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Due to the limited payload capability of an aerial robot, multiple quadrotors can be used to manipulate payloads in aerial
transportation, construction, and assembly tasks. This paper focuses on the cooperative transportation of a payload rigidly
attached to multiple quadrotor bodies. These quadrotors may have different orientations. The dynamics equation of a rigid
body in 3-D space is derived to describe the motion of such a transportation system. Robust position and attitude controllers
are designed to drive the system to the desired pose. To assign control signals for each quadrotor, the control command
allocation method compatible with the case that partial or all quadrotors are in parallel planes is developed. Finally,
experimental results are presented to validate the effectiveness of the proposed controllers and control command allocation
methods. Different from classical works in this field, this paper can solve the dynamics modeling, controller design, and
control command allocation problems for the transportation of a rigidly connected payload using a team of quadrotors with
different orientations.

1. Introduction

Due to the advancement in unmanned aerial vehicles and
the capabilities of vertical take-off and landing, quadrotors
have been implemented in various applications, such as
wildfire mapping, search and rescue, payload delivery, and
agricultural surveys [1, 2]. As stated in Ref. [3], the market
size of the global UAV-assisted logistics and transportation
will grow from 5.3 billion dollars in 2019 to about 11 billion
dollars by 2026. Several research groups have developed
notable algorithms and presented experimental results to
prove the quadrotor’s ability in payload transportation
[4–9]. However, an individual quadrotor usually has limited
payload capability. One promising method to address this
limitation is to transport a heavy payload using a team of
quadrotors. Compared with transportation using a single
quadrotor, cooperative transportation has to consider the
collaboration and synchronization among quadrotors and
the stability of the entire system [4, 10, 11]. Generally, there

are mainly two carrying strategies, i.e., connecting the pay-
load to the quadrotor bodies using cables or rigid fixtures.
The cooperative transportation of a cable-suspended pay-
load has been studied extensively [12–18]. For example,
Sanalitro et al. designed a controller for aerial transportation
using the minimum number of quadrotors and cables con-
sidering some system uncertainties [14]. Geng and Lange-
laan presented a centralized load-leading control method
for the transportation of a slung payload using multiple
rotorcraft to drive the payload to track the desired trajectory
[15]. Jiang and Kumar focused on transportation using three
aerial robots and proposed an analytic algorithm to solve the
possible solution to the kinematics problem based on dia-
lytic elimination [16]. Qian and Liu adopted Kane’s method
to build the dynamics equation for multiple quadrotors car-
rying a slung payload and designed a cascade controller to
drive the payload to follow the desired path [18]. Generally,
it is convenient to attach payload using cables, and the long
distances from quadrotors to the payload result in a
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negligible influence on the vehicles’ aerodynamics. However,
the cable-suspended payload introduces additional dynam-
ics. It is usually not possible to add more sensors and actua-
tors to control the oscillations of the payload. Hence, the
number of underactuated degrees of freedom increases,
and the possible cable slackness will introduce system uncer-
tainties, both of which pose a great challenge in its dynamics
modeling and controller design.

To enable direct control of the payload’s position and
attitude, some rigidly attached methods, such as the manip-
ulators [19–21], graspers [22], and permanent electromag-
nets [23], have been proposed, and the resulting dynamics,
navigation, and control problems have been studied by some
scholars. For example, Lee et al. proposed a framework with
estimation, control, and path planning for payload transpor-
tation using several aerial manipulators based on decentra-
lized dynamics [19]. Mellinger et al. developed control
algorithms for a team of quadrotors to grasp and transport
a payload in 3-D space based on a dynamics model for the
entire system [22]. Loianno and Kumar presented the basic
dynamics models, estimation algorithms, and control
methods of carrying a payload using multiple quadrotors
via permanent electromagnets [23]. To reduce the system
complexity, this work mainly focuses on the case with a sim-
ple rigidly attached method, such as the permanent magnets.
In [22, 23], all n quadrotors are placed in parallel planes, i.e.,
they are in a special configuration. Essentially, the entire sys-
tem in such a case can be considered a classical multirotor
aircraft with 4n propellers. The relative positions of these 4
n propellers vary with different placements of n quadrotors.
Hence, the dynamics model of such a transportation system
is the same as that of the classical quadrotor, but the com-
mand allocation method is different.

However, if the payload surface to be attached is not pla-
nar, all propellers of quadrotors may not be in parallel
planes, such as the payloads with triangular and quadrangle
crosssections shown in Figure 1. In such cases, the orienta-
tions of quadrotors are different, i.e., the quadrotors are in
a more general configuration than those in [22, 23]. Further-
more, for quadrotors with different orientations, their thrust
forces may have some horizontal components, i.e., the hori-
zontal movement of the entire system can be achieved by
just increasing or decreasing the thrusts of some quadrotors,
which may provide a fast response in the horizontal move-
ment of the entire system. In [24], Ritz and D’Andrea stud-
ied the cooperative transportation of a flexible ring using
multiple quadrotors with different orientations and some
assumptions, such as each quadrotor only providing two
control inputs: a force in z direction and a torque in roll
direction in its body frame, to simplify the transportation
problem. The physical coupling between quadrotors caused
by the flexible payload is smaller than that in the case of
the transportation of rigid bodies. Hence, essentially, the
quadrotors are just considered actuators in [24]. A general
framework for the dynamics analysis, controller design,
and control command allocation method for the transporta-
tion of a rigid payload using multiple quadrotors in different
configurations has not been studied yet. This work is aimed
at providing a solution to such an open problem. Note that

the relative orientations of the quadrotors in a general con-
figuration are arbitrary under the condition that the lift force
generated by quadrotors is larger than the gravity of the
entire system. That is, the possible quadrotor configurations
of the transportation system in this study have a wider range
than those in [22, 23], and the systems in [22, 23] can be
called a trivial case. In summary, the main contributions of
this study are the following:

(i) The transportation system with quadrotors in vari-
ous configurations is studied for the first time

(ii) A new dynamics modeling method and the corre-
sponding control algorithm are presented in this
work

(iii) A control command allocation method compatible
with the case that some or all propellers are in par-
allel planes is developed

The remainder of this paper is organized as follows. Sec-
tion 2 presents the dynamics model of the entire transporta-
tion system. The designed control law and control command
allocation method are given in Section 3. Some experimental
results are shown in Section 4. Conclusions are drawn in
Section 5.

2. Transportation System Modeling

Suppose that, as shown in Figure 2, there are n identical
quadrotors attached to the payload rigidly. Assume that
the payload will not affect the aerodynamic forces generated
by quadrotors’ propellers. n + 2 frames, i.e., the inertial
frame XYZ, the body frame xyz of the entire system, and
the body frame xiyizi of quadrotor i for i = 1, 2,⋯, n, are
built to describe the system. The inertial frame is the
Earth-fixed West-South-Up frame. The origin of the frame
xyz is at the mass center C of the whole system consisting
of the payload and the n quadrotors and the frame xyz is
parallel with the inertial frame at the initial time. The posi-
tion vector of C is denoted as rc = ½xc, yc, zc�T in the inertial
frame. The attitude of the entire system is described by the
rotation matrix R ∈ SOð3Þ from the frame xyz to the inertial
frame and Rð0Þ = I3 holds. Note that the Lie group SOð3Þ
= fR ∈ℝ3×3jRTR = RRT = I3, det ðRÞ = 1g represents the
group of 3 × 3 orthogonal matrices with a determinant of
one. In the body frame of the entire system, the position of
the mass center of the ith quadrotor is represented by ri =
½xi, yi, zi�T . The rotation matrix from the body frame of the
ith quadrotor to the frame xyz is denoted by Ri ∈ SOð3Þ.
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Figure 1: Payload examples.
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Since n quadrotors are attached to the payload rigidly, both
ri and Ri are constant.

Essentially, the entire system shown in Figure 2 can be
considered an unmanned aerial vehicle driven by 4n propel-
lers. Since all quadrotors are in a wide-range configuration, i.
e., all propellers may not be in a plane, a three-dimensional
control force vector may be generated. Therefore, the
dynamics equations of the payload together with these n
quadrotors can be written as follows:

_rc = vc, ð1Þ

m _vc = −mgzI + Rf + d1, ð2Þ
_R = RΩ×, ð3Þ

J _Ω = −Ω×JΩ + τ + d2, ð4Þ
where m =mp + n ×mq is the total mass of the whole

system, in which mp is the payload mass and mq is the quad-
rotor mass. J is the total inertia matrix of the entire system,
whose calculation method based on the inertia matrices of
the payload and quadrotor and the relative poses of quadro-
tors with respect to the frame xyz can be found in Appendix
A. vc is the velocity vector of point C in the inertial frame. g
is the constant gravitational acceleration. zI = ½0, 0, 1�T . Ω
= ½ω1, ω2, ω3�T is the angular velocity in the body frame xy
z. Note that for any 3-dimensional vector z =
½z1  − z2 z3�T ∈ℝ3,z× is defined as the skew-symmetric
matrix ½0  − z3 z2 ; z3 0  − z1;−z2 z1 0�. d1 and d2
are unmodeled terms. f and τ are the total force and torque
vectors provided by these n quadrotors expressed in the sys-
tem body frame xyz. Their detailed definitions are

f
τ

" #
= 〠

n

i=1
Aiui =Au, ð5Þ

where

Ai =
Rizbi 03×3
r×i Rizbi Ri

" #
∈ℝ6×4, ð6Þ

ui = ½ f i, τTi �T ∈ℝ4 is the vector consisting of the thrust force
and the 3-dimensional control torques of the ith quadrotor,

A = A1 A2 ⋯ An½ � ∈ℝ6×4n and u = ½uT1 , uT2 ,⋯,uTn �T ∈
ℝ4n. Note that zbi = ½0, 0, 1�T and ui is described in the body
frame of the ith quadrotor.

In [22, 23], it is assumed that all quadrotors are in paral-
lel planes for the transportation system consisting of n quad-
rotors carrying a payload rigidly. Consequently, the
dynamics equations are the same as those of the classical
quadrotor. The only difference from the classical quadrotor
is that more propellers are included to generate the desired
control command. It should be noted that the dynamics
equations in [22, 23] is still underactuated; hence, the
motion in X and Y directions is realized based on the atti-
tude maneuver in roll and pitch directions. However, the
quadrotors in the cooperative transportation system consid-
ered in this paper can be in any feasible configuration, i.e., all
quadrotors may not be in a parallel plane. Consequently, the
dynamics equation in Equation (2) is different from the clas-
sical quadrotor. The accelerations in X and Y directions may
be generated by changing thrust forces of some quadrotors,
which implies that maneuvers in X and Y directions are
more agile than the classical quadrotor-like system.

The three-dimensional force in the frame xyz provided
by the ith quadrotor can be expressed as Rizbi f i. Hence,
the total force vector from these n quadrotors expressed in
the inertial frame is R ·∑n

i=1Rizbi f i. Essentially, R · Ri, the
rotation matrix from the body frame of the ith quadrotor
to the inertial frame, can be written as follows:

R · Ri =

c�ψi
cθi −s�ψi

cϕi + c�ψi
sθi sϕi s�ψi

sϕi + c�ψi
sθi cϕi

s�ψi
cθi c�ψi

cϕi + s�ψi
sθi sϕi −c�ψi

sϕi + s�ψi
sθi cϕi

−sθi cθi sϕi cθi cϕi

2664
3775,

ð7Þ

where sp and cp represent sin p and cos p with p = ϕi, θi, �ψi.

Note that ϕi, θi, and �ψi are the roll, pitch, and yaw angles
associated with the rotation described by R ·Ri.

Hence, the lift provided by these n quadrotors can be
written as ∑n

i=1cθi cϕi f i. The forces acting on the system along

X and Y axes are ∑n
i=1ðs�ψi

sϕi + c�ψi
sθi cϕiÞf i and ∑n

i=1ð−c�ψi
sϕi

+ s�ψi
sθi cϕiÞf i. One easy way to check whether the whole sys-

tem can take off successfully is to ensure that ∑n
i=1cθi cϕi f

max
i

is larger than the system gravity with the roll angle ϕi and
pitch angle θi in the initial configuration and the maximum
thrust fmax

i of each quadrotor. Another important conclu-
sion is that ϕi and θi closer to zero will provide a larger lift
force. However, in such a case, the forces acting on the sys-
tem along X and Y axes will tend to zero.

3. Control System Design

This section is aimed at designing a controller with the fol-
lowing assumptions for the system governed by Equations
(1)–(4) and presents a command allocation method to real-
ize the desired control command using n quadrotors.
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Figure 2: The cooperative transportation system.
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Assumption 1. The time derivative of the possible unmo-
deled terms d1 and d2 is bounded.

The unmodeled terms d1 and d2 are mainly from the
uncertainty of the actuator model and the modeling error
from the measuring errors of inertial parameters and relative
pose between quadrotors. For a practical quadrotor transpor-
tation system, these modeling errors cannot change with an
infinite speed. Hence, it is reasonable to make Assumption 1.

Assumption 2. The control of the payload’s position and yaw
angle is more significant in the transportation system. Sup-
pose that the desired position vector and yaw angle of the
entire system are rd = ½xd , yd , zd� and ψd .

3.1. Position Control. Rewrite dynamics Equation (2) as

m _vc = −mgzI + fd + d1, ð8Þ

where fd = Rf represents the reference control force com-
mand in the inertial frame, i.e., the control command for
the system in Equation (2) can be written as f = RT fd . Con-
sider the following linear extended state observer to estimate
unmodeled terms d1:

_̂q1 = q̂2 + 3w0 rc − q̂1ð Þ,
_̂q2 = q̂3 + 3w2

0 rc − q̂1ð Þ + fd
m

− gzI ,

_̂q3 =w3
0 rc − q̂1ð Þ,

ð9Þ

where w0 is a positive observer gain. Letting ~q1 = rc − q̂1,
~q2 = _rc − q̂2, and ~q3 = d1/m − q̂3 yields

_~q1 = ~q2 − 3w0~q1,
_~q2 = ~q3 − 3w2

0~q1,

_~q3 = −w3
0~q1 +

_d1
m

:

ð10Þ

The above equation can be rewritten as

_~q = �A~q + �d, ð11Þ

where

~q = ~qT1 , ~qT2 , ~qT3
� �T ,

�d = 0T , 0T , _dT1 /m
h i

,

�A =
−3w0I3 I3 0
−3w2

0I3 0 I3
−w3

0I3 0 0

2664
3775:

ð12Þ

It is easy to verify all eigenvalues of A are negative with a
positive constant w0, which implies that _~q = �A~q is asymptot-
ically stable. Therefore, with a finite �d, ~q is bounded.

According to [25, 26], one has the following lemma.

Lemma 3 (see [25, 26]). With Assumption 1 and w0 > 0, ~q1,
~q2, and ~q3 are bounded and there are a constant σi,j > 0 and a
finite time T1 such that j~qi,jj ≤ σi,j for any t > T1, where ~qi,j
represents the jth element of ~qi for i = 1, 2, 3 and j = 1, 2, 3
and σi,j =Oð1/wk

0Þ for some positive integer k.

Essentially, q̂1, q̂2, and q̂3 are the estimates of rc, _rc, and
d1/m. Based on the extended state observer, the position
controller can be designed as

fd =mgzI − Kp +Ki

� �
rc − rdð Þ −Ki

ðt
0
rc − rdð Þdt

−Kd vc − _rdð Þ +m€rd −mq̂3,
ð13Þ

where Kp, Ki, and Kd are three diagonal positive definite

matrices and
Ð t
0adt is defined as ½Ð t0a1dt, Ð t0a2dt, Ð t0a3dt�T

for a vector a = ½a1, a2, a3�T .

Theorem 4. Under the controller fd in Equation (13), if these
diagonal positive definite matrices Kp, Ki, and Kd are chosen
such that all eigenvalues of

0 I3 0

0 0 I3

−
Ki

m
−
Kp +Ki

m
−
Kd

m

26664
37775 ð14Þ

have negative real parts, the position tracking error is
bounded.

Proof. See Appendix B.

Remark 5. As shown in the proof of Theorem 4, a large ω0
will result in a smaller tracking error. However, a too large
ω0 will make the observer sensitive to noise [27]. Hence,
ω0 should be chosen to balance the tracking performance
and the noise tolerance.

Remark 6. Theorem 4 presents the stability of the designed
position controller, but beyond that, different control gains
may result in different system behaviors. This remark is
aimed at presenting some tips on how to choose the gains
in the designed controller (13). As shown in Equation
(B.1), the designed controller can be considered a classical
PID controller for a double-integrator system with ðKp +
KiÞ, Kd, and Ki as the proportional, derivative, and integral
gains. Hence, the control gains ðKp +KiÞ, Kd, and Ki can
be adjusted according to the PID controller tuning methods.

3.2. Attitude Control. In the last section, to realize the desired
control force fd, the control force f can be simply chosen as
f = RT fd. On the one hand, according to Assumption 2, the
attitude maneuver, especially in roll and pitch directions,
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in aerial payload transportation is usually not significant. On
the other hand, to improve the maneuverability in X and Y
directions, the reference rotation matrix can be set as

Rd =
cψd

cθd −sψd
cϕd + cψd

sθd sϕd sψd
sϕd + cψd

sθd cϕd
sψd

cθd cψd
cϕd + sψd

sθd sϕd −cψd
sϕd + sψd

sθd cϕd
−sθd cθd sϕd cθd cϕd

2664
3775,
ð15Þ

where ϕd , θd , and ψd are the desired roll, pitch, and yaw
angles satisfying sϕd = f d,1sψd

− f d,2cψd
/∥fd∥ and tan θd = f d,1

cψd
+ f d,2sψd

/f d,3. Note that f d,i represents the ith element
of fd . For such a transportation system, it is reasonable to
assume that both roll and pitch angles belong to ð−π/2, π/2
Þ. Hence, ϕd and θd can be set as ϕd = arcsin ð f d,1sψd

− f d,2
cψd

/∥fd∥Þ and θd = arctan ð f d,1cψd
+ f d,2sψd

/f d,3Þ, respectively.
It should be noted that ψd is the desired yaw angle defined
according to the mission requirement. The method to define
the desired attitude is the same as the one for a classical
quadrotor. Hence, based on such a desired attitude, the pro-
posed control method is compatible with the transportation
mission with partial or all quadrotors in parallel planes.

To estimate the unmodeled attitude dynamics, the fol-
lowing observer is designed as

_bΩ = 2Γ Ω − bΩ� �
− J−1Ω × JΩ + J−1τ + d̂2,

_̂d2 = Γ2 Ω − bΩ� �
,

ð16Þ

where Γ is a positive constant. Letting eΩ =Ω − bΩ and ed2
= J−1d2 − d̂2 yields

_eΩ = −2ΓeΩ + ed2, ð17Þ

_ed2 = J−1 _d2 − Γ2eΩ: ð18Þ
According to Theorem 2.2 in [28], one can have the fol-

lowing lemma.

Lemma 7.With Assumption 1 and Γ > 0, eΩ and ed2 are con-
vergent in the sense that for any σω ∈ ð0, 1Þ, there exists εσ ∈
(0, 1) such that jeΩ,ij < σω and jed2,ij < σω hold for any ε1 ∈ ð
0, εσÞ and any t ∈ ðTε,∞Þ, where Tε > 0 depends on ε1 and
eΩ,i, where eΩ,i and ed2,i are the ith elements of eΩ and ed2,
respectively.

To track the desired attitude Rd , a robust controller is
designed as follows:

τ =Ω×JΩ − kReR − kΩEΩ + J _Ωd − Jd̂2, ð19Þ

where eR = ðRT
dR − RTRdÞ∨ and EΩ =Ω −Ωd. Note that

_eR = ð−Ω×
dRT

dR + RT
dRΩ× +Ω×RTRd − RTRdΩ×

dÞ∨ = ðtraceð
RTRdÞI − RTRdÞΩ − ðtraceðRT

dRÞI − RT
dRÞΩd = ðtraceðRTRd

ÞI − RTRdÞEΩ + e×REΩ. d̂2 is the estimate of the unknown term
J−1d2 and updated according to the law in Equation (17).

Theorem 8. If 0 < μ <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kRλminðJÞ/2

p
holds and

kRμλmin J−1
� �

−
kΩμλmax J−1

� �
2

−
kΩμλmax J−1

� �
2

kΩ − 2μð Þ

26664
37775 ð20Þ

is positive definite, the attitude tracking error is bounded
with the designed controller exponentially almost globally.

Proof. See Appendix C.

Remark 9. As shown in the proof of Theorem 8, the bounded
stability of the system governed by Equation (C.2) is almost
globally exponential, i.e., there may exist some undesired equi-
libria satisfying cos Θ = −1. According to [29], these undesired
critical points are unstable. In a practical system, the ubiquitous
noise can drive the system to leave these unstable equilibria.

3.3. Control Command Allocation. Suppose that the desired
six-dimensional control command for the rigid body gov-

erned by Equations (1)–(4) is ½ f, τT �T . The rotation matrix
Ri from the ith quadrotor’s body frame to the body frame
of the entire system can be written as

Ri =
cψi

cθi −sψi
cϕi + cψi

sθi sϕi sψi
sϕi + cψi

sθi cϕi
sψi

cθi cψi
cϕi + sψi

sθi sϕi −cψi
sϕi + sψi

sθi cϕi
−sθi cθi sϕi cθi cϕi

2664
3775,

ð21Þ

where ϕi, θi, and ψi are the roll, pitch, and yaw angles asso-
ciated with the rotation Ri.

To determine the control inputs for each quadrotor, one
can minimize the following cost function

Jc = uTWu ð22Þ

with the following equation constraint

Au = f, τT
� �T , ð23Þ

whereW = diag fwig ∈ℝ4n×4n is the weight matrix, in which
wi = diag fwi,jg with wi,j > 0 for i = 1, 2,⋯, n and j = 1, 2, 3
, 4. Essentially, this is a constrained quadratic problem,
whose solution is

u =K+ f , τT
� �T , ð24Þ

5International Journal of Aerospace Engineering



where K+ =W−1ATðAW−1ATÞ−1. Note that AW−1AT can be
written as ∑n

i=1Aiw−1
i AT

i . Some special cases are discussed
below.

Case 1. The weight matrix wi is chosen the same for each
quadrotor, and the weights in roll, pitch, and yaw direc-
tions are equal. Hence, wi can be rewritten as diag fw1,
w2,w2,w2g. Since each quadrotor’s payload capability is
limited, to improve the payload capability of the quadro-
tor group in a transportation mission, it is desirable that

both ϕi and θi are small enough such that cos ϕi ≈ 1,
cos θi ≈ 1, sin ϕi ≈ ϕi, sin θi ≈ θi, ϕ2i ≈ 0, θ2i ≈ 0, and ϕiθi
≈ 0 hold. Hence, Aiw−1

i AT
i can be written as

Aiw−1
i AT

i =
02×2 h1 02×1
hT1 h2 h3
01×2 hT3 h4

2664
3775, ð25Þ

where

It should be noted that the determinant of Aiw−1
i AT

i is
equal to zero, which implies that only one quadrotor cannot
generate the six-dimensional control command based on the
equipped four propellers. If there are four quadrotors in the
team with ϕ1 = 0:1 rad, ϕ2 = −0:05 rad, ϕ3 = ϕ4 = 0, θ1 = θ2
= 0, θ3 = 0:1 rad, θ4 = −0:05 rad, ψ1 = ψ2 = ψ3 = ψ4 = 0, x1
= −x2 = 1, x3 = x4 = 0, y1 = y2 = 0, y3 = −y4 = 1, z1 = z2 = z3
= z4 = 0, and w1 =w2 = 1, the determinant of ∑4

i=1Aiw−1
i AT

i
is 0.01, which implies that these four quadrotors can provide
both three-dimensional forces and three-dimensional tor-
ques. However, if letting θ3 = θ4 = 0 and keeping all remaining
parameters the same as those in the previous sentence, ∑4

i=1
Aiw−1

i AT
i will be irreversible, i.e., the six-dimensional control

command cannot be provided if two quadrotors are in a par-
allel plane for such a four-quadrotor team. Hence, to improve

the compatibility of Equation (24), a new control command
allocation method is defined as follows:

u =
W−1AT AW−1AT� �−1 fT , τT

h iT
, if Det AW−1AT� �

> ε,

W−1AT AW−1AT + δI6
� �−1 fT , τT

h iT
, otherwise,

8>><>>:
ð27Þ

where ε and δ are small positive constants.

Case 2. If the xiyi plane in the body frame xiyizi is parallel to
xy plane in the frame xyz, ϕi = 0 and θi = 0 hold for each
quadrotor and

h1 =

cψi
θi + sψi

ϕi
w1

yi cψi
θi + sψi

ϕi

� �
w1

−
xi cψi

θi + sψi
ϕi

� �
w1

−
cψi

ϕi − sψi
θi

w1
−
yi cψi

ϕi − sψi
θi

� �
w1

xi cψi
ϕi − sψi

θi
� �

w1

2666664

3777775,

h2 =

w1
−1 cψi

ϕizi − sψi
θizi + yi

w1

cψi
θizi + sψi

ϕizi − xi
w1

cψi
ϕizi − sψi

θizi + yi
w1

2 cψi
ϕiw2yizi − 2 sψi

θiw2yizi +w2yi
2 +w1

w1w2
−
cψi

ϕixizi − cψi
θiyizi − sψi

ϕiyizi − sψi
θixizi + xiyi

w1

cψi
θizi + sψi

ϕizi − xi
w1

−
cψi

ϕixizi − cψi
θiyizi − sψi

ϕiyizi − sψi
θixizi + xiyi

w1
−
2 cψi

θiw2xizi + 2 sψi
ϕiw2xizi −w2xi

2 −w1
w1w2

26666666664

37777777775
,

h3 =

−
cψi

ϕixi + cψi
θiyi + sψi

ϕiyi − sψi
θixi

w1

−
yi cψi

ϕixi + cψi
θiyi + sψi

ϕiyi − sψi
θixi

� �
w1

xi cψi
ϕixi + cψi

θiyi + sψi
ϕiyi − sψi

θixi
� �

w1

2666666666664

3777777777775
,

h4 =w2
−1:

ð26Þ
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Ai =
02×4
Âi

" #
, ð28Þ

where Âi is

Âi =

1 0 0 0
yi cψi

−sψi
0

−xi sψi
cψi

0
0 0 0 1

2666664

3777775: ð29Þ

Hence, Aiw−1
i AT

i is

Aiw−1
i AT

i =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 w1

−1 yi
w1

−
xi
w1

0

0 0 yi
w1

w2yi
2 +w1

w1w2
−
xiyi
w1

0

0 0 −
xi
w1

−
xiyi
w1

w2xi
2 +w1

w1w2
0

0 0 0 0 0 w2
−1

266666666666666664

377777777777777775
:

ð30Þ

The nonzero block matrix in the bottom right corner
agrees with the matrix format in [22], where the aerial trans-
portation using quadrotors in parallel planes is studied. In

fact, the case in [22] is a special case of the general transpor-
tation configuration in Figure 2. If the assumption that the
quadrotors are much heavier than the payload in [22] holds,
AW−1AT would be

AW−1AT =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 n

w1
0 0 0

0 0 0 〠
n

i=1

w2yi
2 +w1

w1w2
0 0

0 0 0 0 〠
n

i=1

w2xi
2 +w1

w1w2
0

0 0 0 0 0 n
w2

266666666666666666664

377777777777777777775

:

ð31Þ

It is clear that the matrix in the above equation is singu-

lar. Based on Equation (27), ATðAW−1AT + δI6Þ−1 can be
written as

A1 AW−1AT + δI6
� �−1

⋯

An AW−1AT + δI6
� �−1

2664
3775, ð32Þ

where

Let f3 be the third element of f. AiðAW−1AT + δI6Þ−1
½ fT , τT �T can be written as

ÂT
i diag n

w1
, 〠

n

i=1

w2yi
2 +w1

w1w2
, 〠

n

i=1

w2xi
2 +w1

w1w2
, n
w2

( ) !−1

f3, τT
� �T ,

ð34Þ

which agrees with the result from the method in [22].

Another interesting point is that both W−1AT

ðAW−1ATÞ−1 and W−1ATðAW−1AT + δI6Þ−1 are only deter-
mined by the relative pose of quadrotors with respect to

the payload. Hence, it can be calculated in advance in a
transportation task. In other words, the control command
for each quadrotor is obtained just from the product of a
constant matrix and a six-dimensional control input vector.

In conclusion, the method to calculate the control com-
mand for each quadrotor presented in this study is illus-
trated by Figure 3. With the position vector of the mass
center of the entire system and the desired transportation
destination, Equation (13) will provide the value of fd , based
on which the reference attitude of the entire system and the
control force in Equation (2) can be obtained. With the atti-
tude command from Equation (19), the control command
allocation algorithm in Equation (27) provides a 4-

Ai AW−1AT + δI6
� �−1 = 04×2 ÂT

i

h i
diag 0, 0, n

w1
, 〠

n

i=1

w2yi
2 +w1

w1w2
, 〠

n

i=1

w2xi
2 +w1

w1w2
, n
w2

( )
+ δI6

 !−1

≈ 04×2 ÂT
i diag n

w1
, 〠

n

i=1

w2yi
2 +w1

w1w2
, 〠

n

i=1

w2xi
2 +w1

w1w2
, n
w2

( ) !−1" #
:

ð33Þ
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dimensional control command for each quadrotor. It should
be noted that one quadrotor can be set as a leader to run the
controller and control command allocation algorithm and
then send other control commands to the remaining quad-
rotors (followers).

4. Experimental Verification

As shown in Figure 4, the indoor test rig mainly consists of
the OptiTrack motion capture system with 16 Flex 13 cam-
eras, a work station, a router, two Quanser® QDrone quad-
rotors, and a payload to be transported. The QDrone
quadrotor is a midsize quadrotor equipped with a powerful
onboard Intel® Aero Compute Board, multiple high-
resolution cameras, a BMI160 IMU, and the built-in WiFi.
The motion capture system can measure the position and
attitude of an object at 100Hz. The real-time control of

quadrotors is realized using Simulink from MathWorks
and QUARC software [30] from Quanser Consulting Inc.

Magnets are used to connect the quadrotors and the
board. As shown in the subfigure at the bottom of
Figure 4, the right attachment point of quadrotor 1 has more
magnets. Hence, the propeller plane of the first quadrotor is
not parallel to the top surface of the board. Similarly, for
quadrotor 2, the left connection point has more magnets
than the right one. Mathematically, quadrotors 1 and 2
rotate −0:102 rad and 0.107 rad along the x axis in the frame
of the entire system, respectively. Hence, the thrust forces of
both quadrotors contribute to the movement in y direction.
However, the movement along x axis can only be realized by
the attitude maneuver in the pitch direction. In the body
frame of the entire system, the position vectors of these
two quadrotors are r1 = ½0:022,0:56,−0:001�T m and r2 =
½−0:022,−0:56,0:001�T m, respectively. Therefore, the system

Quadrotor1 Quadrotor i – 1 Quadrotor i + 1 Quadrotor n

Quadrotor i

Attitude
controller (20)

Reference
rotation matrix

generator

Position
controller (10)

Control command
allocation algorithm (42)

Followers

4-Dimensional
command

4-Dimensional
command

4-Dimensional
command 4-Dimensional

command

4-Dimensional
command Leader

Angular
feedback

Control
torque 𝜏

Reference yaw angle 𝜓d

fd

f = RTfdPosition
vector rc

RdReference
trajectory rd

...

Figure 3: Control system diagram.

Optitrack motion
capture system Workstation Measured

pose and
desired

pose

Router

Control command
of quadrotor 2

O

Z

Figure 4: Experimental system.
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in Figure 4 can well verify the effectiveness of the proposed
controller and control command allocation method since
the movement in x direction can be considered a special case
with θi = 0 for i = 1, 2.

The detailed physical parameters of quadrotor and pay-
load are given in Table 1. Since the payload mass is larger
than the maximum payload capability of a single quadrotor,
at least two quadrotors have to be used to transport such a
payload. In tests, the mass center of the entire system is
defined as the middle point of two quadrotors approximately
because these two quadrotors are much heavier than the
payload. Therefore, the workstation will send the measured
and desired position and yaw angles of the entire system to
the first quadrotor via WiFi at 100Hz, and then, its onboard
compute board will calculate the control command for both
quadrotors based on the designed controllers (13) and (19)
with roll and pitch angles measured by IMU and the control
command allocation law (27) at a rate of 1 kHz. The last four
elements of u from Equation (27) will be sent to quadrotor 2
using WiFi, which implies that the onboard compute board
of the second quadrotor will just implement the received
four-dimensional control command without calculating the
control command by itself. In essence, a centralized leader-
follower architecture is adopted here. Note that some
markers are attached to the payload to record the payload

position only. The parameters in position and attitude con-
trollers and control command allocation algorithm are given
in Table 2.

Two experimental tests are performed with different
desired trajectories. The experiment video can be seen here:
http://youtu.be/Dv1wOyhUnlE. In the first test, the system
is expected to move 1m along X axis and keep the positions
in Y and Z directions at 0 and 0.6m. The desired yaw angle
is set as 0 rad. To avoid large overshoot, the desired trajec-
tory in X direction is set as a stair-step signal shown as the
blue dashed curve in the first subfigure in Figure 5, i.e., the
system is expected to keep moving 0.1m per second for 10
seconds in X direction. As shown in Figure 5, the transpor-
tation system starts taking off at t = 0. The entire system

Table 2: Parameters in controller and control command allocation
algorithm.

Parameter Value

w0 1.5

Kp diag 6:9, 5:56, 35f g
Ki diag 0:492, 0:588, 2:8f g
Kd diag 10:8, 7:87, 23:3f g
Γ 0.0005

kR 3.9

kΩ 1.3

ε 10−6

δ 10−9

w1 diag 0:5, 10, 1, 1f g
w2 diag 0:5, 10, 1, 1f g

Time (S)

–0.5

0

0.5

1

1.5

X 
po

sit
io

n 
(M

)

Desired
Measured

Time (S)
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0.1

0.2
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n 
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)
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0

0.2

0.4

0.6

0.8

Z 
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n 
(M

)
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Figure 5: The position of the mass center of the entire system in
the test in X direction.

Table 1: System parameters.

Parameter Value

Quadrotor mass 1.121 kg

Inertia matrix of each quadrotor diag 0:01, 0:0082, 0:0148f g kg·m2

Maximum payload capability of each quadrotor ~ 0.3 kg

Payload mass 0.453 kg

Payload dimensions in x, y, and z directions 0:038m × 1:219m × 0:013m
Inertia matrix of payload diag 0:0561, 0:00006, 0:0561f g kg·m2

Constant gravitational acceleration 9.81m/s2
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arrives at the hover status at 5 s. Due to the time delay of
sending control command from the first quadrotor to the
second one, and other unknown disturbances and uncer-
tainties, a disturbance torque in roll direction is introduced
in the take-off stage. Such a disturbance torque causes the
system to move 13.2 cm in Y direction. As shown in the sec-
ond subfigure in Figure 5, the designed control method is

able to drive the system back to the hover state. At about
7.4 s, the reference trajectory is sent to the first quadrotor.
Finally, all tracking errors in X, Y , and Z directions are
within 5 cm, which validates the effectiveness of the pro-
posed control method. Figure 6 gives the snapshots of this
test.

In the second test, the system will only move 1.8m in 10
seconds in Y direction with the desired height 0.6m and the
desired zero yaw angle. Note that both thrust force and atti-
tude maneuver of these two quadrotors can help finish the
movement along Y axis. As shown in Figure 7, the designed
control and command allocation methods can complete the
transportation task with a tracking error of 5 cm. The snap-
shots of the test in Y direction are given in Figure 8.

In some sense, the simulation with 4 drones with differ-
ent orientations is the easiest case for the designed controller
because the matrix ðAW−1ATÞ is nonsingular, which implies
that the thrust forces of four quadrotors are sufficient to con-
tribute to the movement in both x and y directions. How-
ever, two quadrotors are used to verify the developed
methods in this work. In our experimental testbed, the
thrust forces of both quadrotors contribute to the movement
in y direction. However, the movement along x axis can only
be realized by the attitude maneuver in the pitch direction.
That is, the presented experimental result in y direction
can verify the effectiveness of the developed method for the
case where the thrust forces can contribute to the transla-
tional movement and the result in x direction can be used
to verify the trivial case.

5. Conclusions

In this study, a general framework of the dynamics model-
ing, controller design, and control command allocation
method is presented for the transportation of a payload
attached to quadrotors rigidly. Since quadrotors may have
different orientations, horizontal control forces can be
obtained by adjusting the thrust forces of some quadrotors.

t = 0 s t = 3 s

t = 10 s

t = 17 s

t = 20 s

t = 7 s

t = 15 s

t = 18 s

Figure 6: The snapshots of the test in X direction.
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Figure 7: The position of the mass center of the entire system in
the test in Y direction.
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Figure 8: The snapshots of the test in Y direction.
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Hence, different from the case for the classical quadrotors
that the movement in the horizontal plane can only be real-
ized based on attitude maneuvers in roll and pitch direc-
tions, the transportation system in this study can move in
the horizontal plane by regulating some quadrotors’ thrust
forces. To get a universal control system, a hierarchical con-
troller and a modified control command allocation algorithm
is adopted. Experimental results show the effectiveness of the
proposed control system. This work is the first trial to solve
the dynamics modeling, controller design, and control com-
mand allocation problems for the transportation of a rigidly
connected payload using a team of quadrotors with different
orientations. In the future, the dynamics and control of such
a transportation system can be studied with the uncertainties
and communication delays between quadrotors.

Appendix

A. Detailed Expressions of the Total
Inertia Matrix

Suppose that a new frame x′y′z′ is obtained by translating
the origin of xyz to the point C1 in Figure 2, where C1 is
the mass center of the payload. Hence, x′y′z′ can be called
the payload body frame. Denote the inertia matrices of the
payload and quadrotors with respect to their body frames
as Jp, J1, ⋯, Jn. According to [31], the inertia matrix of the
quadrotor i can be expressed in the frame xyz as

J′i = RiJiRT
i −mqr×i r×i : ðA:1Þ

Similarly, in the frame xyz, the payload inertia matrix is

J′p = Jp −mpr×p r×p , ðA:2Þ

where rp represents the vector from C to C1 in the frame
xyz. Hence, the total inertia matrix of the entire system in
the frame xyz is

J = J′p + 〠
n

i=1
J′i: ðA:3Þ

B. Proof of Theorem 4

With the controller in Equation (13), the closed-loop system
can be written as

m€ec = − Kp +Ki

� �
ec −Ki

ðt
0
ecdt −Kd _ec +m~q3, ðB:1Þ

where ec = rc − rd . According to Lemma 3, ~q3 is bounded by
a small constant cΔ with a large w0. Equation (B.1) can be
rewritten as follows:

_q =Aq + Δ, ðB:2Þ

where

q =
ðt
0
ecdt

	 
T

, eTc , _eTc

" #T
,

A =

0 I3 0
0 0 I3

−
Ki

m
−
Kp +Ki

m
−
Kd

m

26664
37775,

Δ = 0T , 0T , ~qT3
� �T

:

ðB:3Þ

Since all eigenvalues of A have negative real parts, the
following Lyapunov equation holds:

PA +ATP = −I, ðB:4Þ

where the matrix P is positive definite. Choose the fol-
lowing Lyapunov function:

Vp = qTP q, ðB:5Þ

whose time derivative is

_Vp = _qTP q + qTP _q = −qTq + ΔTP q + qTP Δ

≤ −∥q∥22 + 2∥Δ∥2∥P∥2∥q∥2:
ðB:6Þ

In the case of ∥q∥2 > 2∥Δ∥2∥P ∥2, _Vp < 0 holds. Hence, q
will converge to the set fqj∥q∥2 ≤ 2∥Δ∥2∥P ∥2g. According to
Lemma 3, by increasing w0, one can get a smaller tracking
error.

C. Proof of Theorem 8

The closed-loop attitude dynamics is

J _EΩ = −kReR − kΩEΩ − Jd̂2 + d2: ðC:1Þ

Consider the system governed by the following equation:

J _EΩ = −kReR − kΩEΩ: ðC:2Þ

Choose the following Lyapunov function:

Va =
kR
2 ∥ER∥

2
F +

1
2E

T
ΩJEΩ + μeTREΩ, ðC:3Þ

where ER = R − Rd , μ is a constant satisfying 0 < μ <ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kRλminðJÞ/2

p
, and ∥·∥F represents the Frobenius norm of a

matrix. ∥ER∥F has the following property:

∥ER∥
2
F = ∥R − Rd∥

2
F = trace R − Rdð ÞT R − Rdð Þ

� �
= trace R − Rdð ÞTRRT R − Rdð Þ

� �
= ∥I − RTRd∥

2
F ,
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d
dt

∥ER∥
2
F

� �
= d
dt

trace 2I − RTRd − RT
dR

� �� �
= 2trace Ω×RTRd +Ω×

dRT
dR

� �
= −2ΩT RTRd − RT

dR
� �∨ − 2ΩT

d RT
dR − RTRd

� �∨
= 2ΩTeR − 2ΩT

d eR = 2ET
ΩeR:

ðC:4Þ

Using Rodrigues’ rotation formula, one has

∥ER∥
2
F = 4 1 − cos Θð Þ,

∥eR∥2 = 2 sin Θ,
ðC:5Þ

where Θ is the rotation angle in Rodrigues’ rotation formula
associated with the attitude motion described by RTRd .
Hence, the following statement holds with the assumption
that cos Θ > −1:

∥ER∥
2
F ≤ α∥eR∥22, ðC:6Þ

where the constant α > 1 is large enough. Furthermore, it is
straightforward to show that

∥eR∥22 ≤ 2∥ER∥
2
F : ðC:7Þ

Hence, Va ≥ kR/4∥eR∥22 + 1/2ET
ΩJEΩ + μeTREΩ ≥ kR/4∥eR∥22

+ 1/2λminðJÞ∥EΩ∥
2
2 − μ∥eR∥2∥EΩ∥2 = zTW0z holds, where

W0 =
kR
4 −

μ

2

−
μ

2
1
2 λmin Jð Þ

2664
3775,

z = ∥eR∥2,∥EΩ∥2½ �T :

ðC:8Þ

With 0 < μ <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kRλminðJÞ/2

p
, W0 is positive definite and Va

≥ 0 holds. If and only if ∥eR∥2 = 0, ∥EΩ∥2 = 0, and ∥ER∥F =
0, Va equals to 0. Furthermore, Va ≤ kR/2α∥eR∥22 + 1/2λmaxð
JÞ∥EΩ∥2 + μ∥eR∥2∥EΩ∥2 = zTW1z with

W1 =
kRα
2

μ

2
μ

2
1
2 λmax Jð Þ

2664
3775: ðC:9Þ

If 0 < μ <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kRλminðJÞ/2

p
holds, it is obvious that W1 is posi-

tive definite.

_Va can be expressed as

_Va = kRET
ΩeR + ET

Ω −kReR − kΩEΩð Þ
+ μ trace RTRd

� �
I − RTRd

� �
EΩ + eR × EΩ

� �TEΩ

+ μeTR _EΩ = −kΩE
T
ΩEΩ

+ μ trace RTRd

� �
I − RTRd

� �
EΩ

� �T
EΩ

+ μeTR J
−1 −kReR − kΩEΩð Þ:

ðC:10Þ

It is straightforward from Rodrigues’ rotation formula to
show that ∥traceðRTRdÞI − RTRd∥F = 2. Hence, one has ∥
traceðRTRdÞI − RTRd∥2 ≤ ∥traceðRTRdÞI − RTRd∥F = 2. _Va
satisfies the following inequality:

_Va ≤ −kΩ∥EΩ∥
2
2 + 2μ∥EΩ∥

2
2 − kRμeTR J−1eR − kΩμeTR J−1EΩ

≤ − kΩ − 2μð Þ∥EΩ∥
2
2 − kRμλmin J−1

� �
∥eR∥

2
2

+ kΩμλmax J−1
� �

∥eR∥2J
−1∥EΩ∥2 = −zTW2z,

ðC:11Þ

where

W2 =
kRμλmin J−1

� �
−
kΩμλmax J−1

� �
2

−
kΩμλmax J−1

� �
2 kΩ − 2μð Þ

26664
37775: ðC:12Þ

There must exist a positive constant 0 < σ ≤ λminðW2Þ/λmax
ðW1Þ such that W2 − σW1 ≥ 0 holds. Therefore, one has

_Va ≤ −σVa: ðC:13Þ

Therefore, the closed-loop system in Equation (B.3) is
exponentially stable except at some points with cos Θ = −1.

As shown in Lemma 7, −Jd̂2 + d2 is ultimately bounded.
According to [32], the designed controller can drive the sys-
tem to a small neighborhood of the desired attitude almost
globally.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Science and Technology on
Space Intelligent Control Laboratory (Grant No. 2021-JCJQ-
LB-010-17) and the National Natural Science Foundation of
China under Grant 12102174.

12 International Journal of Aerospace Engineering



References

[1] J. Euchi, “Do drones have a realistic place in a pandemic fight
for delivering medical supplies in healthcare systems prob-
lems?,” Chinese Journal of Aeronautics, vol. 34, no. 2,
pp. 182–190, 2021.

[2] D. Xilun, G. Pin, X. Kun, and Y. Yushu, “A review of aerial
manipulation of small-scale rotorcraft unmanned robotic sys-
tems,” Chinese Journal of Aeronautics, vol. 32, no. 1, pp. 200–
214, 2019.

[3] A. Gupta, T. Afrin, E. Scully, and N. Yodo, “Advances of UAVs
toward future transportation: The State-of-the-Art, challenges,
and Opportunities,” Transportation, vol. 1, no. 2, pp. 326–350,
2021.

[4] D. K. Villa, A. S. Brandao, and M. Sarcinelli-Filho, “A survey
on load transportation using multirotor UAVs,” Journal of
Intelligent and Robotic Systems, vol. 98, no. 2, pp. 267–296,
2020.

[5] I. Palunko, P. Cruz, and R. Fierro, “Agile load transportation:
safe and efficient load manipulation with aerial robots,” IEEE
Robotics and Automation Magazine, vol. 19, no. 3, pp. 69–79,
2012.

[6] F. Ruggiero, V. Lippiello, and A. Ollero, “Aerial manipulation:
a literature review,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 1957–1964, 2018.

[7] T. Chen and J. Shan, “A novel cable-suspended quadrotor
transportation system: from theory to experiment,” Aerospace
Science and Technology, vol. 104, article 105974, 2020.

[8] L. Qian and H. H. Liu, “Path-following control of a quadrotor
UAV with a cable-suspended payload under wind distur-
bances,” IEEE Transactions on Industrial Electronics, vol. 67,
no. 3, pp. 2021–2029, 2020.

[9] P. J. Cruz and R. Fierro, “Cable-suspended load lifting by a
quadrotor UAV: hybrid model, trajectory generation, and con-
trol,” Autonomous Robots, vol. 41, no. 8, pp. 1629–1643, 2017.

[10] A. Tagliabue, M. Kamel, R. Siegwart, and J. Nieto, “Robust col-
laborative object transportation using multiple MAVs,” The
International Journal of Robotics Research, vol. 38, no. 9,
pp. 1020–1044, 2019.

[11] T. Chen, J. Shan, and H. H. Liu, “Cooperative transportation of
a flexible payload using two quadrotors,” Journal of Guidance,
Control, and Dynamics, vol. 44, no. 11, pp. 2099–2107, 2021.

[12] T. Chen and J. Shan, “Cooperative transportation of cable-
suspended slender payload using two quadrotors,” in 2019
IEEE International Conference on Unmanned Systems (ICUS),
pp. 432–437, IEEE, 2019.

[13] N. Michael, J. Fink, and V. Kumar, “Cooperative manipulation
and transportation with aerial robots,” Autonomous Robots,
vol. 30, no. 1, pp. 73–86, 2011.

[14] D. Sanalitro, H. J. Savino, M. Tognon, J. Cort’es, and
A. Franchi, “Full-pose manipulation control of a cable-
suspended load with multiple UAVs under uncertainties,”
IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 2185–2191, 2020.

[15] J. Geng and J. W. Langelaan, “Cooperative transport of a slung
load using load-leading control,” Journal of Guidance, Control,
and Dynamics, vol. 43, no. 7, pp. 1313–1331, 2020.

[16] Q. Jiang and V. Kumar, “The inverse kinematics of cooperative
transport with multiple aerial robots,” IEEE Transactions on
Robotics, vol. 29, pp. 136–145, 2013.

[17] F. A. Goodarzi and T. Lee, “Stabilization of a Rigid Body Pay-
load With Multiple Cooperative Quadrotors,” Journal of
Dynamic Systems, Measurement, and Control, vol. 138,
no. 12, article 121001, 2016.

[18] L. Qian and H. H. Liu, “Path following control of multiple
quadrotors carrying a rigid-body slung payload,” AIAA Scitech
2019 Forum, p. 1172, 2019.

[19] H. Lee, H. Kim, W. Kim, and H. J. Kim, “An integrated frame-
work for cooperative aerial manipulators in unknown environ-
ments,” IEEE Robotics and Automation Letters, vol. 3, no. 3,
pp. 2307–2314, 2018.

[20] Y. Qi, J. Wang, and J. Shan, “Aerial cooperative transporting
and assembling control using multiple quadrotor–manipula-
tor systems,” International Journal of Systems Science, vol. 49,
no. 3, pp. 662–676, 2018.

[21] H. Lee, H. Kim, and H. J. Kim, “Planning and control for
collision-free cooperative aerial transportation,” IEEE Trans-
actions on Automation Science and Engineering, vol. 15,
no. 1, pp. 189–201, 2018.

[22] D. Mellinger, M. Shomin, N. Michael, and V. Kumar, “Coop-
erative grasping and transport using multiple quadrotors,” in
Distributed autonomous robotic systems, pp. 545–558,
Springer, 2013.

[23] G. Loianno and V. Kumar, “Cooperative transportation using
small quadrotors using monocular vision and inertial sensing,”
IEEE Robotics and Automation Letters, vol. 3, pp. 680–687,
2018.

[24] R. Ritz and R. D’Andrea, “Carrying a flexible payload with
multiple flying vehicles,” in 2013 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pp. 3465–3471,
IEEE, 2013.

[25] Q. Zheng, L. Q. Gaol, and Z. Gao, “On stability analysis of
active disturbance rejection control for nonlinear time-
varying plants with unknown dynamics,” in 2007 46th IEEE
conference on decision and control, pp. 3501–3506, IEEE, 2007.

[26] J. Yao, Z. Jiao, and D. Ma, “Adaptive robust control of DC
motors with extended state observer,” IEEE Transactions on
Industrial Electronics, vol. 61, pp. 3630–3637, 2014.

[27] T. Chen, J. Shan, and H. Wen, “Distributed adaptive attitude
control for networked underactuated flexible spacecraft,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 55,
pp. 215–225, 2019.

[28] B.-Z. Guo and Z. L. Zhao, “On the convergence of an extended
state observer for nonlinear systems with uncertainty,” Systems
& Control Letters, vol. 60, no. 6, pp. 420–430, 2011.

[29] Z. Zheng and M. Shen, “Inertial vector measurements based
attitude synchronization control for multiple spacecraft for-
mation,” Aerospace Science and Technology, vol. 93, article
105309, 2019.

[30] QUARC, “real-time control software,” 2021, https://www
.quanser.com/products/quarc-real-time-control-software/
Accessed November 16, 2021.

[31] F. P. Beer and E. R. Johnston, Vector Mechanics for Engineers,
McGraw-Hill New York, 7th Edition edition, 2004.

[32] D. Angeli and L. Praly, “Stability robustness in the presence of
exponentially unstable isolated equilibria,” IEEE Transactions
on Automatic Control, vol. 56, no. 7, pp. 1582–1592, 2011.

13International Journal of Aerospace Engineering

https://www.quanser.com/products/quarc-real-time-control-software/
https://www.quanser.com/products/quarc-real-time-control-software/

	Transportation of Payload Using Multiple Quadrotors via Rigid Connection
	1. Introduction
	2. Transportation System Modeling
	3. Control System Design
	3.1. Position Control
	3.2. Attitude Control
	3.3. Control Command Allocation

	4. Experimental Verification
	5. Conclusions
	Appendix
	A. Detailed Expressions of the Total Inertia Matrix
	B. Proof of Theorem 4
	C. Proof of Theorem 8
	Data Availability
	Conflicts of Interest
	Acknowledgments

