
used and the dropout layer is added after the LeakyReLu
activation layer to prevent overfitting. Accordingly, it is pos-
sible to achieve the regularisation effect. The self-attentive
mechanism is introduced to focus on features that contrib-
ute more to the output, and adjusts the problem of the

S1
Forward

Backward

GRU GRU GRU

GRU GRU GRU

Y

X
. . .

. . .

. . .y1 y2 yt

x1 x2 x3

S1

St

St

Figure 7: Structure of the bidirectional GRU (BiGRU) model.

SATCN Layer BiGRU Layer

Dense

Flow management

Conflict detection

ATC instruction

BiGRU BiGRU

BiGRU BiGRU

Se
lf-

at
te

nt
io

n

BiGRU BiGRU

Dropout Dropout

. . .

. . .

. . .

. . .

Residual block 1

Residual block 2

Residual block 3

Preprocessing

Normalization

Temporal
and

spatial
trajectory

data

Figure 8: DSA-TCN-BiGRU trajectory prediction model.

7International Journal of Aerospace Engineering



different dimensions of the residual tensor using 1 × 1
convolution.

3.3. Bidirectional Gated Recurrent Unit network. The GRU
model [35] is a type of recurrent neural network (RNN);
compared with the LSTM, GRU has only two gating struc-
tures, i.e., the reset gate and update gate. Thus, its structure
is simpler, and comparable to its effect [36]. The structure
of the GRU is shown in Figure 6. Equations (13)–(16)

describe the operation of each cell in the GRU network.

zt = σ Wz ⋅ ht−1, xt½ �ð Þ, ð13Þ

rt = σ Wr ⋅ ht−1, xt½ �ð Þ, ð14Þ
eht = tan h Wht

⋅ rt ∗ ht−1, xt½ �À Á
, ð15Þ

ht = 1 − ztð Þ ∗ ht−1 + zt ∗ eht : ð16Þ
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Here, xt is the current moment input, ht−1 denotes the
previous moment hidden state, ht is the pass to the next

moment hidden state, eht denotes the candidate hidden state,
rt is the reset gate, zt is the update gate, and σ is the sigmoid
activation function.

The BiGRU [37] network is a two-layer GRU network
consisting of a combination of forward and reverse GRU
layers as shown in Figure 7.

3.4. DSA-TCN-BIGRU model. The insufficient extraction of
the spatial and temporal features of trajectory data can cause
complexity and difficulties in trajectory predictions. Accord-
ingly, we propose a DSA-TCN-BiGRU trajectory prediction
model, as shown in Figure 8. The model uses the SATCN

layer as a feature optimiser, as it can effectively extract hid-
den spatial feature information and temporal relationships
and reduce redundant features. A memory function can be
implemented relative to a simple CNN, and the different
paths and sequence times for backpropagation enable it to
avoid the gradient problem. In addition, if there is an excessive
amount of data, it can be processed in parallel, thereby reduc-
ing the training time. The BiGRU model can perform bidirec-
tional time-series feature extraction to further improve the
global integrity of the time-series feature extraction. The self-
attention mechanism can handle longer time-series data,
strengthen long-range dependencies, and adjust the dynamic
weights of the acquired serialised information to highlight
the global key points of the trajectory information.
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4. Experiments and Results

4.1. Dataset. The data preprocessing and training prediction
of the network were based on the Tensorflow version 2.0
deep learning framework. The experimental dataset for this
study was selected from 12 months of historical ADS-B
one flight trajectory data from Beijing Daxing Airport to
Shanghai Hongqiao Airport, with an average flight time of
approximately two hours. Part of the trajectories was pro-
filed laterally and vertically, as shown in Figures 9–10. When
compiling the model, 80% of the data is used as the training
set, and the rest is used for model testing.

4.2. Evaluation Metrics. To quantitatively evaluate the per-
formance of the proposed DSA-TCN-BiGRU network pre-
diction model, the root mean square error (RMSE) and
mean absolute error (MAE) were used as error evaluation
metrics. The equations are as follows:

MAE = 1
n
〠
n

i=1
yi − eyij j, ð17Þ

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/n∑n

i=1ðyi − eyi Þ2q
:

Here, yi and eyi represent the true and predicted values,
respectively. Both indicate the stability and accuracy of the
model; the smaller the value, the higher is the accuracy of
the model.

4.3. Determination of model Parameters

4.3.1. Bayesian Hyperparameter Optimisation. Bayesian opti-
misation (BO) [38] uses Bayes’ theorem to obtain most of
the evaluation information from the previous functions,
and then selects the next most promising sampling point
based on the posterior distribution of the objective function.
It can find the global optimal solution of a function with less
evaluation and can also achieve good results for black-box
functions, making it suitable for the hyperparametric opti-
misation problems of deep learning models [39]. The hyper-
parametric optimisation process is shown in Figure 11.

(1) Parameter optimisation: the neural network parame-
ters to be optimised include the residual block num-
ber, convolution kernel number and step size of the
one-layer TCN, the number of neurons of the two-
layer BiGRU, the number of neurons of the Dense,
as well as the dropout rate, learning rate, batch size,
and time step size

(2) Objection function: MSE. Number of iterations: 100

MSE = 1
n
〠
n

i=1
yi − eyið Þ2: ð18Þ

yi and eyi represent the true and predicted values,
respectively.

(3) Bayesian hyperparametric optimisation of the opti-
mal range: 1 ≤ n ≤ 5, 16 ≤ t ≤ 128, 1 ≤ k ≤ 3, 1 ≤ u 1

≤ 100, 1 ≤ u 2 ≤ 100, 10 ≤ e ≤ 40, 0:1 ≤ d ≤ 0:3,
0:001 ≤ l ≤ 0:01, 128 ≤ b ≤ 512, and 1 ≤ s ≤ 8

In the aforementioned range, n is the number of TCN
residual blocks, t is the numbers of TCN residual block con-
volution kernel, k are the TCN residual block convolution
kernel step, u1 and u2 are the numbers of BiGRU neurons,
e is the numbers of Dense neurons, d is the dropout rate, l
is the learning rate, and b is the number of batch processes,
and s is the time step size.

(4) BO parameters: probabilistic agent model uses the
Gaussian Process (GP); Acquisition function uses
the Upper Confidence Bound (UCB); Number of
iterations: 100

According to Figure 12, the loss function of the DSA-TCN-
BiGRUmodel tends to zero after the hyperparameter search by
BO, confirming the effectiveness of the hyperparameter search
using BO. The final model parameters are listed in Table 1.
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Whether to initialize
No Yes

No

Yes

End

Randomly generate
initial sample points

Probabilistic agent model

Sampling function
selection

Predictive model training

Calculating the validation
set error

Optimal hyperparameters

Maximum number
of iterations

Figure 11: Bayesian hyperparameter optimisation flowchart.
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4.3.2. Optimiser Selection. The optimiser directly affects the
speed of parameter optimisation and model accuracy, and
the selection of a suitable optimiser can significantly

improve the model training efficiency. In this study, the
sgdm, rmsprop, and Adam optimisers were selected for
comparison experiments, and the other parameters were
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Figure 12: Bayesian hyperparametric optimisation search.

Table 1: Parameter settings.

Model

DSA-TCN-BiGRU

TCN

Residual block 1
Filter = 128

Kernel size = 3
Dilation rate = 4

Epochs = 100
Batchsize = 512

Learning rate = 0:001514

Residual block 2
Filter = 64

Kernel size = 3
Dilation rate = 2

Residual block 3
Filter = 32

Kernel size = 3
Dilation rate = 1

BiGRU

Units 1 Units 90

Dropout 0.2561

Units 2 Units 90

Dropout 0.2561

Dense 30

Output 3
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kept the same as those mentioned earlier for the model
training. The RMSE values of the validation set under the
different optimisers are shown in Figure 13. We can see that
both the rmsprop and Adam optimisers have high stability
and accuracy. The accuracy of the rmsprop optimiser is
approximately the same as that of the Adam optimiser; how-
ever, the training time consumed by the Adam optimiser is
much lower than that of the rmsprop optimiser. The Adam
optimiser was chosen based on a comprehensive consider-
ation of the model accuracy and time efficiency.

4.4. Experiments and Comparisons. To verify the accuracy of
the DSA-TCN-BiGRU network for single-step prediction,
the same dataset and simulation parameters were used for
comparison with existing trajectory prediction models
(BiGRU, GRU, TCN, SATCN, CNN-BiGRU, DSA-CNN-
BiGRU, TCN-BiGRU, and DSA-TCN-BiGRU). The predic-
tion results for each model are shown in Table 2 and

Figure 14. To further illustrate the prediction accuracy of
the proposed models, 2D and 3D zoomed-in plots are shown
in Figures 15–16.

The aforementioned prediction results show that the
DSA-TCN-BiGRU based on the BO model performs very
well and shows the actual flight of the air vehicle in its
entirety. The predicted 2D and 3D trajectory curves of the
model are in good agreement with the actual flight trajectory
of the air vehicle. The altitude, latitude, and altitude RMSE
reach a minimum of 20.14m, 0.004°, and 0.009°, respec-
tively. In summary, the proposed model can fully extract
the spatiotemporal characteristics of the trajectory data with
a better generalisation effect and lower prediction error.

4.5. Performance Analysis

4.5.1. Self-Attentive Mechanism and TCN Performance. To
compare the different effects of the self-attentive mechanism
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Figure 13: Visualisation of the impact of optimiser selection on model performance.

Table 2: Comparison of trajectory prediction errors.

Hybrid model Single model
DSA-TCN-BiGRU TCN-BiGRU DSA- CNN-BiGRU CNN-BiGRU SATCN TCN BiGRU GRU

RMSE

Alt/(m) 20.14 28.29 52.72 85.12 39.83 59.52 191.42 425.20

Lat/(°) 0.004 0.008 0.032 0.056 0.020 0.031 0.088 0.185

Lon/(°) 0.009 0.014 0.023 0.063 0.025 0.032 0.068 0.079

MAE

Alt/(m) 14.64 18.50 34.74 70.33 23.20 44.64 153.11 325.13

Lat/(°) 0.003 0.006 0.028 0.042 0.018 0.026 0.071 0.116

Lon/(°) 0.009 0.008 0.019 0.053 0.021 0.029 0.059 0.052
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and TCN networks compared to the conventional CNN on
the prediction models in trajectory prediction, the following
model comparison groups were introduced: DSA-TCN-
BiGRU vs. CNN-BiGRU, SATCN vs. TCN, and TCN-

BiGRU vs. CNN-BIGRU. The results are shown in
Figure 17. We can see that, among these three groups of
models, the DSA-TCN-BiGRU has the best prediction per-
formance and lowest RMSE, with an altitude RMSE of
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Figure 14: Visualisation of prediction results.
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20.14m, latitude RMSE of 0.004°, and a longitude RMSE
of 0.009°.

Compared with the CNN-BiGRU, the DSA-TCN-
BiGRU shows RMSE improvements of 85.71%, 92.86%,
and 76.34% for the longitude, latitude, and altitude, respec-
tively. Compared with the TCN, the RMSE improvement
rates of the SATCN for the longitude, latitude, and altitude
are 21.88%, 35.48%, and 59.52%, respectively. Compared
with the CNN-BIGRU, the RMSE improvement rates of
the TCN-BiGRU for the longitude, latitude, and altitude
are 77.78%, 85.71%, and 66.76%, respectively. We can con-
clude that the hybrid model using the self-attentive mecha-
nism and TCN has higher accuracy. The TCN can more
effectively explore the potential features of the trajectory
information, and the self-attentive mechanism focuses on
the information that is more relevant to the results. Its ability
to capture remotely dependent information can be further
enhanced by modelling sequence data of variable length. In
summary, the DSA-TCN-BiGRU can extract trajectory fea-
tures from data more effectively, which is important for
improving the accuracy of short-term trajectory predictions.

4.5.2. BiGRU Performance. To verify the advantages of using
the BiGRU network, the DSA-TCN network was compared
with a combination of the BiGRU, BiLSTM, GRU, and
LSTM approaches. As shown in Table 3, the DSA-TCN-
BiGRU and DSA-TCN-BiLSTM models have comparable
performance with all hyperparameters tuned, and both had
lower RMSE than the combined GRU and LSTM neural net-
works. This verifies that the introduction of a bidirectional
mining mechanism can effectively improve the prediction
accuracy. For a single-step prediction, the DSA-TCN-GRU
has the lowest time of 40.1ms, and DSA-TCN-BiLSTM has

the longest time of 60.2ms. The BiGRU model is a special
type of RNN with the advantages of fast convergence and
fewer parameters compared with an LSTM. Thus, it sim-
plifies the structure and improves the operation speed while
guaranteeing the prediction performance.

4.5.3. Multistep prediction. In the aforementioned compara-
tive analysis, the results from the model’s single-step fore-
casts are shown. This section provides statistics on the
characteristic mean error values of the model for single-
step and multistep forecasts. In addition, the results from
the model’s single-step and multistep forecasts are quantita-
tively compared using the RMSE forecast error evaluation
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Figure 17: Model comparison results.

Table 3: Comparison of models.

RMSE
LAT/(°) Lon/(°) Altitude/(m) Time/(ms)

DSA-TCN-BiGRU 0.004 0.009 20.14 47.2

DSA-TCN- BiLSTM 0.006 0.007 20.09 60.2

DSA-TCN-GRU 0.018 0.021 32.9 40.1

DSA-TCN-LSTM 0.013 0.019 31.8 51.3

Table 4: Future s-step prediction results.

Future s steps
RMSE

Lat/(°) Lon/(°) Altitude/(m)

1 0.004 0.009 20.14

2 0.003 0.008 19.64

6 0.005 0.010 23.48

12 0.006 0.011 27.64

18 0.008 0.013 29.11
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metric. Table 4 shows the results for the DSA-TCN-BiGRU
model for predicting future s-steps, and Figure 18 shows
the multistep prediction level line. As the number of predic-
tion steps increases, the error remains within a certain range.
This verifies that our proposed DSA-TCN-BiGRU model
still performs well in multistep prediction, and can effec-
tively improve the accuracy and practical requirements of
trajectory prediction.

4.6. Further Study. We chose another flight along the same
route to validate the robustness of the proposed DSA-TCB-

BiGRU model. The dataset contained data from the period
2021–2022, and the prediction results and evaluation met-
rics comparing the DSA-TCN-BiGRU based on the BO
algorithm model with other models (DSA-CNN-BiGRU,
CNN-BiGRU, TCN-BiGRU, SA-TCN, TCN, BiGRU, and
GRU) are shown in Figures 19 and 20, respectively.

Our proposed DSA-TCN-BiGRU model has the lowest
MAE and RMSE for the new dataset, and the fitted curve
is closest to the actual route. This verifies that the DSA-
TCN-BiGRU model based on BO has good robustness and
accuracy for different datasets.
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5. Conclusion

In this paper, we propose a DSA-TCN-BiGRU-based trajec-
tory prediction method by fusing time-domain convolu-
tional networks and two-way gated recurrent networks,
and by introducing an attention mechanism and Bayesian
hyperparameter optimisation algorithm. This combines the
advantages of the TCN in extracting time series features with
the BiGRU’s ability to learn a sequence before and after con-

ditions to better extract the spatial and temporal features of
trajectories while reducing the time complexity. Subse-
quently, an attention mechanism is introduced to assign
different weights to the attributes, and the Bayesian optimi-
sation algorithm is used to optimise the model hyperpara-
meters. We compared the DSA-TCN-BiGRU model with a
typical neural network and show the lowest RMSEs of
0.004°, 0.009°, and 20.14m for the latitude, longitude, and alti-
tude, respectively, demonstrating considerable improvements
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Figure 20: Results for evaluation indicators of the prediction model.
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in aircraft trajectory prediction accuracy. In addition, we ver-
ified the model’s robustness and predictability performance
using different datasets and multistep predictions. The pro-
posed model assists controllers in decision-making by provid-
ing accurate information on aircraft trajectories over a while,
calculating and identifying abnormal behaviour such as alti-
tude anomalies and trajectory deviations, respectively, and
alerting them to potential abnormal behaviour, helping con-
trollers to be informed in advance of aircraft operating situa-
tion on the route and the terminal area. As a result, using
the model can reduce the controller’s workload and improve
air traffic safety. The trajectory data also receives influence
from factors such as meteorological controls. In the future,
our approach will be to fuse weather, control, and other uncer-
tainties. AMDAR can provide real-time weather data for air-
craft, with the same real-time performance as ADS-B, and is
the preferred choice for weather data fusion, considering the
time delays associated with data fusion and forecasting. In
addition, we can develop a trajectory data visualisation system
that further explores the potential value of trajectory data by
integrating the trajectory prediction module and displaying it
visually on a map, which will significantly improve ATC’s per-
formance and predictive capability.
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