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A constrained prescribed performance compensation controller is proposed for a nonlinear aeroelastic system in the presence of
wind gust, system uncertainties, and input saturation. To deal with the effects of the nonsmooth saturation nonlinearity, an
approximate saturation function is introduced into the controller design, which can smoothly approximate the real saturation
with arbitrarily prescribed precision. Specifically, by designing the prescribed performance function, a fixed-time control
framework is designed to ensure that the closed-loop system has the prescribed tracking performance. The designed control
algorithm can not only compensate the adverse effect caused by disturbances and uncertainties but also restrain the excessive
amplitude of control input. Finally, the stability analysis shows that all the signals in the closed-loop system are semiglobally
uniformly ultimately bounded via the Lyapunov stability analysis method, and simulation results are presented to demonstrate
the feasibility and effectiveness of the proposed method.

1. Introduction

Recent developments in aeroelasticity research and the
aeroelastic system control design have attracted increasing
attention and concern among scientists and practitioners
[1–5]. In aeroelastic systems, the limit cycle oscillation is
an important problem and is usually associated with flutter,
which can degrade the performance of aerospace vehicles
and dramatically affect flight safety. Therefore, it is particu-
larly important to develop a reliable and effective control
method to solve such problems. In previous studies [6–8],
researchers have analyzed the nonlinear responses of aero-
elastic systems, and various advance control approaches have
been extensively studied in the field of flutter and limit cycle
oscillation suppression.

In order to obtain an effective controller, a full feedback
linearization controller based on two control surfaces was
designed in [9], and the stability of the closed-loop aeroelas-
tic system was further investigated. A high-order sliding
mode controller [10] was proposed for suppressing limit
cycle oscillation with a backstepping design. The state-
dependent Riccati equation method was developed for non-

linear control problems and used to design suboptimal con-
trol laws of nonlinear aeroelastic systems considering both
quasisteady [11, 12] and unsteady aerodynamics [13, 14].
In aeroelastic systems, parameter uncertainties and external
disturbances are unavoidable [15]; if these problems cannot
be compensated and dealt with in time, the relevant perfor-
mances of the aeroelastic system are likely to be greatly
affected and even cause system instability. To the best of
the authors’ knowledge, adaptive nonlinear control approach
is an effective way to solve the above problem. In [16], an
adaptive decoupled fuzzy sliding-mode controller was
employed for aeroelastic system to achieve system tracking
stabilization. Wang et al. [17] proposed an output feedback
adaptive controller for achieving the fine tracking perfor-
mance of MEMS. In [18], an adaptive robust control scheme
with input constraints was proposed for MEMS to improve
the antidisturbance ability. Thereafter, an adaptive super-
twisting continuous control method [19] and adaptive slid-
ing mode controller with neural network observer [20] were
developed for multi-input and multioutput aeroelastic
system with unsteady aerodynamics in the presence of uncer-
tainty and gust loads. Recently, an effective function
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estimator using the interval type-2 and type-3 fuzzy logic sys-
tem has been extensively studied for adaptive control. Based
on this function estimation technique, some new adaptive
nonlinear control strategies [21, 22] were devised to tackle
the effects of perturbations and estimation errors.

Although the studies mentioned above can achieve the
corresponding control objectives, some important control
performance cannot be guaranteed to be determined in
advance. For special control tasks, the desired control perfor-
mances (such as convergence speed, overshoot, and steady-
state error) are needed to be set in the early stage of control
and realized during the control process. The urgent need
for preset performance of control systems drives the develop-
ment of nonlinear control methods. An effective solution
strategy called the prescribed performance constraint
method was proposed in [23–26], which is easily designed a
predefined prescribed performance bound to characterize
the convergence rate and the maximum overshoot of track-
ing error such that the desired transient performance can
be achieved. Based on the prescribed performance strategy,
many nonlinear control methods have also been extended
and applied to various nonlinear systems [27–33]. It is worth
mentioning that the above-mentioned control methods are
derived in the sense of Lyapunov asymptotic stability, which
means that the system error reaches a residual set in infinite
time rather than fixed time, and moreover, it is not easy to
calculate the residual set size due to unknown bounded
terms.

Control input saturation is another issue that needs to be
considered in aeroelastic systems, which is also a source of
performance degradation. In the past few years, some com-
pensation methods have been proposed for solving input
saturation problem in various nonlinear systems [34–38].
In [39], a sliding mode controller using the auxiliary system
was developed for attitude tracking of quadrotor with input
constraints. Unfortunately, the fixed-time prescribed perfor-
mance cannot be achieved by the proposed control system.
In [40], a predefined-time prescribed performance control
approach was designed for spacecraft rendezvous with input
saturation, but system parameters (the inertia matrix of
pursuer) were considered as the nominal parameters.

Despite the progress in the research on anti-input satu-
ration [34–40], it should be noticed that little attention has
been paid on the fixed-time prescribed performance control
for coexistence problem of system parameter uncertainties
and input constraints. Therefore, it is still a challenging open
issue to improve control performance and robustness for
adverse factors including parameter uncertainty and input
constraints.

Motivated by the above discussion, an input constrained
control scheme is proposed for the aeroelastic system with
wind gust and system uncertainties in this paper. The main
features of this paper are briefly summarized as follows:

(1) By designing the fixed-time performance function, a
control method with built-in time and error con-
straint mechanism is proposed to ensure that the
tracking errors converge to a prescribed compact
set within a fixed time

(2) The proposed control law is compatible with the
control input saturation suppression algorithm that
naturally fulfills the magnitude limits by designing
an input updating law. Under the framework of the
proposed control strategy, it is proved by theory that
all internal signal variables are bounded

(3) The designed control strategy does not need to know
the precise information of the system model, and the
proposed settling time is independent of the initial
conditions

The rest of this paper is organized as follows. Section 2
introduces the aeroelastic model and gives the problem
description. A fixed-time prescribed performance controller
with saturation suppression algorithm and the stability analy-
sis are presented in Section 3. The effectiveness of the pro-
posed strategy is verified by simulation in Section 4. Finally,
conclusions are given in section 5.

2. Problem Formulation and Preliminaries

2.1. System Description. The prototype aeroelastic wing with
leading and trailing edge surfaces is shown in Figure 1. The
aeroelastic system has two degrees of freedom, one is the
plunge displacement h, and the other is the pitch angle α.
In the presence of a flow field, the wing at a flight speed U
oscillates along the plunge displacement direction and
rotates at the pitch angle about the elastic axis [1].

The dynamics of the aeroelastic system is described by
[4, 5]
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Here, aerodynamic lifts (L and Lg) and moments (M
and Mg) are given as
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Note that γ and β are the trailing edge and the leading
edge control surface deflections, respectively.

To facilitate understanding of the specific meanings of
system parameters, the relevant symbol descriptions in
Equations (1) and (2) are presented in Table 1. Considering
that there are many system parameters in (1), some hybrid
parameters are defined in Table 2 for the convenience of
analysis. It should be pointed out that these hybrid parame-
ters are not fully known; moreover, bijði = 1, 2 ; j = 1, 2Þ can
be decomposed into nominal �bij and uncertain parts Δbij,

i.e., bij = �bij + Δbij.

Let x1 = α, x2 = _α, x3 = h, x4 = _h, u1 = �b11β + �b12γ, and
u2 = �b21β + �b22γ, for i = 1, 2; the aeroelastic system (1) can
be written as

_x2i−1 = x2i,
_x2i = f i + ui,

(
ð6Þ

where f1 = d1 − k3x3 − c3x4 − ðk4U2 + p2Þx1 + Δb11β − ðc4 +
q2Þx2 + Δb12γ and f2 = d2 − k1x3 − c1x4 + Δb21β − ðk2U2 +
p1Þx1 − ðc2 + q1Þx2 + Δb22γ.

In practical applications, the control input should be
limited within a reasonable range due to the physical con-
straints. Considering that the trailing edge and leading edge
control surface of the aeroelastic wing have maximum
deflection limits, therefore, there exist the maximum bounds
and βmax such that jγj ≤ γmax and jβj ≤ βmax. Furthermore,
by combining u1 = �b11β + �b12γ and u2 = �b21β + �b22γ, for i =
1, 2, we can obtain that

ui =
sign τið Þ ⋅ uiM if τij j ≥ τiM ,
τi if τij j < τiM ,

(
ð7Þ

where τi are needed to be designed, τ1M = �b11βmax + �b12γmax,
and τ2M = �b21βmax + �b22γmax.

Obviously, ui are the saturation functions which can lead
to nonsmooth control action near the saturation limit. Thus,
we introduce the following smooth function ΓτiM

ðτiÞ pro-
posed in [41] to approximate the saturation functions (7).
(A comparison of the three saturated nonlinear functions
is shown in Figure 2.)

ΓτiM
τið Þ = 1

2c ln ecτiM ecτi + e−cτiM e−cτi

e−cτiM ecτi + ecτiM e−cτi

� �
, ð8Þ

where c > 0 and τiM > 0 are the design parameters.

Lemma 1 (see [41]). The saturation functions uiði = 1, 2Þ in
(7) can be expressed as

ui = ΓτiM
τið Þ + Δτi, ð9Þ

and the following properties hold.
P1: ð∂ΓτiM

ðτiÞ/∂τiÞ > 0.
P2: Δτi are bounded and lim

c⟶+∞
Δτi = 0.

P3: jΓτiM
ðτiÞj ≤ τiM .

Proof. See the appendix.
With the aid of Lemma 1, it follows from (6) that

_x2i−1 = x2i,
_x2i =Di + ΓτiM

τið Þ,

(
ð10Þ

where Di = f i + Δτi. To construct the control system, the
following assumptions are needed.
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Figure 1: Aeroelastic model.
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Assumption 2. The nonlinear functions Diði = 1, 2Þ are
bounded by unknown constant δD, i.e., jDij ≤ δD.

Assumption 3. The physical states of system are bounded
and remain in a set Z, i.e.,

Ζ = α, _α, h, _h
n ��� αj j ≤ αmax, _αj j ≤ �αmax, hj j ≤ hmax, hj j ≤ �h

maxo,
ð11Þ

where αmax, �αmax, hmax, and �h
max

are the upper bound values
of the corresponding variables.

Assumption 4. The desired command signals xð2i−1Þdði = 1, 2Þ
and their derivative _xð2i−1Þd and €xð2i−1Þd are bounded.

Assumption 5. The system states x2i−1, x2i, and _x2iði = 1, 2Þ
can be measured by physical sensors.

Remark 6. The synthetic functions Diði = 1, 2Þ in (10) con-
tain several parameters related to the aeroelastic system. In
fact, these parameters are all bounded, which means that
there is also an upper bound for max f∣D1∣,∣D2 ∣ g. Consid-
ering the limited energy of the airflow vibration and the
physical constraints of the aeroelastic system, hence, α, _α,
h, and _h are bounded. In addition, the system states can
be obtained by physical sensors (for example, x2i−1 can
be measured from the laser positioning sensor, and x2i
and _x2i can be measured from gyroscope sensor integrated
by a 3-axis MEMS accelerometer and a digital motion pro-
cessor). Based on the analysis above, Assumptions 2-5 are
valid. The similar assumptions can be found in [38]. It
should be pointed out that the bounds of these parameters
are not involved in the design of the control law.

2.2. Preliminaries. To study the control performance of the
closed loop system, the following definition is required.

Definition 7 (see [42, 43]). A smooth function ρðtÞ is called
the fixed-time performance function if there exist the preas-
signed time TS and preset precision ρTS such that

(1) ρðtÞ > 0 and _ρðtÞ ≤ 0 for ∀t ∈ ½0, TSÞ
(2) ρðtÞ = ρTS > 0 for ∀t ≥ TS

Table 2: Hybrid parameter definition.
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Table 1: Nomenclature.

Symbol Description

mw Mass of the wing

h Plunging displacement

α Pitch angle about the pitch axis

Iα Inertial moment of the wing about the elastic axis

mt Total mass of the wing and its support structure

xα
Dimensionless distance between the center of mass and

elastic axis

a Nondimensional distance from airfoil midchord to
elastic axis

kα Pitch stiffness

kh Plunge stiffness

M Aerodynamic moment

L Aerodynamic lift

clα
Derivatives of aerodynamic lift coefficient
(clβ and cly have the similar definitions)

Mg Aerodynamic moment due to gust

Lg Aerodynamic force duet to gust

ch Plunge damping

cα Pitch damping

μ Air density

b Airfoil semichord

s Wing section span

β Angle of trailing edge

γ Angle of leading edge

U Free stream velocity

wG Disturbance velocity

cmα
Moment derivatives (cmβ and cmγ have the similar

definitions)
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Based on the above definition, the fixed-time perfor-
mance functions ρiði = 1, 2Þ [44] are constructed as

ρi tð Þ =
−

�ρ

3T3
S

t3 + �ρ

T2
S

t2 −
�ρ

TS
t + ρ0, for t ∈ 0, TS½ Þ,

ρTS, for t ∈ TS,∞½ Þ,

8><>:
ð12Þ

where �ρ = 3ðρ0 − ρTSÞ with positive constant ρ0. From (12),
it easily follows that _ρiðtÞ < 0 for t ∈ ½0, TSÞ, ρiðtÞ = ρTS > 0
for t ∈ ½TS,∞Þ, lim

t⟶T−
S

ðρiðtÞ − ρiðTSÞÞ/ðt − TSÞ = lim
t⟶T+

S

ðρiðtÞ
− ρiðTSÞÞ/ðt − TSÞ = 0, and lim

t⟶T−
S

ρiðtÞ = lim
t⟶T+

S

ρiðtÞ = ρTS.

Then, we have

_ρi tð Þ =
−
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T3
S

t2 + 2�ρ
T2
S

t −
�ρ

TS
, for t ∈ 0, TS½ Þ,

0, for t ∈ TS,∞½ Þ:

8><>: ð13Þ

The change trend of the performance function ρðtÞ is
presented in Figure 3. In this paper, ρðtÞ is used to restrain
and schedule the convergence trend of the system errors.
Notice that the selection of the fixed-time TS in ρðtÞ cannot
be arbitrarily small and it should be larger than the sampling
time.

In this paper, the control objective is to design a fixed-
time prescribed performance control scheme for system
(10), such that the system errors converge to a prescribed
compact set within a fixed time TS.

3. Main Results

We now propose the fixed-time prescribed performance
control method for the aeroelastic system. The concrete
design procedure is given as follows:

Step 1. Define the system tracking errors as follows:

e2i−1 = x2i−1 − x 2i−1ð Þd ,
e2i = x2i − φi, i = 1, 2:

(
ð14Þ

Here, φi are the virtual control laws which will be
designed later. Combining with (10) and the definition of
e2i, the time derivative of e2i−1 can be found as

_e2i−1 = _x2i−1 − _x 2i−1ð Þd = e2i + φi − _x 2i−1ð Þd: ð15Þ

Next, the virtual control laws are designed as

φi = −κ2i−1 ⋅ e2i−1 + _x 2i−1ð Þd +
e2i−1 _ρi
ρi

, ð16Þ

in which κ2i−1 are positive design parameters. Substituting φi
into (15) yields

_e2i−1 = e2i − κ2i−1 ⋅ e2i−1 +
e2i−1 _ρi
ρi

: ð17Þ

Step 2. Define the auxiliary deviation variables as

si = ΓτiM
τið Þ − Γ�φiM

�φið Þ,
Δ�φi = Γ�φiM

�φið Þ − �φi, i = 1, 2,

(
ð18Þ
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where τi are updated by (30); Γ�φiM
ð�φiÞ and �φi are given as

Γ�φiM
�φið Þ = 1

2c ln ec �φiM ec �φi + e−c �φiM e−c �φi

e−c �φiM ec �φi + ec �φiM e−c �φi

� �
, ð19Þ

�φi = −
bσ i ⋅ e2i
2a21

− κ2i ⋅ e2i −
e2i−1

ρ2i − e22i−1
: ð20Þ

In (19) and (20), κ2i and a1 are the positive design
parameters; �φiM = 0:5c−1 ln ððecð2τiM−εÞ + e−cð2τiM−εÞÞ/ðe−c ε +
ec εÞÞ with constant ε satisfying τiM > ε > 0; in addition, bσ i
are updated by

_bσ i = ξi ⋅
−a1 ⋅ bσ i + e22i

2a21

� �
  ξi > 0, bσ i 0ð Þ = 0ð Þ: ð21Þ

It should be pointed out that si (in (18)) are introduced
into the control system design to avoid the excessive ampli-
tude of τi. The elimination mechanism of excessive control
amplitude will be given later.

Remark 8. According to the function properties of (19), we
can obtain that Γ�φiM

ð�φiÞ are bounded, i.e., ∣Γ�φiM
ð�φiÞ ∣ ≤

�φiM .
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Therefore, we can further prove that

(1) if τi ≥ τiM − ε, it can be obtained from the properties
of ΓτiM

ðτiÞ that ΓτiM
ðτiÞ ≥ ΓτiM

ðτiM − εÞ > 0. Notice
that

ΓτiM
τiM − εð Þ = 1

2c ⋅ ln
ec 2τiM−εð Þ + e−c 2τiM−εð Þ

e−c ε + ec ε

� �
,

Γ�φiM
�φið Þ

��� ��� ≤ �φiM = 1
2c ⋅ ln

ec 2τiM−εð Þ + e−c 2τiM−εð Þ

e−cε + ecε

� �
:

ð22Þ

Using the fact �φiM = ð1/2cÞ ln ððecð2τi M−εÞ + e−cð2τi M−εÞÞ/
ðe−c ε + ec εÞÞ, then

si = ΓτiM
τið Þ − Γ�φiM

�φið Þ ≥ ΓτiM
τiM − εð Þ − �φiM

= 1
2c ln ec 2τiM−εð Þ + e−c 2τiM−εð Þ

e−cε + ecε

� �
− �φiM = 0:

ð23Þ

(2) if τi ≤ −τiM + ε, it implies that ΓτiM
ðτiÞ ≤ ΓτiM

ð−τiM +
εÞ < 0

Since

ΓτiM
−τiM + εð Þ = 1

2c ln ecε + e−cε

e−c 2τiM−εð Þ + ec 2τiM−εð Þ

� �
,

�φiM = −
1
2c ln e−cε + ecε

ec 2τiM−εð Þ + e−c 2τiM−εð Þ

� �
,

ð24Þ

therefore, we have

si = ΓτiM
τið Þ − Γ�φiM

�φið Þ ≤ ΓτiM
−τiM + εð Þ + �φiM

= 1
2c ln ecε + e−cε

e−c 2τiM−εð Þ + ec 2τiM−εð Þ

� �
+ �φiM = 0:

ð25Þ

Combining with the analysis above, we obtain

si ≥ 0 ,ifτi ≥ τiM − ε,si ≤ 0,ifτi≤−τiM + ε:
n

ð26Þ

From (14) and (18), the derivative of e2i and si is calcu-
lated as follows:

_e2i = _x2i − _φi =Di + ΓτiM
τið Þ − _φi = si + �φi +Ψi,

_si =
∂ΓτiM

τið Þ
∂τi

⋅ _τi −
∂Γ�φiM

�φið Þ
∂�φi

⋅ _�φi,

8><>: ð27Þ

where Ψi =Di + Δ�φi − _φi. Before the main result is given, a
compact sets is defined as

Ω = e2i−1, e2i, sij〠
2

i=1

ρ2i
ρ2i − e22i−1

+ e22i + s2i

� �
≤ ϑ, ϑ ∈ℝ+ð Þ

( )
:

ð28Þ

Obviously, there must be the point corresponding to the
supreme value of Ψi in Ω ×Ζ, such that

Ψ2
i ≤ σi  i = 1, 2ð Þ, ð29Þ

where σi > 0 are the unknown constants.

Remark 9. Notice that Ψi contain the uncertain function
terms Di, which make it impossible to directly add the
uncertain function to eliminate itself in the controller design.
In the stability analysis, the upper bound of Ψ2

i can be dis-
played through inequality scaling under the help of (29),
and furthermore, the upper bound of Ψ2

i can be estimated

and compensated by designing the online adaption laws _bσ i
in (21). Based on this processing method, the stability of
the closed-loop system can be guaranteed by the proposed
control strategy.

Next, the input updating laws are designed as follows:

_τi =

∂ΓτiM
τið Þ

∂τi

� 	−1
⋅ ϖi −

1
2 1 + ϖ2

i

� �� 	
, ifτi ≥ τiM − ε,

∂ΓτiM
τið Þ

∂τi

� 	−1
⋅ ϖi, if τj j < τiM − ε,

∂ΓτiM
τið Þ

∂τi

� 	−1
⋅ ϖi +

1
2 1 + ϖ2

i

� �� 	
, ifτ≤−τiM + ε,

8>>>>>>>>>><>>>>>>>>>>:
ð30Þ

where τið0Þ = 0 and ϖi = ð∂Γ�φiM
ð�φiÞ/∂�φiÞ ⋅ _�φ − κ2isi − e2i.

Remark 10. In view of (16), we have _φi = −κ2i−1 _e2i−1 +
€xð2i−1Þd + ð_e2i−1 _ρiρi + e2i−1€ρiρi − e2i−1. Combining with (12),

(21), and Assumption 5, _bσ i, _φi, ρi, _ρi, and _x2i can be calcu-
lated or measured, and therefore, the derivative of �φi can
be calculated as

_�φi = −
_bσ ie2i
2a21

−
bσ i

2a21
+ κ2i

� �
_x2i − _φið Þ

−
_e2i−1ρ

2
i + e22i−1 _e2i−1 − 2ρi _ρie2i−1

� �
ρ2i − e22i−1
� �2 :

ð31Þ

Remark 11. Equation (30) plays an key role for the bounded-
ness of τ. If τi ≥ τiM − ε, then _τ = ½∂ΓτiM

ðτiÞ/∂τi�−1 ⋅ ½ϖi − 0:5
ð1 + ϖ2

i Þ�. Since ½∂ΓτiM
ðτiÞ/∂τi�−1 > 0 and ϖi − 0:5 ⋅ ð1 + ϖ2

i Þ
≤ 0, it leads to _τi ≤ 0, and moreover, Equation (30) will
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prevent τi from getting greater than τiM . If τi ≤ −τiM + ε, it is
easy to obtain _τi ≥ 0 due to ½∂ΓτiM

ðτiÞ/∂τi�−1 > 0 and ϖi +
0:5ð1 + ϖ2

i Þ ≥ 0. Thus, Equation (26) will prevent τi from
getting smaller than −τiM . Based on the above analysis, τi
can be constrained within a preset interval, i.e., τi ∈ ½−τiM ,
τiM�.

Lemma 12. Consider the auxiliary deviation variables si
and _si; if the input updating laws are chosen as (30), then
the following inequality can be established:

si ⋅ _si ≤ −κ2is
2
i − e2isi  i = 1, 2ð Þ: ð32Þ

Proof. The following three cases need to be discussed for
the proof of Lemma 12.

Case 1. If τi ≥ τiM − ε, from (26), we can obtain si ≥ 0 and
it can be verified that

si ⋅ _si = si ⋅
∂ΓτiM

τið Þ
∂τi

⋅ _τi −
∂Γ�φiM

�φið Þ
∂�φi

⋅ _�φi

� �
= si ⋅ ϖi −

1
2 1 + ϖ2

i

� �
−
∂Γ�φiM

�φið Þ
∂�φi

⋅ _�φi

� �
≤ −κ2is

2
i − e2isi − 0:5 ⋅ si ⋅ 1 + ϖ2

i

� �
≤ −κ2is

2
i − e2isi:

ð33Þ

Case 2. If j τi j < τiM − ε, this leads to

si ⋅ _si = si
∂ΓτiM

τið Þ
∂τi

_τi −
∂Γ�φiM

�φið Þ
∂�φi

_�φi

� �
≤ −κ2is

2
i − e2isi:

ð34Þ

Case 3. If τi ≤ −τiM + ε, then we have si ≤ 0 from (25); it
yields

si ⋅ _si = si ⋅
∂ΓτiM

τið Þ
∂τi

⋅ _τi −
∂Γ�φiM

�φið Þ
∂�φi

⋅ _�φi

� �
= si ⋅ ϖi +

1
2 1 + ϖ2

i

� �
−
∂Γ�φiM

�φið Þ
∂�φi

⋅ _�φi

� �
≤ −κ2is

2
i − e2isi + 0:5 ⋅ si ⋅ 1 + ϖ2

i

� �
≤ −κ2is

2
i − e2isi:

ð35Þ

From (33) to (35), Lemma 12 is proven.

Now, the main results are summarized as follows.

Theorem 13. Consider the dynamics system (10) with
Assumptions 2-4, if the virtual control laws (16) and (20) with
parameter updating law as specified in Equations (21) are
used and the input updating laws (30) are implemented, then
for any initial states in Ω, the following control objectives can
be achieved.

(1) All signals in the closed-loop system are semiglobal
uniformly ultimately bounded

(2) The fixed-time prescribed performance is achieved,
such that the tracking errors e2i−1ði = 1, 2Þ converge
to a prescribed compact set Ωe = fe2i−1, j je2i−1j <
ρTSg for ∀t > TS

Proof. Choose the Lyapunov function candidate V as

V = 1
2 ⋅ 〠

2

i=1
log ρ2i

ρ2i − e22i−1
+ e22i + s2i

� �
+ 1
2 ⋅ 〠

2

i=1

~σ2i
ξi
, ð36Þ

where ~σi = σi − bσ i. The time derivative of V is expressed as

_V = 〠
2

i=1

1
2
ρ2i − e22i−1

ρ2i
⋅
2ρi _ρi ρ2i − e22i−1

� �
− ρ2i 2ρi _ρi − 2e2i−1 _e2i−1ð Þ

ρ2i − e22i−1
� �2

 !

+ 〠
2

i=1
e2i ⋅ _e2i + si ⋅ _sið Þ − 〠

2

i=1

~σi
_bσ i

ξ

= 〠
2

i=1

e2i−1 _e2i−1
ρ2i − e22i−1

−
_ρie

2
2i−1

ρi ρ
2
i − e22i−1

� � + e2i _e2i + si _si

 !

− 〠
2

i=1

e22i~σi
2a21

− a1~σibσ i

� �
:

ð37Þ

Based on (17), (27), and (29), the following relationships
are established in the compact set Ω:

1ð Þ e2i−1 _e2i−1 = e2i−1e2i − κ2i−1 ⋅ e
2
2i−1 +

e22i−1 _ρi
ρi

,

2ð Þe2iΨi ≤
σie

2
2i

2a21
+ a21

2 ,

3ð Þ e2i _e2i ≤ e2isi − κ2ie
2
2i −

e2i−1e2i
ρ2i − e22i−1

+ ~σie
2
2i

2a21
+ a21

2 ,

4ð Þ e22i−1
ρ2i − e22i−1

≥ log ρ2i
ρ2i − e22i−1

,

5ð Þ a1~σibσ i≤−
a1ξi~σ

2
i

2ξi
+ a1σ

2
i

2 :

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

ð38Þ

With the help of (38), then (37) becomes

_V ≤ 〠
2

i=1
−κ2i−1 log

ρ2i
ρ2i − e22i−1

− κ2ie
2
2i − κ2is

2
i +

~σie
2
2i

2a21

� �
+ 〠

2

i=1
−
~σie

2
2i

2a21
+ a1~σibσ i

� �
+ a21

≤ 〠
2

i=1
−κ2i−1 log

ρ2i
ρ2i − e22i−1

− κ2ie
2
2i − κ2is

2
i −

a1ξi~σ
2
i

2ξi

 !

+ 〠
2

i=1

a1σ
2
i

2 + a21 ≤ −αg ⋅ V + Δg,

ð39Þ
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where αg =min fκ2i, κ2i−1, a1ξig and Δg = ða21/2Þ +∑2
i=1ða1

σ2i /2Þ. Solving (39), we have

0 ≤ V tð Þ ≤ Δg

αg
+ V 0ð Þ − Δg

αg

 !
⋅ e−αgt: ð40Þ

According to (40), it can be seen that each signal of the
closed-loop system is bounded, and meanwhile, we can
obtain that

1
2 log ρ2i

ρ2i − e22i−1
≤
Δg

αg
+V 0ð Þ: ð41Þ

Taking exponentials on both sides of (41) yields

e22i−1 ≤ ρ2i 1 − e−2 Δg/αg+V 0ð Þð Þ� �
< ρ2i : ð42Þ

Therefore, in the light of the properties of ρiðtÞ, we
obtain je2i−1j < ρiðtÞ; it implies e2i−1ðtÞ < ρTS for t ∈ ½TS,∞Þ.
Then, one can conclude that tracking control with the
fixed-time prescribed performance is achieved. The control
system structure and algorithm flow chart are shown in
Figures 4 and 5, respectively.

From the above analysis, e2i−1 remain bounded inside the
region Be ≜ f∣e2i−1∣<ρiðtÞ, i = 1, 2g for t ≥ TS. It should be

pointed that the reciprocal of ∂ΓτiM
ðτiÞ/∂τi plays an impor-

tant role in the designed input updating law (30). In fact,
the input updating law singularity may occur since ∂ΓτiM
ðτiÞ/∂τi goes to zero as τi ⟶∞. However, from (30),
we can see that variable τi remains bounded inside the
region Bτ ≜ f∣τi ∣ ≤ τiM , i = 1, 2g for t ≥ 0. Hence, the sen-
sibility of the reciprocal of ∂ΓτiM

ðτiÞ/∂τi can be acceptable,
and moreover, ∂ΓτiM

ðτiÞ/∂τi has never gone to zero.

Remark 14. To ensure that ρ2i ð0Þ > e22i−1ð0Þ (i = 1, 2), the
design parameter ρ0 (ρ0 is given in (12)) needs to satisfy
ρ0 > e2i−1ð0Þ. Combining with (40) and (41), we can obtain
that je2i−1j < ρiðtÞ for ∀t ∈ ½0,∞Þ; it is obvious that the sys-
tem error constraints are not violated; namely, je2i−1j are
always less than the fixed-time performance function.

Remark 15. The designed method is a recursive design pro-
cess borrowed from the traditional backstepping control
design idea. Because τi are contained within the function
ΓτiM

ðτiÞ, therefore, we cannot design the control laws τi in
the form of the function ΓτiM

ðτiÞ. To solve this problem
and complete the control law design, siði = 1, 2Þ are intro-
duced such that input updating laws _τi can be designed by
taking the derivative of si. On the other hand, from (26),
siði = 1, 2Þ have a “supervisory role” when τi exceeding

Fixed time prescribed
perormance ρ2

Command signal

Command signal

Fixed time prescribed
perormance ρ1

Parameter updating law 𝜎1

Aeroelastic system model

Input updating law design

Input updating law design

Input updating law 𝜏1

The virtual control law

The second
virtual law φ2

Γ(𝜏1)

Γ(𝜏2)

The second
virtual law φ1

Input updating law 𝜏2

e1

e3

e2

e4

s1

s2

a

h

dα/dt

d h/dt

Γ(φ1)

Γ(φ2)

𝜏1

The virtual control law

φ1 = –k1.e1+x1d+e1𝜌1/𝜌1

φ2 = –k1.e3+x3d+e3𝜌2/𝜌2

..

..

.

.

.

.
Parameter updating law 𝜎2

.

Figure 4: The closed-loop system structure.
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the setting values (i.e., si ≥ 0 if τi ≥ τiM − ε; si ≤ 0 if τi ≤ −τiM
+ ε). With the help of (33)-(35), we have si ⋅ _si≤−κ2is2i − e2isi,
which can help us get the inequality result _V ≤ −αgV +
Δg and obtain the stability result of the closed-loop system
on this basis.

Remark 16. The tuning guidelines for all the designed
parameters are summarized as follows:

(1) From (39), larger κ2i, κ2i−1, ξi, and 1/a1ði = 1, 2Þ
result in smaller system errors ðe2i and siÞ but may
lead to the large control magnitude and excite the
undesired high-frequency dynamics of the con-
trolled system. In this paper, these parameters are
set to small positive numbers, and our concern is
to adjust them to establish the bound of system error
e2i−1. Therefore, the process of choosing the control
parameters κ2i, κ2i−1, ζi, and 1/a1 is significantly
simplified

(2) The prescribed performance parameter ρ0 should be
chosen large enough such that the initial error

boundedness can be satisfied, i.e., max f∣αmax − x1d
ð0Þ∣, ∣ hmax − x3dð0Þ ∣ g < ρ0. The parameter ρTS
determines the final bound of the steady-state
error. The parameter TS determines the time for
the tracking error to converge to the specified
accuracy. Too small TS can lead to a large control
amplitude at the beginning of the control. Com-
bined with the actual control tasks, moderate com-
promise selection of TS and ρTS can eliminate the
large amplitude for control output at the beginning
of the control process

Remark 17. The prescribed performance control methods
[23–26] can ensure that the designed closed-loop system
has good transient and steady-state behaviors and forces
the tracking error to converge to a predetermined range
when the time tends to infinity. It is worth mentioning that
the above-mentioned methods are developed based on tradi-
tional performance functions, which means that the designed
control systems by these methods are not equipped with the
finite-time prescribed performance. Although some new

Start

End

According to the result of 𝜏i, then
𝜏i at the next sampling time can be

obtained by the numerical
calculation.

No

Yes

Calculate e2i–1,i = 1,2

e2i–1 < 𝜌i

Calculate si,𝜑i,𝜏i.i = 1,2..

.

Obtain the relevant states x2i–1,x2i,x2i,x(2i–1)d, 
and x(2i–1)d at the next sampling time

.
.

Calculate 𝜑i,e2i,𝜎i,𝜑i,Γ𝜏iM
 (𝜏i),Γ𝜑iM (𝜑i)i = 1,2

.

Set initial values 𝜎i (0),𝜏i(0), i = 1,2; and obtain
the initial states x2i–1(0).x2i(0),x2i(0),i = 1,2 with

the help of the sensor

.

Figure 5: The algorithm flow chart.

Table 3: The control parameter configuration.

Control method

PPAC κ2i−1 = κ2i = 3, a1 = ε = 0:1, c = ρ0 = 0:5, ξi = 10, ρTS = 8 × 10−5, Ts = 2, τiM = 8
ASMC k1 = k2 = 5, p1 = p2 = 1, l1 = l2 = 1, εc = 0:03, φ = 2:5, η = 7
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nonlinear control approaches are proposed in [45, 46] to
achieve finite-time prescribed performance tracking control,
the settling time is related to the initial value of the system
states. In this paper, the proposed settling time TS is indepen-
dent of the initial conditions, and therefore, TS can be set
according to the requirement of control tasks.

4. Numerical Simulations

In this section, simulation results are presented to illustrate
the effectiveness of our proposed control method. The

system parameters satisfy y = �y + Δy in which �y and Δy rep-
resent the nominal part and uncertain part, respectively. The
nominal part of system parameters are chosen from experi-
mental date in [4, 47]. The initial value of system states are
given as αð0Þ = 0:1 rad, hð0Þ = 0:01m, and _αð0Þ = _hð0Þ = €α

ð0Þ = €hð0Þ = 0. Since the control objective is to suppress
the aeroelastic vibrations, thus the desired signals are set
as zero.

To evaluate the performance of the proposed control
method, a comparison will be given between the prescribed
performance adaptive compensation control scheme (PPAC)
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Figure 6: The open-loop responses of the aeroelastic system.

0.1

0.05

0

–0.05
0 1 2  3 4 5 6

Time (s)

α
 (r

ad
)

2.6
2.5
2.4

2 4 6

1.35
1.3

1.25
2 4 6

×10–5 ×10–5

Zoom Zoom

PPAC
ASMC

Figure 7: α responses of the closed-loop system with Case 1.

11International Journal of Aerospace Engineering



proposed in this paper and the adaptive sliding mode com-
pensation control scheme (ASMC) in [5] for the same sam-
pling time and model parameters. The control system
parameters of PPAC and ASMC are set in Table 3. According
to [5], the ASMC controller is devised as

uASMC = −f n − ks1 −
ðt
0
η sign σð Þ + k2 s1 + s2ð Þ + φ2σ

4 + lbα2 + bα
4φσ

� 	
dτ,

ð43Þ

where f n is a known function consisting of the system
nominal parameter; s1 and s2 are the system error vectors;
k1, k2, η, and φ are design parameters; σ = ½σ1, σ2�T = s2 +
k × s1 + p ×

Ð t
os1dτ (k = diag fk1, k2g > 0, l = diag fl1, l2g >

0, and p = diag fp1, p2g > 0); and bα = diag fbα1, bα2g is the
disturbance estimation.

Firstly, the open-loop responses for sinusoidal gust
wG = 0:07 and U = 13:28m/s are shown in Figure 6; in this
situation, the system exhibited the limit cycle oscillation. It
is obvious that the plunge and pitch motions represent
flutter phenomena, which need to be suppressed.

For the purpose of examining the robustness of the pro-
posed control scheme, the following two cases are executed
by choosing different disturbances and unknown parameter
parts.

Case A. It is assumed that U = 13:28m/s, wG = ð1 −
e−0:25Ut/bÞ, and Δy = 25% × rand ðtÞ × �y (note that rand ðtÞ
can generate random numbers in the interval ð0, 1Þ by using
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Matlab/Simulink). Figures 7–9 show the control effect under
the two control methods. Compared with ASMC, the pro-
posed method has a fast convergence rate at the initial
stage, and moreover, the proposed method guarantees that
the system error converges into a bounded region when
t > 2s, i.e., max f ∣ e1∣, ∣ e3 ∣ g < 8 × 10−5. Obviously, the
simulation results are perfectly matched with Theorem
13. The proposed method realizes the preset control preci-
sion after a specified time (as stated by Theorem 13, e2i−1
converge to a prescribed compact set Ωe = fe2i−1 ∣ ∣ e2i−1∣
<ρTS,g for ∀t > TS based on ρTS = 8 × 10−5 and TS = 2s).
It means that the proposed control strategy is an effective
way to suppress the limit cycle oscillation feature even in
the presence of parameter uncertainties. As for ASMC,
the maximum errors are shown as max f ∣ e1∣, ∣ e3 ∣ g <

5:8 × 10−4. From Figures 10 and 11, it can be seen that
the initial amplitude values of control input τi and nonlin-
ear function estimation bσ i are large. This is because the
proposed method is tuning and does not adapt to the
adverse factors at the beginning. And then, the adaptation
updating algorithm starts to exert its effectiveness such
that the satisfactory control performance is achieved.

Case B. U = 13:28m/s, wG = 2:5 ⋅ ð1 − e−0:25Ut/bÞ ⋅ rand ðtÞ,
and Δy = 40% × rand ðtÞ × �y. From Figures 12–16, we see
that the proposed method can guarantee that e2i−1ði = 1, 2Þ
converge into a bounded region max f ∣ e1∣, ∣ e3 ∣ g < 8 ×
10−5 for t > 2s, but the errors obtained by ASMC stay in
max f ∣ e1∣, ∣ e3 ∣ g < 1:8 × 10−3for t > 2s. Obviously, the
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simulation results indicate that the control accuracy of the
proposed method is still higher than that of ASMC. Com-
pared with Case A, although uncertainties and the distur-
bance are increased, the proposed control method still
achieves the fixed-time prescribed performance, and it means
that the system parameter uncertainties and external distur-
bances are well suppressed. These simulation results show
that the good performance can be obtained by the proposed
control algorithm.

5. Conclusion

In this paper, a fixed-time prescribed performance control
algorithm for a nonlinear aeroelastic system is presented.
In particular, the control performance of the closed-loop
system is guaranteed theoretically with prescribed perfor-
mance constraint and excellent disturbance rejection capa-
bility. The performance of the proposed control system is
evaluated by digital simulation in the presence of input
constraints. Simulation results show that the designed con-

trol method suppresses the limit-cycle oscillations, despite
parameter uncertainties and wind gust.

Appendix

A. Proof of the Three Properties of Lemma 1

(1) According to (8), one has

∂ΓτiM
τið Þ

∂τi
= e2cτiM − e−2cτiM

ecτiM ecτi + e−cτiM e−cτið Þ e−cτiM ecτi + ecτiM e−cτið Þ > 0

ðA:1Þ

(2) Based on (8), we obtain Δτi = ui − ΓτiM
ðτiÞ; therefore,

Δτi satisfies
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Figure 15: bσ1 and bσ2 responses with Case 2.

8

–8

6

–6
–4

4

–2

2
0

0 1 2 3 4 5 6

Time (s)

0 0.1 0.2 0.3 0.4 0.5
–8

8

–4

4
0

𝜏 1
 an

d 
𝜏 2

𝜏1
𝜏2

Figure 16: Control input of the proposed method with Case 2.
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0 < Δτi ≤ τiM −
1
2c ln e2cτiM + e−2cτiM

2

� �
, ifτi ≥ τiM ,

Δτij j ≤ τiM −
1
2c ln e2cτiM + e−2cτiM

2

� �
, if τij j < τiM ,

−τiM + 1
2c ln e2cτiM + e−2cτiM

2

� �
≤ Δτi ≤ 0, ifτi≤−τiM

8>>>>>>>>><>>>>>>>>>:
ðA:2Þ

In the light of (A.2), then

Δτij j ≤ τiM −
1
2c ln e2cτiM + e−2cτiM

2

� �
: ðA:3Þ

Hence, lim
c⟶+∞

Δτi = 0.

(3) Due to ΓτiM
ðτiÞ = ð1/2cÞ ln ððecτiM ecτi + e−cτiM e−cτiÞ/

ðe−cτiM ecτi + ecτiM e−cτiÞÞ, we have

lim
τi⟶+∞

ΓτiM
τið Þ = lim

τi⟶+∞
1
2c ⋅ ln

e2cτiM + e−2cτi

1 + ecτiM e−2cτi

� �� 	
= 2cτiM

2c = τiM ,

lim
τi⟶−∞

ΓτiM
τið Þ = lim

τi⟶−∞

1
2c ⋅ ln

e2cτi + e−2cτiM

1 + e−2cτiM e2cτi

� �� 	
= −2cτiM

2c = −τiM:

8>>><>>>:
ðA:4Þ

According to (A.4), we can conclude that jΓτiM
ðτiÞj ≤ τiM .
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