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There are many factors involved in the assembly process of complex products, but only a few of the key influencing factors really
affect the performance of the product assembly. In order to ensure the performance of complex products, it is necessary to model
the deviation transfer flow of the assembly process of complex products and identify key processes and characteristics and
determine its scope of influence. This paper establishes the set of assembly performance influencing factors by analyzing the
complex product assembly process and uses complex networks combined with entropy weight method to identify the
influencing factors of product performance to achieve the identification of key influencing factors. Based on the key factor
identification results using an Apriori algorithm to mine the association rules between key factors and performance to provide
guidance for the assembly of complex products and achieve transparent and controllable performance. The assembly process of
a certain type of aeroengine low-pressure fan rotor is verified as the research object. The results show that the proposed
method can identify the key factors in the multistage assembly process and establish an association rule library to provide
decision support for process adjustment.

1. Introduction

The assembly of complex products requires multiple stages of
assembly, and there is a certain amount of assembly deviation
on each stage. The errors in each assembly process are different
in size and type (part manufacturing errors, positioning errors
during assembly). Various errors are continuously transmitted,
accumulated, and evolved with the advancement of assembly,
resulting in the final assembly performance not meeting the
requirements. By modeling the deviation flow transfer of the
assembly process of complex products, we identify the key
influencing factors and determine their influence range, which
is a guide to adjust the influencing factors of the assembly per-
formance and ensure the product assembly performance.

The assembly process of complex products includes not
only multiple types of components but also the use of vari-
ous types of equipment such as tools and fixtures. And the
assembly process is more complex; assembly process chain

is long. These factors are constantly changing and coupled
with each other throughout the assembly process, which
leads to the following difficulties in identifying and correlat-
ing key factors of complex products in the assembly process.

(1) There are many influencing factors, the factors are
coupled, and the influencing mechanism is complex
and unclear. Product assembly performance is
affected by the quality of parts processing, assembly
process, assembly quality, and other factors, involv-
ing many influencing factors. These influencing fac-
tors are dynamically changing and coupled with each
other, and it is difficult to determine their influence
range by mechanism analysis methods under the
synergistic effect of multiple factors

(2) The accumulation of influencing factors has a cross-
process effect. The assembly process of complex
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products is generally divided into multiple processes.
The errors generated by the current process will be
passed to the next process, which has a certain
cumulative effect

To address the above difficulties of key factor identifica-
tion and association analysis mining of complex products,
this paper proposes a key factor identification and associa-
tion mining method based on the combination of complex
network, entropy method, and Apriori method. Establish
the set of assembly performance influencing factors by ana-
lyzing the complex product assembly process, and establish
the key factor identification model by using complex net-
work combined with entropy power method to identify the
influencing factors of product performance and obtain the
key influencing factors in the complex product assembly
process. Based on the key factor identification results using
the Apriori algorithm, we mine the association rules between
key factors and performance, to achieve accurate regulation
of the assembly process and provide decision support for
subsequent assembly process adjustment.

This paper is divided into 6 subsections. The first part is
the introduction, which introduces the complexity and diffi-
culty of the research problem. The second part is a literature
review to introduce the current research progress in key factor
identification and association mining. The third part is a com-
plex product key factor identification and association mining
method, which introduces the details of the method proposed
in this paper. The fourth part is an example analysis to validate
the application of the method proposed in this paper in the
low pressure rotor assembly process of an aeroengine. The
fifth part is the conclusion. The sixth part is the references.

2. Literature Review

2.1. Key Factor Identification. In order to achieve efficient
control of product performance, it is necessary to identify
key influencing factors. At present, the commonly used
methods of identifying key factors mainly include loss func-
tion method, risk analysis method, fuzzy theory, Bayesian
network, complex network, and other methods.

Tang et al. [1] used the assembly directed graph to estab-
lish a candidate set of key characteristics and then calculated
the influence degree of the candidate characteristics on the
key characteristics of the upper layer based on the Taguchi
quality loss method and then defined the key characteristics
of the layer according to the degree of influence. Zhao et al.
[2] based on the qualitative preidentification of key charac-
teristics based on the cumulative relationship of error trans-
mission and realized the identification of key characteristics
through risk analysis. Xu et al. [3] studied the quality factor
identification method based on Bayesian network. This
method uses Bayesian inference to identify the key quality
factors based on the product quality relationship of the
Bayesian network. Whitney [4] analyzed the influencing fac-
tors of key characteristics through the combination of char-
acteristic decomposition, tolerance analysis, and assembly
sequence. Guo [5] uses Taguchi quality loss function to
determine the quality loss caused by the coordination ele-

ments between assembly levels and then uses fuzzy theory
to calculate the influence degree of each element to realize
the identification of product elements. Raman et al. [6] used
hypergraphs and rough sets to reduce attributes to form an
optimal attribute subset and realize the selection of impor-
tant attributes. Yang [7] and Zheng et al. [8] mentioned
key quality characteristic identification methods based on
risk analysis, quality loss function, principal component
analysis, and historical data analysis. Zhong et al. [9] pro-
posed a multiattribute fusion method that combines the
topological attributes and diffusion attributes of nodes to
adaptively obtain the ranking results, including two fusion
methods based on attribute union (FU) and attribute-based
ranking (FR). Based on principal component analysis
(PCA), Jin et al. [10] proposed a new algorithm for calculat-
ing the importance of nodes in complex networks, combin-
ing attributes such as degree centrality, tight centrality, and
eigenvector centrality. Zhao et al. [11] used the TOPSIS
method to integrate degree centrality, mesoscopic centrality,
aggregation coefficient, and proximity centrality to rank the
importance of nodes and then delete the most important
nodes to obtain the ranking results of node importance.

The above methods have achieved some results in the
identification of key characteristics, but their identification
mainly depends on the decomposition and transmission of
various factors. The relationship between various factors is rel-
atively clear, or more a priori knowledge is required to realize
the identification of key factors. It is difficult to identify key
characteristics for the problems of unclear action relationship
and small number of factors. On the basis of clarifying nodes
and node relationships, this paper realizes the identification
of key nodes in complex networks by constructing an associa-
tion relationship network between various characteristics. The
identification process does not require experimental data, nor
does it need to clarify the mechanism of action and transfer
relationship among various factors.

2.2. Association Mining. The increase in the number of the
quality of complex products and process feature quantities
will increase the complexity of the association rule algo-
rithm. In fact, the performance of complex products may
only have a direct relationship with certain feature quanti-
ties, but the relationship with other feature quantities is
not obvious. Commonly used association rule analysis algo-
rithms include Apriori algorithm [12] and FP tree frequent
itemset algorithm [13]. Guo et al. [14] introduced cluster
analysis theory, modeled photovoltaic processing from the
perspective of data mining, and used it to evaluate the reli-
ability of photovoltaic power generation systems. Li et al.
[15] proposed a new network loss assessment method based
on hybrid cluster analysis using data mining and typical sce-
nario simulation ideas. Li et al. [16] developed a set of equip-
ment fault information management and analysis system
using data mining technology to provide a basis for realizing
the status maintenance of relay protection devices and pro-
vide decision support for the analysis and processing of
power grid faults. Zhang et al. [17] proposed a data mining
and analysis method for secondary equipment defects based
on the Apriori algorithm based on the defect data of
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secondary equipment, which improved the operation, main-
tenance, and control level of secondary equipment in the
power system. Chen and Cao [18] proposed a multilayer
association rule data mining algorithm and applied it to
the analysis of massive data in commercial banking systems.
Jia et al. [19] used the FP-Growth association rule mining
algorithm to propose an association analysis for bird strikes
in the aviation field and find out the association rules
between the key inducing factors of civil aviation bird
strikes.

The above-mentioned research has conducted certain
research on the mining of association relations, but the
above methods are all for the mining of association relations
for discrete text data and cannot be mined for the multidi-
mensional continuous data existing in the assembly process
of complex products. Therefore, based on the identification
of key factors, this paper uses the discretization algorithm
to discretize the multidimensional continuous data, uses
the association rule analysis method to mine the out of toler-
ance information data of complex product performance,
analyzes the reliability between product performance and
feature quantity, and reveals the correlation between product
performance and feature. And one more advantage after dis-
cretization is that the distribution intervals of features can be
obtained, and in the obtained association rules, it is a combi-
nation of multiple feature value intervals, which can provide
clear data support for optimization adjustment.

3. Key Factor Identification and Association
Mining of Complex Products

Firstly, this paper identifies all the factors affecting assembly
performance in the assembly process of complex products,
classifies the influencing factors, and establishes a product
performance influencing factor index system. Then abstract
the influencing factors as nodes and the assembly relation-
ships as edges to build a complex network model. The prop-
erties of all factors are calculated based on the constructed
complex network, and the Entropy weight-TOPSIS model
is used to sort the influencing factors, in order to realize
the identification of the key factors. Finally, based on the
key factor identification results, the relevant data of the key
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Figure 1: Method for key factor identification and association mining of complex products.
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factors are collected, and the collected data are discretized.
According to the discretization results of the collected data,
the Apriori algorithm is used to mine the relationship
between assembly influencing factors and assembly perfor-
mance and determine the range of influence of key factors
so as to provide for subsequent process adjustments, as
shown in Figure 1.

3.1. Identification of Key Influencing Factors Based on
Complex Network and Entropy Weight Method. Complex

products have complex assembly relationships due to the
complexity of the structure and the number of parts
involved in the assembly. In the multistage assembly process
of complex products, the machining quality of the parts
themselves will affect the assembly performance of the prod-
ucts, and the assembly process and assembly quality will also
affect the assembly performance of the products. In the
assembly process, the assembly errors caused by the part
processing quality, assembly process, and assembly quality
are continuously transferred and accumulated among the
parts, and there are also coupling relationships among the
influencing factors. Therefore, the coupling relationship of
complex product assembly process can be modeled and ana-
lyzed by means of complex network directed graph. The
quality and process factors in the assembly process are
abstracted as the nodes of a complex network, and the inter-
actions between the influencing factors are abstracted as the
edges of the complex network, and the connection relation-
ships are determined by the assembly sequence.

The set of influencing factors is the basis for building
complex network models and analyzing key influencing fac-
tors. Therefore, it is necessary to clarify the influencing fac-
tors affecting the assembly performance from the assembly
process of complex products and form a set of influencing
factors for the assembly performance of complex products
to provide a data basis for building complex networks. The
assembly performance of complex products is influenced
by the quality of parts processing, assembly process, and
assembly quality, so it can be analyzed from these three
aspects to form a set of assembly performance influencing
factors, which is noted as M.

Mm = Xm, Ym, Zmf g, ð1Þ

Xm = xm1 , xm2 ,⋯, xmof g, ð2Þ

Table 1: Network characteristics and calculation methods of complex networks.

Network characteristics Definition Calculation method

Degree centrality The degree of relevance of a node to other nodes CD Nið Þ = 〠
g

J=1
xij

Aggregation coefficient Error propagation effect between nodes ci =
∑k

r=1∑
k
s=1d nr , nsð Þ

k k − 1ð Þ

Mesoscopic centrality The number of the shortest paths through a node g vð Þ = 〠
s≠v≠t

σst vð Þ
σst

Proximity centrality The proximity of a node to other nodes C xð Þ = 1
∑yd y, xð Þ

Centrifugal centrality The distance from a given starting node to the farthest node e ið Þ = max
0≤j≤n

dij

Eigenvector centrality Number and importance of neighbor nodes EC ið Þ = c〠
n

j=1
aijxj

Average neighbor degree The average of the degrees of all nodes knn,i =
1

N ið Þj j 〠
j∈N ið Þ

kj

Table 2: Characteristic scale after multivalue discretization.

Feature amount FCM xið Þ Z∗ element

x1

0 z1∗1

1 z1∗2

2 z1∗3
⋮ ⋮

⋮ ⋮ ⋮

xn

0 zn∗1

1 zn∗2
⋮ ⋮

Table 3: Database Z.

Label TID Items

Qualified z1∗1 , z2∗2 , z3∗1 , z4∗2 , z5∗3
Failure z1∗1 , z2∗1 , z3∗2 , z4∗2 , z5∗1
Failure z1∗1 , z2∗2 , z3∗2 , z4∗2 , z5∗1
Qualified z1∗3 , z2∗1 , z3∗1 , z4∗2 , z5∗3
Qualified z1∗2 , z2∗2 , z3∗3 , z4∗2 , z5∗3
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Ym = ym1 , ym2 ,⋯, ymp
n o

, ð3Þ

Zm = zm1 , zm2 ,⋯, zmq
n o

: ð4Þ

In the formula, M is the set of influencing factors. X is
the processing quality influencing factor. Y is the assembly
process influencing factor. Z is the assembly quality
influencing factor. m means there are m processes.

The network relationship mapping between the factors is
established according to the assembly order, as shown in
Figure 2.

Complex networks, as a branch of complex system the-
ory, are topological abstractions of real complex systems,
and the theory and methods of complex networks can well
describe the topological characteristics, functional proper-
ties, and interrelationships of systems using complex net-
works . Based on the theory and method of complex
network, we construct a network model of association rela-
tionship reflecting the characteristics of the system and build
a node importance evaluation index system with the node
attributes of complex network.

The different connection relationships of the nodes in a
complex network can make the node importance inconsis-
tent, where important nodes are the special nodes in a com-
plex network that affect the structure and function of the
network [20]. The connection relationship of the nodes in
the complex network reflects the inherent attribute informa-
tion of the nodes. This paper selects seven network charac-
teristics of each influencing factor to construct an
evaluation index system for the importance of each process
influencing factor. These network characteristics are degree
centrality, aggregation coefficient, mesoscopic centrality,
proximity centrality, centrifugal centrality, eigenvector cen-
trality, and average neighbor degree. Table 1 shows the com-
monly used calculation methods for characteristic analysis in
complex networks [21].

The complex network model of factors influencing the
assembly performance of complex products is constructed
in the following steps.

(Step 1) According to the analysis of complex product
assembly performance influencing factors, the
influencing factors are used as nodes of the
complex network model. Vm = fvmi g, ðm = 1, 2
, 3, 4 ; i = 1, 2,⋯,NÞ represents the set of
influencing factors for each process, where vmi
represents the i-th node of the m-th process
complex network model. m is the number of
processes. N is the number of influencing fac-
tors of the m-th process.

(Step 2) Edge of complex network model based on the
interaction influence relationship among the
influencing factors. Em = femij g, ðm = 1, 2, 3, 4 ; i
, j = 1, 2,⋯,NÞ represents the set of influence
relationships between the influencing factors

Table 4: Frequent item set L1.

Items Support Items Support

z1∗1 60% z3∗3 20%

z1∗2 20% z4∗1 0

z1∗3 20% z4∗2 100%

z2∗1 40% z4∗3 0

z2∗2 60% z5∗1 40%

z2∗3 0 z5∗2 0

z3∗1 40% z5∗3 60%

z3∗2 40%

Table 5: Frequent item set L2.

Items Support Items Support

z1∗1 60% z3∗2 40%

z2∗1 40% z4∗2 100%

z2∗2 60% z5∗1 40%

z3∗1 40% z5∗3 60%

Table 6: Frequent item set L3.

Items Support Items Support

z1∗1 , z2∗1 20% z2∗2 , z3∗2 20%

z1∗1 , z3∗1 20% z2∗2 , z4∗2 60%

z1∗1 , z3∗2 40% z2∗2 , z5∗1 20%

z1∗1 , z4∗2 60% z2∗2 , z5∗3 40%

z1∗1 , z5∗1 40% z3∗1 , z4∗2 40%

z1∗1 , z5∗3 60% z3∗1 , z5∗1 0

z2∗1 , z3∗1 20% z3∗1 , z5∗3 40%

z2∗1 , z3∗2 20% z3∗2 , z4∗2 40%

z2∗1 , z4∗2 40% z3∗2 , z5∗1 40%

z2∗1 , z5∗1 20% z3∗2 , z5∗3 0

z2∗1 , z5∗3 20% z4∗2 , z5∗1 40%

z2∗2 , z3∗1 20% z4∗2 , z5∗3 60%

Table 7: Frequent item set L4.

Items Support Items Support

z1∗1 , z3∗2 40% z3∗1 , z4∗2 40%

z1∗1 , z4∗2 60% z3∗1 , z5∗3 40%

z1∗1 , z5∗1 40% z3∗2 , z4∗2 40%

z1∗1 , z5∗3 60% z3∗2 , z5∗1 40%

z2∗1 , z4∗2 40% z4∗2 , z5∗1 40%

z2∗2 , z4∗2 60% z4∗2 , z5∗3 60%

z2∗2 , z5∗3 40%
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of each process. Where emij represents the exis-
tence of an interaction between the i-th node
and the j-th node in the m-th process.

(Step 3) Draw complex network diagrams. Form a con-
nection matrix based on the above two steps,
and draw a complex network diagram based
on the connection matrix.

(Step 4) The inherent properties of each node are calcu-
lated. Calculate the local and global information
of each node as described in Table 1.

After the complex network model is built, the key nodes
in it need to be identified. More research has been conducted
on the identification of important nodes in complex net-
works, mainly including degree centrality, feature vector
centrality, mediator centrality, and Paerank method [22].
Each of the above algorithms only evaluates the node impor-
tance from one aspect and has some limitations. Therefore,
this paper adopts the entropy-weight-TOPSIS model to eval-
uate the node importance by considering the local attribute
information as well as the global attribute information of
the network and then identifies the important nodes of the
complex network.

The entropy-TOPSIS model is a combination of the
entropy and TOPSIS methods [23]. The TOPSIS method
is a multi-indicator evaluation algorithm, which is a kind
of ranking by judging the distance of each target from
the ideal target. Since TOPSIS will involve multiple indica-
tors in the operation, the weight of each indicator is not
consistent; if the weight of each indicator is not deter-
mined, it will affect the accuracy of the ranking results.
As an objective assignment method, the entropy method
does not depend on human experience, so the entropy
method is combined with TOPSIS method to achieve the
identification of important nodes in complex networks.
The specific steps for the identification of key influencing
factors of product performance based on the entropy-
weight-TOPSIS model are as follows:

(Step 1) The inherent properties of each influencing fac-
tor are calculated, and the corresponding prim-
itive matrix is constructed based on the
established complex network. Suppose with k
indicators X = fX1, X2,⋯,Xkg, where Xi = fx1i
, x2i,⋯,xnig. Indicator Xi has n sets of data. That
is, there are n evaluation objects and k evalua-
tion indicators. The original data matrix X is
as follows:

X =

x11, x12,⋯, x1k
x21, x22,⋯, x2k

⋯

xn1, xn2,⋯, xnk

2
666664

3
777775
: ð5Þ

(Step 2) In data standardization, since the different
meanings of the indicators will make the dif-
ference in the scale of each indicator and
affect the evaluation results, the original data
matrix needs to be standardized. There are
positive and negative indicators in the stan-
dardization process. A positive indicator
means that the larger the value, the more
important the indicator is, and a negative
indicator means that the lower the value, the
more important the indicator is, so different
methods are used to standardize data for dif-
ferent indicators. Where degree centrality,
aggregation coefficient, mediator centrality,
proximity centrality, eigenvector centrality,
and average neighborliness are all positive
indicators, so they are normalized according
to equation (6). Centrifugal centrality is a neg-
ative indicator, normalized according to equa-
tion (7). The matrix Yi i = 1, 2, 3⋯ , after the
standardization of each index is obtained, as
shown in equation (8).

Table 8: Frequent item set L5.

Items Support Items Support

z1∗1 , z3∗2 , z4∗2 40% z2∗2 , z4∗2 , z5∗1 20%

z1∗1 , z3∗2 , z5∗1 40% z2∗2 , z4∗2 , z5∗3 40%

z1∗1 , z3∗2 , z5∗3 0 z3∗1 , z4∗2 , z5∗1 0

z1∗1 , z4∗2 , z5∗1 40% z3∗1 , z4∗2 , z5∗3 40%

z1∗1 , z4∗2 , z5∗3 20% z3∗2 , z4∗2 , z5∗1 40%

z2∗1 , z4∗2 , z5∗1 20% z3∗2 , z4∗2 , z5∗3 0

z2∗1 , z4∗2 , z5∗3 20%

Table 9: Frequent item set L6.

Items Support Items Support

z1∗1 , z3∗2 , z4∗2 40% z2∗2 , z4∗2 , z5∗3 40%

z1∗1 , z3∗2 , z5∗1 40% z3∗1 , z4∗2 , z5∗3 40%

z1∗1 , z4∗2 , z5∗1 40% z3∗2 , z4∗2 , z5∗1 40%

Table 10: Frequent item set L7.

Items Support Items Support

z1∗1 , z3∗2 , z4∗2 , z5∗1 40% z1∗1 , z3∗2 , z4∗2 , z5∗3 0

Table 11: Frequent item set L8.

Items Support

z1∗1 , z3∗2 , z4∗2 , z5∗1 40%
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Table 12: Disc assembly process unbalance influence factor set.

Serial number Influencing factors

1 Unbalance of the first-level disc

2 Cylindricity of the first-level disc shaft

3 Cylinder surface roughness of primary disc shaft

4 The flatness of the end surface of the first-stage disc relative to the rotation axis

5 End surface roughness of the first-level disc shaft

6 The degree of runout of the cylinder of the first-stage disc relative to the rotation axis

7 Cylinder surface roughness of the first-level disc spigot

8 The runout of the end face of the first-level disc spigot

9 Roughness of the end surface of the first-level disc

10 The actual size of the first-level disc spigot

11 Bolt quality of first and second grade

12 Unbalance of secondary disc

13 Cylindricity of the secondary disc shaft

14 Roughness of the secondary disc shaft

15 The flatness of the end surface of the secondary disc relative to the rotation axis

16 End surface roughness of the secondary disc shaft

17 The runout degree of the cylinder of the upper spigot of the secondary disc relative to the rotation axis

18 Cylinder surface roughness of matching spigot on the secondary disc

19 The runout degree of the end face of the matching spigot on the secondary disc relative to the rotating shaft

20 Roughness of the upper spigot end of the secondary disc

21 The actual size of the upper spigot of the secondary disc

22 Cylinder surface roughness of the bottom matching spigot of the secondary disc

23 Radial circle runout of the bottom matching stop cylinder of the secondary disc

24 The runout of the end face of the bottom matching stop of the secondary disc

25 Roughness of the bottom spigot of the secondary disc

26 The actual size of the bottom stop of the secondary disc

27 Second and third grade bolt quality

28 Three-level disc unbalance

29 Cylindrical runout of three-stage disc spigot

30 Cylindrical roughness of the three-stage disc with spigot

31 Three-stage disc with the end face runout degree of spigot

32 End surface roughness of three-stage disc spigot

33 Actual size of tertiary disc spigot

34 Bolt tightening torque during the first and second stage disc assembly process

35 The bolt tightening sequence during the first and second stage disc assembly process

36 The heating temperature of the secondary disc during the assembly process of the primary and secondary disc

37 Room temperature

38 Phase I and II plate disc installation phase

39 Bolt tightening torque during the assembly process of the second and third stage disc

40 The bolt tightening sequence in the second and third stage disc assembly process

41 The second and third stage disc installation phase

42 Coaxiality of the rotation axis

43 Parallelism of the end face of the first and second stage disc spigot

44 Cylinder coaxiality of the first and second stage disc spigot

45 The first and second level of the disc spigot assembly interference

46 Parallelism of the end face of the second and third stage disc spigot

47 Concentricity of cylindrical surface of second and third stage disc spigot

48 Second and third-level disc spigot assembly interference

49 The heating temperature of the third-level pan disc during the assembly process of the second and third-level pan disc
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yij =
xij −min Xið Þ

max Xið Þ −min Xið Þ , ð6Þ

yij =
max Xið Þ − xij

max Xið Þ −min Xið Þ , ð7Þ

Y =

y11, y12,⋯, y1k
y21, y22,⋯, y2k

⋯

yn1, yn2,⋯, ynk

2
666664

3
777775
: ð8Þ

(Step 3) Calculate the information entropy of each
index. Calculate the information entropy of
each index of different processes according to
the formula of information entropy

Ei = − ln nð Þ−1 〠
n

i=1
pij ln pij: ð9Þ

In the formula, pij = yij/∑n
j=1yij. If pij = 0, then define

lim
pij⟶0

pij ln pij = 0.

(Step 4) Calculate the weight of each indicator. Calcu-
late the weight of each index Wi

k for each pro-
cess according to the index weight calculation
formula (10), i = 1, 2, 3⋯ , k = 1, 2, 3⋯ .

Wi =
1 − Ei

k−∑Ei
  i = 1, 2,⋯,kð Þ: ð10Þ

(Step 5) Determine the positive ideal solution and the
negative ideal solution. Based on the standardi-

zation of node attributes, the maximum value
in each indicator data is the positive ideal solu-
tion A+, and the minimum value in each indica-
tor data is the negative ideal solution A−. The
details are as follows:

A+ = y+1 , y+2 ,⋯,y+kf g,
A− = y−1 , y−2 ,⋯,y−kf g:

ð11Þ

In the formula, y+i =max
j
yij, y−i =min

j
yij.

(Step 6) Calculate the distance of each node from the
ideal solution. The distance D+

i and D−
i of each

node evaluation index from positive ideal sce-
nario A+ and negative ideal scenario A− is
defined as follows:

D+
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
k

j=1
Wj yij − y+j

� �2
vuut ,

D−
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
k

j=1
Wj yij − y−j

� �2
vuut :

ð12Þ

(Step 7) Calculate the comprehensive evaluation index
of each assessment object. Calculate the com-
prehensive evaluation index S based on the dis-
tance of each evaluation object from the
positive and negative ideal solutions. The calcu-
lation formula is as follows:

S ið Þ = D−
i

D+
i +D−

i
: ð13Þ

According to the comprehensive evaluation index of
each influencing factor, the change curve of the importance
of influencing factors is drawn and the key factors are
selected. When there is a significant decrease in the weight,
it indicates that there is a significant decrease in the impor-
tance of the later influencing factors relative to the preceding
influencing factors. Therefore, when there is a significant
decrease in the weight, the weight is used as the threshold
for selecting the key influencing factors, and the factors
greater than this threshold are the key influencing factors
for performance.

3.2. Association Relationship Mining Based on Apriori
Algorithm. In the research content of the previous section,
the factors affecting the performance of complex products
have been identified and the key factors have been extracted.
In this part of the content, this paper proposes to use the
Apriori method to analyze the credibility between the
assembly performance of complex products and key
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Figure 3: The complex network topology of the disc assembly
process.
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Table 13: The index value of the factors affecting the assembly process of the disc.

Influencing
factors

Degree
centrality

Clustering
coefficient

Betweenness
centrality

Proximity
centrality

Eigenvector
centrality

Eccentricity
centrality

Average neighbor
degree

1 0.042 1.000 0.000 0.079 23.500 0.400 4.000

2 0.021 0.000 0.000 0.033 23.000 0.393 4.000

3 0.021 0.000 0.000 0.033 23.000 0.393 4.000

4 0.021 0.000 0.000 0.033 23.000 0.393 4.000

5 0.021 0.000 0.000 0.033 23.000 0.393 4.000

6 0.104 0.500 0.003 0.165 19.600 0.471 4.000

7 0.104 0.500 0.003 0.165 19.600 0.471 4.000

8 0.104 0.500 0.003 0.165 19.600 0.471 4.000

9 0.104 0.500 0.003 0.165 19.600 0.471 4.000

10 0.021 0.000 0.000 0.008 5.000 0.310 4.000

11 0.042 0.000 0.000 0.053 14.000 0.364 4.000

12 0.042 1.000 0.000 0.079 23.500 0.400 4.000

13 0.021 0.000 0.000 0.033 23.000 0.393 4.000

14 0.021 0.000 0.000 0.033 23.000 0.393 4.000

15 0.021 0.000 0.000 0.033 23.000 0.393 4.000

16 0.021 0.000 0.000 0.033 23.000 0.393 4.000

17 0.104 0.500 0.003 0.165 19.600 0.471 4.000

18 0.104 0.500 0.003 0.165 19.600 0.471 4.000

19 0.104 0.500 0.003 0.165 19.600 0.471 4.000

20 0.104 0.500 0.003 0.165 19.600 0.471 4.000

21 0.021 0.000 0.000 0.008 5.000 0.310 4.000

22 0.083 0.500 0.001 0.117 18.750 0.436 4.000

23 0.083 0.500 0.001 0.117 18.750 0.436 4.000

24 0.083 0.500 0.001 0.117 18.750 0.436 4.000

25 0.083 0.500 0.001 0.117 18.750 0.436 4.000

26 0.021 0.000 0.000 0.004 4.000 0.293 4.000

27 0.042 0.000 0.000 0.038 14.000 0.372 4.000

28 0.042 1.000 0.000 0.079 23.500 0.400 4.000

29 0.083 0.500 0.001 0.117 18.750 0.436 4.000

30 0.083 0.500 0.001 0.117 18.750 0.436 4.000

31 0.042 0.000 0.000 0.038 14.000 0.372 4.000

32 0.083 0.500 0.001 0.117 18.750 0.436 4.000

33 0.021 0.000 0.000 0.004 4.000 0.293 4.000

34 0.104 0.800 0.001 0.143 16.000 0.457 4.000

35 0.104 0.800 0.001 0.143 16.000 0.457 4.000

36 0.021 0.000 0.000 0.015 9.000 0.350 4.000

37 0.188 0.139 0.171 0.139 10.000 0.533 3.000

38 0.500 0.181 0.183 0.402 6.583 0.578 4.000

39 0.083 0.833 0.000 0.084 13.750 0.417 4.000

40 0.083 0.833 0.000 0.084 13.750 0.417 4.000

41 0.479 0.146 0.134 0.348 5.826 0.527 4.000

42 0.479 0.103 0.390 0.311 5.478 0.640 3.000

43 0.271 0.141 0.041 0.231 6.538 0.485 3.000

44 0.313 0.238 0.075 0.272 7.533 0.552 3.000

45 0.104 0.300 0.082 0.078 9.800 0.444 3.000

46 0.271 0.128 0.054 0.163 5.538 0.490 3.000

47 0.313 0.114 0.197 0.200 6.600 0.571 3.000

48 0.083 0.167 0.082 0.036 6.500 0.410 3.000
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influencing factors, reveal the correlation degree between the
assembly performance and key influencing factors, deter-
mine the influence range of key factors, and form a correla-
tion rule base to provide guidance for subsequent process
optimization.

The association rule mining problem can be formally
described as follows. Let I = fi1, i2,⋯img be the set of all
influencing factors. D is the set of all combinations of
influencing factors. Each combination of influences T is
the set of some range of values of influences. T is contained
in I. Each combination of impact factors can be identified by
a unique identifier TID. Let X1, X2 be the set of certain
influencing factors. A combination of influences T is said
to contain X1 if X1 ⊆ T . The association rule is expressed
in the following form: implication of ðX1 ⊂ TÞX1 ⟶ X2ð
X2 ⊂ TÞ. Here, X1 ⊂ I, X2 ⊂ I, and X1 ∩ X2 =Φ. The rule X1
⟶ X2 in the set D of the combination of influencing fac-
tors is bounded by the degree of support s and the degree
of confidence c. The degree of confidence indicates the
strength of the rule, and the degree of support indicates
the frequency of occurrence in the rule. The support sðX1Þ
of the data item set X1 is the ratio of the number of combi-
nations of influences containing X1 in D to the total number
of combinations of influences in D. The support s of rule
X1 ⟶ X2 is defined as the proportion of the combination
of influences containing X1 ∪ X2 in D as s%, indicating the
ratio of the number of combinations of influences contain-
ing both X1 andX2 to the total number of combinations of
influences in D. The support s of rule X1 ⟶ X2 is defined
as the degree to which c% of the combination of influences
in D that contains X1 also contains X2, indicating how likely
it is that the combination of influences in D that contains X1
contains X2.

Association rule mining is to find association rules with
user-given minimum support minsup and minimum confi-

dence minconf in the database D of influencing factor com-
binations. The association rule mining problem can be
decomposed into two steps.

(1) Find all the itemsets in the influence factor combina-
tion database D that are greater than or equal to the
user-specified minimum support. The set of combi-
nations of influences with minimal support is called
the set of frequent items

(2) Generate the required association rules using fre-
quent item sets. For each frequent itemset A, find
all nonempty subsets a of A. If the ratio supportðAÞ
/supportðaÞ > =minsup, generate association rule a
⟶ ðA − aÞ. supportðAÞ/supportðaÞ is the confi-
dence of association rule a⟶ ðA − aÞ

The Apriori algorithm is a classical algorithm for mining
frequent itemsets of association rules. The algorithm uses an
iterative method of layer-by-layer search to perform multi-
ple scans of a combined database of influencing factors. First
scan yields frequent 1-term set L1. The result of the kth ðk
> 1Þ scan is used before the kth scan (i.e., the frequent k −
1 itemset) to generate the candidate k-item set Ck. The sup-
port of the elements in Ck is then determined during the
scan. Finally, at the end of each scan, the frequent k-item
set Lk is calculated. The algorithm ends when the candidate
frequent k-item set Ck is empty. In this paper, the influenc-
ing factors are combined with variables corresponding to the
performance of complex products to form a data item set Z
in association rule analysis.

Z = x1, x2,⋯,xm, y1, y2,⋯,ynf g: ð14Þ

The following correlation analysis of complex product

Table 13: Continued.

Influencing
factors

Degree
centrality

Clustering
coefficient

Betweenness
centrality

Proximity
centrality

Eigenvector
centrality

Eccentricity
centrality

Average neighbor
degree

49 0.021 0.000 0.000 0.015 9.000 0.350 4.000

Table 14: The weights of different indexes in the assembly process of the disc.

Degree
centrality

Clustering
coefficient

Betweenness
centrality

Proximity
centrality

Eigenvector
centrality

Eccentricity
centrality

Average neighbor
degree

0.134 0.106 0.305 0.062 0.026 0.040 0.326

Table 15: The positive and negative ideal plan of the disc assembly process.

Ideal solution
Degree
centrality

Clustering
coefficient

Betweenness
centrality

Eccentricity
centrality

Proximity
centrality

Eigenvector
centrality

Positive ideal
solution

1 1 1 1 1 1

Negative ideal
solution

0 0 0 0 0 0
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Table 16: Ranking results of key influencing factors of unbalanced quantity of disc assembly process.

Serial
number

Influencing factors
Sort
results

Weights
(%)

1 Unbalance of the first level disc 11 2.447

2 Cylindricity of first-level disc shaft 33 1.396

3 Cylinder surface roughness of primary disc shaft 34 1.396

4 The flatness of the end surface of the first-stage disc relative to the rotation axis 35 1.396

5 End surface roughness of first-level disc shaft 36 1.396

6 The degree of runout of the cylinder of the first-stage disc relative to the rotation axis 18 1.906

7 Cylinder surface roughness of first-level disc spigot 19 1.906

8 The runout of the end face of the first-level disc spigot 20 1.906

9 Roughness of the end surface of the first-level disc 21 1.906

10 The actual size of the first-level disc spigot 46 0.107

11 First and second grade bolt quality 41 0.851

12 Unbalance of secondary disc 12 2.447

13 Cylindricity of secondary disc shaft 37 1.396

14 Roughness of secondary disc shaft 38 1.396

15 The flatness of the end surface of the secondary disc relative to the rotation axis 39 1.396

16 End surface roughness of secondary disc shaft 40 1.396

17 The runout degree of the cylinder of the upper spigot of the secondary disc relative to the rotation axis 22 1.906

18 Cylinder surface roughness of matching spigot on the secondary disc 23 1.906

19
The runout degree of the end face of the matching spigot on the secondary disc relative to the rotating

shaft
24 1.906

20 Roughness of the upper spigot end of the secondary disc 25 1.906

21 The actual size of the upper spigot of the secondary disc 47 0.107

22 Cylinder surface roughness of the bottom matching spigot of the secondary disc 26 1.756

23 Radial circle runout of the bottom matching stop cylinder of the secondary disc 27 1.756

24
The runout degree of the end face of the lower matching spigot of the secondary disc relative to the

rotating shaft
28 1.756

25 Roughness of the bottom spigot of the secondary disc 29 1.756

26 The actual size of the bottom stop of the secondary disc 48 0.000

27 Second and third grade bolt quality 42 0.844

28 Three-level disc unbalance 13 2.447

29 Cylindrical runout of three-stage disc spigot 30 1.756

30 Cylindrical roughness of three-stage disc with spigot 31 1.756

31 Three-stage disc with end face runout degree of spigot 43 0.844

32 End surface roughness of three-stage disc spigot 32 1.756

33 Actual size of tertiary disc spigot 49 0.000

34 Bolt tightening torque during the first and second stage disc assembly process 14 2.156

35 The bolt tightening sequence during the first and second stage disc assembly process 15 2.156

36
The heating temperature of the secondary disc during the assembly process of the primary and

secondary disc
44 0.454

37 Room temperature 3 4.475

38 Phase I and II plate disc installation phase 9 3.459

39 Bolt tightening torque during the assembly process of the second and third stage disc 16 2.055

40 The bolt tightening sequence in the second and third stage disc assembly process 17 2.055

41 Second and third stage disc installation phase 10 3.100

42 Coaxiality of the rotation axis 1 5.838

43 Parallelism of the end face of the first and second stage disc spigot 5 4.043

44 Cylinder coaxiality of the first and second stage disc spigot 4 4.382

45 The first and second level of the disc spigot assembly interference 7 3.951
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performance and influencing factors is to analyze the corre-
lation between the influencing factor set X = fx1, x2,⋯,xmg
and the performance set Y = fy1, y2,⋯,yng. The credibility
of the influencing factors is calculated to find X ⟶ Y .

However, association rule analysis algorithms are all for
discrete data, and many factors in x1 ~ xn are continuous
values. Therefore, it is necessary to perform data preprocess-
ing on the data of each influencing factor. Before mining
association rules, all data is discretized, and continuous
values are mapped into multiple discrete values.

There are many discretization methods for continuous
values. Typical discretization algorithms are as follows: equal
width or equal frequency method [13], C4.5 method [24],
entropy method [25], and Chi-Merge algorithm [26]. This
paper uses the Chi-Merge algorithm to discretize the data.

The Chi-Merge algorithm is a supervised discretization
method based on the Chi-square distribution (represented
by the symbol χ2). Using a bottom-up strategy, the best
neighboring interval is found recursively, and then they are
merged to form a larger interval. The process is as follows:

(1) Sorting the data in ascending order

(2) Defining the initial interval so that each data is in a
separate interval

(3) Repeating until the χ2 of any two adjacent intervals
is not less than the threshold determined by the
specified confidence level

After Chi-Merge discretization preprocessing, the influ-
ence factor database Z with continuous values can be trans-
formed into the influence factor database Z∗ of Boolean
type. The form of the data item set is as follows:

Z∗ = z1∗1 , z1∗2 ,⋯,zi∗1 ,⋯,zi∗j ,⋯,zn∗1 ,⋯
n o

: ð15Þ

In the formula, Z∗ denotes the database of influencing
factors after Chi-Merge discretization. zi∗j denotes the map-
ping value of each Chi-Merge discretized interval, as shown
in Table 2. FCMðxiÞ in Table 2 indicates the mapping result
of Chi-Merge discretization of xi. i

∗ denotes the value of
the interval mapping after discretization of the ith feature
xi. j denotes the ith feature xi discretized into j interval map-
ping values.

After Chi-Merge discretization, all continuous attributes
are discretized into discrete values and participate in the
subsequent association rule mining as an item set.

Apriori association rule mining algorithm trial calcula-
tion process is as follows. Suppose there is a database Z with
5 transaction records, as shown in Table 3. Assume n = 5;
that is, there are 5 eigenvolumes, each discretized into 3
intervals. The minimum support is set tominsup = 40%.

(i) Database Z

(ii) Scan database Z to obtain the frequent item set L1, as
shown in the following Table 4

(iii) Remove the set of items smaller than the minimum
expenditure degree minsup to obtain the frequent
item set L2, as shown in Table 5

(iv) Scan frequent item set L2 to obtain the frequent item
set L3, as shown in Table 6

(v) Remove the set of items smaller than the minimum
expenditure degree minsup to obtain the frequent
item set L4, as shown in Table 7

Table 16: Continued.

Serial
number

Influencing factors
Sort
results

Weights
(%)

46 Parallelism of the end face of the second and third stage disc spigot 6 4.026

47 Concentricity of cylindrical surface of second and third stage disc spigot 2 4.824

48 Second and third-level disc spigot assembly interference 8 3.775

49
The heating temperature of the third-level pan disc during the assembly process of the second and

third-level pan disc
45 0.454

0.000

1.000

2.000

3.000

4.000

5.000
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1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Figure 4: Changes in the weights of influencing factors in the disc
assembly process.
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Table 17: Sorting results of key influencing factors of disc assembly process.

Serial
number

Influencing factors Weights Classification

1 Coaxiality of the rotation axis 5.838
Assembly
quality

2 Concentricity of cylindrical surface of second and third stage disc spigot 4.824
Assembly
quality

3 Room temperature 4.475
Processing
quality

4 Cylinder coaxiality of the first and second stage disc spigot 4.382
Assembly
quality

5 Parallelism of the end face of the first and second stage disc spigot 4.043
Processing
quality

6 Parallelism of the end face of the second and third stage disc spigot 4.026
Processing
quality

7 The first and second level of the disc spigot assembly interference 3.951
Assembly
quality

8 Second and third-level disc spigot assembly interference 3.775
Assembly
quality

9 Phase I and II plate disc installation phase 3.459
Assembly
process

10 Second and third stage disc installation phase 3.100
Assembly
process

11 Unbalance of the first level disc 2.447
Processing
quality

12 Unbalance of secondary disc 2.447
Processing
quality

13 Three-level disc unbalance 2.447
Processing
quality

14 Bolt tightening torque during the first and second stage disc assembly process 2.156
Assembly
process

15 Bolt tightening torque during the assembly process of the second and third stage disc 2.055
Assembly
process

16 The degree of runout of the cylinder of the first-stage disc relative to the rotation axis 1.906
Processing
quality

17 Cylinder surface roughness of first-level disc spigot 1.906
Processing
quality

18 The runout of the end face of the first-level disc spigot 1.906
Processing
quality

19 Roughness of the end surface of the first-level disc 1.906
Processing
quality

20
The runout degree of the cylinder of the upper spigot of the secondary disc relative to the rotation

axis
1.906

Processing
quality

21 Cylinder surface roughness of matching spigot on the secondary disc 1.906
Processing
quality

22
The runout degree of the end face of the matching spigot on the secondary disc relative to the

rotating shaft
1.906

Processing
quality

23 Roughness of the upper spigot end of the secondary disc 1.906
Processing
quality

24 Cylinder surface roughness of the bottom matching spigot of the secondary disc 1.756
Processing
quality

25 Radial circle runout of the bottom matching stop cylinder of the secondary disc 1.756
Processing
quality

26
The runout degree of the end face of the lower matching spigot of the secondary disc relative to

the rotating shaft
1.756

Processing
quality
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Table 17: Continued.

Serial
number

Influencing factors Weights Classification

27 Roughness of the bottom spigot of the secondary disc 1.756
Processing
quality

28 Cylindrical runout of three-stage disc spigot 1.756
Processing
quality

29 Cylindrical roughness of three-stage disc with spigot 1.756
Processing
quality

30 End surface roughness of three-stage disc spigot 1.756
Processing
quality

Table 18: Key factors of unbalanced out-of-tolerance.

Variable The key factor

x1 Coaxiality of the rotation axis

x2 Concentricity of cylindrical surface of second and third stage disc spigot

x3 Room temperature

x4 Cylinder coaxiality of the first and second stage disc spigot

x5 Parallelism of the end face of the first and second stage disc spigot

x6 Parallelism of the end face of the second and third stage disc spigot

x7 The first and second level of the disc spigot assembly interference

x8 Second and third-level disc spigot assembly interference

x9 Phase I and II plate disc installation phase

x10 Second and third stage disc installation phase

x11 Unbalance of the first level disc

x12 Unbalance of secondary disc

x13 Three-level disc unbalance

x14 Bolt tightening torque during the first and second stage disc assembly process

x15 Bolt tightening torque during the assembly process of the second and third stage disc

x16 The degree of runout of the cylinder of the first-stage disc relative to the rotation axis

x17 Cylinder surface roughness of first-level disc spigot

x18 The runout of the end face of the first-level disc spigot

x19 Roughness of the end surface of the first-level disc

x20 The runout degree of the cylinder of the upper spigot of the secondary disc relative to the rotation axis

x21 Cylinder surface roughness of matching spigot on the secondary disc

x22 The runout degree of the end face of the matching spigot on the secondary disc relative to the rotating shaft

x23 Roughness of the upper spigot end of the secondary disc

x24 Cylinder surface roughness of the bottom matching spigot of the secondary disc

x25 Radial circle runout of the bottom matching stop cylinder of the secondary disc

x26 The runout degree of the end face of the lower matching spigot of the secondary disc relative to the rotating shaft

x27 Roughness of the bottom spigot of the secondary disc

x28 Cylindrical runout of three-stage disc spigot

x29 Cylindrical roughness of three-stage disc with spigot

x30 End surface roughness of three-stage disc spigot
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(vi) Scan frequent item set L4 to obtain the frequent item
set L5, as shown in Table 8

(vii) Remove the set of items smaller than the minimum
expenditure degree minsup to obtain the frequent
item set L6, as shown in Table 9

(viii) Scan frequent item set L6 to obtain the frequent
item set L7, as shown in Table 10

(ix) Remove the set of items smaller than the minimum
expenditure degree minsup to obtain the frequent
item set L8, as shown in Table 11

When the frequent item set L4 is scanned again by the
Apriori algorithm, the frequent item set L4 is empty and
the algorithm trial process is ended. The association rules

and their support and confidence levels are obtained
through algorithmic trial calculations. By setting the mini-
mum support and confidence level and retaining the associ-
ation rules that meet the requirements, a library of
association rules is obtained for guiding the plant to make
process adjustments.

4. Case Analysis

This paper analyzes an example of a certain assembly pro-
cess of a certain type of aeroengine low-pressure fan rotor.
The optional influencing factors are processing quality,
assembly process, and assembly quality, a total of 49 items,
and the performance index is the unbalance of the fan rotor.

This article uses Python’s open source software library
NetworkX to model complex networks. The library contains
visualization and analysis algorithms for complex networks,
which can visualize complex networks and analyze data.
Taking the assembly of the primary and secondary discs of
the low pressure fan rotor as an example, the set of influenc-
ing factors is shown in Table 12.

The complex network visualization model of the correla-
tion model of the low-pressure rotor unbalance influencing
factors is shown in Figure 3.

Table 19: Discretization results of multivalue continuous attributes.

The key factor Interval range Quantity Mapped value The key factor Interval range Quantity Mapped value

x1

0.000~0.005 41 0

x2

0.000~0.008 23 0

0.005~0.007 13 1 0.008~0.017 45 1

0.007~0.010 32 2 0.017~0.019 18 2

0.010~0.012 25 3 0.019~0.024 33 3

0.012~0.015 39 4 0.024~0.030 31 4

⋮
⋮

x29

0.00~0.10 15 0

x30

0.00~0.19 34 0

0.10~0.35 47 1 0.19~0.31 26 1

0.35~0.53 31 2 0.31~0.39 14 2

0.53~0.72 36 3 0.39~0.62 43 3

0.72~0.80 21 4 0.62~0.80 33 4

Table 20: Strong association rules when the imbalance is out of tolerance.

FCM xið Þ Support:0.2 Confidence

64791 < x3 < 65141
⟹ Unbalanced amount out of tolerance 0.90:0044 < x10 < 0:0058

9:84 < x13 < 9:94
0:0571 < x11 < 0:0852

⟹ Unbalanced amount out of tolerance 0.865151 < x3 < 67177
9:84 < x13 < 9:94
⋮ ⋮ ⋮

75 < x13 < 80
⟹ Unbalanced amount out of tolerance 0.764791 < x3 < 65141

49:02 < x4 < 50:00
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For the above established correlation relationship model
of each process unbalance influence factors, the attribute
information of each node is calculated and the results are
shown in Table 13.

According to the calculation formulas (10), (11), and
(13), the calculation results are shown in Tables 14 and 15,
and the weight of each influencing factor is shown in
Table 16.

It can be seen from the curve in Figure 4 that the thresh-
old of the disc assembly process is 1.760, and the key
influencing factor identification results are shown in
Table 17.

As shown in Table 18, this paper extracts 30 key
influencing factors related to the imbalance out-of-
tolerance according to the key factor identification in the
previous part, and the corresponding variables are x1 ~ x30.
According to the definition of association rules, they are all
important parameters that characterize the performance of
low-pressure rotors, and they are all related to each other.

A total of 150 sets of data with out-of-tolerance imbal-
ances have been collected in this paper. The results of using
the Chi-Merge discretization algorithm to discretize the con-
tinuous data are shown in Table 19.

Taking the discrete data as a new item set, using Apriori
association rule analysis, some more detailed association
rules can be obtained, and these rules can also be used for
process adjustment in the assembly process. Table 20 is a
part of the association rules with higher credibility after
association rule mining.

Obviously, the obtained association rules with higher
credibility can be used to make a preliminary judgment on
whether the imbalance is out of tolerance and to provide
decision support for process adjustment based on this, so
as to improve the success rate of one-time assembly of the
low-pressure rotor.

5. Conclusion

In this paper, we propose a key influence factor identifica-
tion method based on the combination of complex network
and entropy power method to achieve the identification of
key influence factors for complex product assembly perfor-
mance and the scope of influence. Based on the key factor
identification results, the Apriori algorithm is used to mine
the association rules between key influencing factors and
the assembly performance of complex products. Several
association rules have been calculated and analyzed through
examples, and a library of association rules has been formed,
which can provide decision support for process adjustment
and has been used with good results in the actual application
in aeroengine assembly plants. The method in this paper is
not limited to the adjustment and optimization of the assem-
bly performance of complex products; it can also be com-
bined with MEMS [27], mobile robots [28], and
quadrotors [29] in the subsequent research process to better
optimize their control by identifying key factors and mining
association rules. However, when the Apriori algorithm is
used for association rule mining, the database needs to be
scanned every time the set of candidate items is generated,

and the size of the database used for association rule mining
is usually relatively large, which makes the algorithm ineffi-
cient. The efficiency of the algorithm will be improved by
improving the Apriori algorithm during the subsequent
research.
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