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Airfoil optimization is an essential task in the aerodynamic layout design of the unmanned aerial vehicle (UAV). An objective
optimization function was constructed based on the airfoil power factor and handling stability at various attack angles. The
parametric mathematical model of the airfoil and aerodynamic parameter proxy model of airfoil were constructed using the
Hicks-Henne improved function and CFD solution sample, focusing on the issues with particle swarm optimization algorithms
such as slow convergence, a tendency to fall into local optimal solutions, and oscillation at a late stage; an optimization
method for the low-speed airfoil of a small UAV based on improved particle swarm optimization was developed. When
compared to standard particle swarm optimization, selective regenerative particle swarm optimization, and improved particle
swarm optimization, the results indicate that the maximum thickness of the optimized rear airfoil decreases from 19.77% to
18.76%, the number of iterations decreases from 112 to 31, and the search speed of the improved particle swarm optimization
significantly improves; the CFD results indicate that the optimized rear airfoil exhibits superior aerodynamic performance. On
average, the airfoil’s maximum lift-to-drag ratio is increased by 11.9%, its maximum power factor is increased by 12.5%, and
its pitching moment is reduced by 8.4%. Within the UAV’s speed range, the aerodynamic performance is stable.

1. Introduction

Airfoil is a critical component of the shape design of UAV
wings, tail fins, and propellers [1]. The airfoil affects the
cruise speed, takeoff and landing performance, stall speed,
operational performance, and aerodynamic efficiency of the
UAV throughout the flight cycle. It is a critical component
of the aerodynamic and overall performance of the UAV
[2]. The century-old development of airfoil research can be
roughly divided into three stages [3–5]. The first stage from
the beginning of the twentieth century to the 1950s, mainly
in order to explore the mystery of more efficient flight of air-
craft, carried out systematic research on airfoils and formed
several general airfoil families. The second stage started from
about the 1960s to the end of the twentieth century. With
the continuous improvement of aircraft flight speed and

the continuous improvement of performance index require-
ments, the need to develop more advanced airfoils became
increasingly urgent. At the same time, the discovery of the
supercritical airfoil principle has made the world’s aviation
powers begin to reemphasize airfoil research and has tar-
geted the development of various modern airfoil families
suitable for different types of aircraft and helicopters. The
third stage is roughly from the beginning of the twenty-
first century to the present. The rapid development of
advanced numerical simulation methods, optimization
design techniques, wind tunnel tests, and testing techniques
has led to and promoted the research of various new airfoils.
Under the constraints of complex engineering, an airfoil
with excellent comprehensive performance is designed.

With the continuous expansion of the military use of
UAVs, the tasks undertaken by UAVs have higher and
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higher requirements for the basic performance of UAVs [6].
Selection and optimization of airfoils are critical tasks in
UAV design [7, 8]. The conventional aerodynamic shape
optimization of an airfoil is primarily investigated for large
aircraft airfoils with Reynolds numbers in the order of mag-
nitude of 107. Since the 1980s, high-altitude long-endurance
UAVs have received extensive attention in military applica-
tions. In 1986, M.D. Maughmer and others designed the
NASA NLF (1)-1015 airfoil for high-altitude long-
endurance vehicles [9]. A low drag coefficient is achieved
in long endurance states and in assault states. Since the
design combines high lift coefficient and low Reynolds num-
ber, the velocity profile is designed with a “separation ramp”
and a “curve transition ramp” to achieve higher lift and sup-
press the formation of laminar separation bubbles [10]. In
the 1990s, NASA designed the LRN-1015 low Reynolds
number airfoil for the wings of Northrop Grumman’s RQ-
4 “Global Hawk” high-altitude long-endurance UAV [11].
The flying height of the Global Hawk can reach 20 km, and
the Reynolds number is only 500,000 under the condition
of Mach 0.2. Under the design state, the laminar flow range
on the upper and lower surfaces of the wing can reach 57%
and 88% of the chord length, respectively, with low drag
and higher lift-to-drag ratio. The excellent airfoil/wing aero-
dynamic performance and propulsion system make the
“Global Hawk” UAV still the leader among the high-perfor-
mance, high-altitude, and long-endurance large-scale mili-
tary UAV platforms. In comparison, small UAVs are
subject to low Reynolds numbers, typically in the orders of
magnitude of 104 ~ 105. When the Reynolds number is
low, the flow around the airfoil is typically laminar, the flow
momentum in the boundary layer is insufficient, and the
adverse pressure gradient at the airfoil’s tail easily causes air-
flow separation, which undoubtedly affects the airfoil’s aero-
dynamic characteristics. Additionally, the purpose of
optimizing a high Reynolds number airfoil is to obtain the
optimal lift-drag ratio. While the purpose of optimizing a
low Reynolds number airfoil is to improve the power factor,
the UAV handling stability must also be considered.

In other countries, a parametric description based on
standard airfoils was frequently used to improve the flight
performance of small UAVs [12, 13]. Currently, the primary
methods for airfoil parameterization are Hicks-Henne, Par-
sec Method, B-spline Curves, Mesh points, and CST
[14–18], with the Hicks-Henne function and Parsec Method
being the most frequently used. In recent years, evolutionary
algorithms have been gradually introduced as optimization
approaches, including iterative optimization of neural net-
work prediction models and genetic algorithm optimization
using Gaussian process regression [19, 20]. AtthaphonAr-
iyarit used an evolutionary algorithm and a gradient-based
method for multiobjective problems [21]. PhiboonThar-
athep proposed a multifidelity surrogate model and used
nondominated sorting genetic algorithm II to solve multifi-
delity multiobjective airfoil design problem of UAV [22,
23]. An evolutionary algorithm is a type of heuristic search
algorithm created by combining computer science and biol-
ogy almost by corresponding laws [24]. Particle swarm opti-
mization (PSO) is a significant subfield of evolutionary

algorithms. It is an optimization algorithm based on a global
random search strategy proposed in 1995 by Kennedy and
Eberhart [25]. In 2006, Margarita Reyes Sierra carried out
a summary study on the multiobjective optimization prob-
lem of particle swarm optimization algorithm [26]. Current
PSO has been widely applied in various research fields, suc-
cessfully resolving a wide variety of practical engineering
problems, including task allocation and scheduling, data
clustering, energy conservation in buildings, pattern recog-
nition, shape design, and fault diagnosis [27–32]. North-
western Polytechnical University used it in China to
optimize the aerodynamic design of airfoil and wing [33].
PSO has some drawbacks when solving complex problems,
including slow convergence, a proclivity to fall into local
optimal solutions, and late-stage oscillation. Many attempts
have been made to address these issues. Tsai and Kao pro-
posed and demonstrated the efficiency and suitability of a
selective regenerative PSO algorithm for multipeak optimi-
zation functions [34]. The method’s feasibility in dealing
with practical complex optimization problems was demon-
strated by its application in data clustering [35].

The airfoil optimization objective function was estab-
lished by considering the airfoil’s power factor and handling
stability; the Hicks-Henne function was parameterized for
the airfoil. Tsai et al. then proposed an improved PSO algo-
rithm based on selective regenerative PSO to address PSO’s
slow convergence, inclination to fall into local optimal solu-
tions, and late-stage oscillation. The CFD solver was directly
invoked to obtain aerodynamic parameters for the airfoil,
and the optimal airfoil profile was finally obtained by itera-
tively solving the objective function for airfoil optimization.
We analyzed the aerodynamic performance and robustness
of the optimized airfoil.

2. Optimization Objective Function

In the range of low Reynolds number, the required power
consumption P of small UAV in level flight can be simplified
as

P = FTV, ð1Þ

where FT denotes propeller thrust and V denotes level
flight speed.

According to the following formula:

FT =
mg
K

, ð2Þ

0:5ρV2SCL =mg, ð3Þ

K =
CL

CD
: ð4Þ

The expression of required power consumption is

P = FTV =
mgð Þ1:5
0:5ρSð Þ0:5

CD

C1:5
L

, ð5Þ
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where m denotes total flight mass of UAV; ρ denotes the
density of incoming flow; S denotes wing area; K denotes the
lift drag ratio of UAV; and CL and CD represent lift coefficient
and drag coefficient. If the power factor is defined as PI =
C1:5
L /CD, greater PI leads to lower required power consump-

tion P and is favorable to long endurance flight. The pitching
moment coefficient Cm is a factor that must be considered in
airfoil optimization design. In UAV flight, the excessively high
absolute value Cm of airfoil will increase the trim drag and
reduce the handling stability performance of the UAV. During
the flight, the attack angle varies significantly with the change
of combat mission, so it is required that Cm of airfoil should
not be too large within a certain range of angle of attack. Oth-
erwise, the handling stability performance of UAVs may be
affected. Thus, the maximum power factor PImax and the
absolute value of the average pitching moment coefficient are
the primary considerations in airfoil optimization. Since
PImax0 is usually hundreds of times of jCm ave0 j, the weight of
PImax0 and jCm ave0 j is adjusted, and the optimization of the
two objective functions is transformed into a single objective
function problem [36, 37]. Therefore, the optimization objec-
tive function is set as follows:

min f PImax, Cm aveð Þð Þ = −k × a Cm ave0j j− Cm avej jð Þ1/b − a PImax−PImax0ð Þ1/c ,
ð6Þ

where k, a, b, and c are weight adjustment coefficients.

k × aðjCm ave0 j−jCm avejÞ1/b and aðPImax−PImax0 Þ
1/c

are the relevant
terms of pitching moment coefficient and power factor of
the objective function, respectively. Through the adjustment
of the weight coefficient, the response of the power factor
term and the pitch moment factor term of the objective
function to PImax0 and Cm ave is between [0,5], the response
range tends to be consistent, and the response range of the
objective function is between [−10, −1], as shown in
Figures 1–3.

3. Algorithm

3.1. Particle Swarm Optimization. Each alternative PSO
solution is transformed into a particle. Multiple particles
coexist and search for optimization cooperatively. The opti-
mal solution is determined iteratively using a randomly gen-
erated initial population, as illustrated in Figure 4. Each
particle represents a candidate solution in the solution space,
and the fitness function, which is defined according to the
optimization criterion, determines the quality of the solu-
tion. As described below, particle velocities and positions
are constantly updated to find the optimal solution.

(1) Initialization: Let the algorithm’s search space be DS
dimensions and the total number of search particles
be npso. The information of the i th particle can be
expressed as

xid = xi1, xi2,⋯, xiDS

� �
, ð7Þ

where npso is population size. When the population
size is too large, the algorithm’s computing speed and con-
vergence will be affected. But too small population size
may affect the optimization efficiency of PSO. The initial
particle population will be randomly generated within the

5

4

3

2

1

0
130

120
110

100 –0.2
–0.15

–0.1

CmavePImax

f PI

Figure 1: Power factor term.

5

4

3

2

130

120

110

100 –0.2
–0.18

–0.16
–0.14

–0.12
–0.1

Cmave
PImax

f cm

Figure 2: Pitching moment term.

Cmave

PImax

f

0

–2

–4

–6

–8

–10
–0.1 –0.12 –0.14 –0.16 –0.18 –0.2

130

120

110

100

Figure 3: Objective function.

3International Journal of Aerospace Engineering



motion range of the set parameters, and the position
matrix xid and velocity matrix Vid of the initial population
will be formed.

(2) Update of velocity and position: each particle will
seek a more advantageous position in space based
on its own experience and that of neighboring parti-
cle swarms. The particle velocity and position are
updated in accordance with the following:

Vnew
id = ω ×Vold

id + c1 × ξ × pid‐xoldid
� �

+ c2 × ξ × pgd‐xoldid
� �

,

ð8Þ

xnewid = xoldid +Vnew
id , ð9Þ

where ω = 0:5 + ðξ/2Þ is inertia weight; ξ is a random
number in 0 ~ 1; and c1 and c2 are the particle’s local learn-
ing factor and global learning factor. By adjusting the size of
the learning factor, the weights associated with self-
summarizing and learning from excellent individuals in the
particle’s search process can be adjusted, bringing a single
particle swarm closer to the optimal position in the swarm’s
history. pid is the individual optimal particle position, which
is the optimal location currently searched for the particle. pgd
is the global optimal particle position, which is the optimal
position searched by the whole particle swarm so far; Vold

id
and xoldid are current velocity and position of the particle;
Vnew

id and xnewid are updated speed and location of the particle.

(3) The individually optimal particle pid and the globally
optimal particle pgd are selected by comparing the
fitness values of particles

(4) Check of termination condition. Due to the iterative
nature of PSO, the first termination condition is that
the fitness of the optimal solution found by the algo-
rithm is less than the minimum fitness threshold; the

second termination condition is that the algorithm
runs for the specified number of iterations. If the ter-
mination condition is satisfied, the iteration ends;
otherwise, continue to Step (2)

3.2. Selective Regenerative PSO. Tsai found that particles
close to pgd did not contribute much to the search for
the global optimal solution in the iterative process, so
some particles with a distance d from pgd that is less than
R were selected to regenerate to find new areas. As a
result, the likelihood of finding the global optimal solution
was increased. The particles with the global optimal solu-
tion would not be selected during the selection process,
allowing the search to continue in the current optimal
direction. To retain the global optimal solution’s position
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Figure 4: Particles finding the optimal solution with global best
particle.
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information, the position information of regenerative par-
ticles in each dimension has a certain probability of being
assigned as the global optimal particle’s position by a.
Other positions have the probability of ð1‐aÞ being ran-
domly generated within the specified solution range, as
shown in Figure 5. The selected regenerative particle’s
movement speed is specified in Equation (10) to avoid
the selected regenerative particle from approaching the
current global optimal particle.

Vnew
id = ω ×Vold

id + c2 × ξ × pid − xoldid

� �
+ c1 × ξ × pgd − xoldid

� �
:

ð10Þ

The selective regenerative PSO algorithm can regener-
ate particles close to the global optimal particle while

(a) Global grid computing (b) Near wall mesh

Figure 7: Schematic diagram of computational grid.
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Table 1: Absolute and relative errors of RBF.

Type
PImax Cm ave

Absolute
error

Relative
error

Absolute
error of

Relative
error

Average
value

0.0018 0.0012 0.0009 0.0004

Table 2: Optimization algorithm settings.

Parameters Value Parameters Value

R 10−5 c2 2.5

r 0:5 × 10−5 fR 0.4

ϖ 0.6 f r 0.8

E.G. 10−6 a 0.8

c1 0.5 N iterm 200
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reducing the ability of particles to optimize locally. As a
result, this paper proposes an improved PSO.

3.3. Improved Particle Swarm Optimization. The improved
PSO introduces some particles which are very close to the global
best particle pgd for location optimization. It is not desirable,
however, to have the direction of the newly located optimal par-
ticles pointed in the direction of the global best particle. There-
fore, the local optimal particles’ speeds are updated via Equation
(10). The detailed procedure is described as follows:

(1) Distance calculation. Firstly, the distance d of each
particle to the global best particle is calculated, as given
by Equation (4). According to the distance, particles
can be divided into three categories: d ≥ R, r < d < R,
and d ≤ r. R and r are predetermined values

d = 〠
DS

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − xgdi
� �2q

, ð11Þ

where d is the distance between the particle and Pgd ; Ds

is the dimensions of the particles and the number of the
parameters to be identified; and xi and xgdi are the values
of the ith dimension for the particle and pgd.

(2) Particle selection and regeneration. Select a certain
fraction f R of these particles whose distance to the
global best particle is r < d < R. These selected parti-
cles will regenerate, update velocity, and randomly
generate individual best positions

(3) Particle selection and location optimization. For the
particles whose distance to the global best particle
is not greater than r, a certain fraction f r of them
are randomly selected for location optimization. In
order to enhance the selected particles’ local optimal
ability, the selected particles’ speeds are reduced:

Vmax r = ϖ ∗Vmax

Vmin r = ϖ ∗Vmin

(
, ð12Þ
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where Vmax r and Vmin r are, respectively, the maximum
and minimum speeds of the selected particles; ϖ is a scale
factor in the range of (0,1); and Vmax and Vmin are the max-
imum and minimum speeds of the other particles, respec-
tively. If Equation (8) is applied to update the selected
particles’ velocities, the search efficiency will be reduced, so
the velocities and positions are updated according to Equa-
tions (9) and (10).

4. Optimization Design

4.1. Optimization Process. First, a favorable initial airfoil was
chosen to obtain a good model coefficient through the fit-
ting, and then the coefficient’s variable range was deter-
mined. The improved PSO was then used to optimize the
model coefficient. Following that, the surrogate model was
directly invoked to obtain samples for analyzing aerody-
namic characteristics, as illustrated in Figure 6.

4.2. Method of Airfoil Profile Parameterization. Hicks and
Henne proposed the Hicks-Henne method for parame-
terized airfoil description [14]. The parameterization
method is used to describe the change superimposed
on the y-direction of a standard airfoil. Then, superim-
position is used to reconstruct the airfoil profile using
the coordinates of the basic airfoil. Assume that the
coordinates of the upper and lower airfoil surfaces in
the y-direction of the basic airfoil are y0upðxÞ and y0low
ðxÞ and that of the new airfoil are yupðxÞ and ylowðxÞ,
respectively, then

yup xð Þ = y0up xð Þ + 〠
k=n

k=1
ξk f k xð Þ,

ylow xð Þ = y0low xð Þ − 〠
k=n

k=1
ξk+n f k xð Þ,

ð13Þ
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where ξk is the design variable of the new airfoil, usually on
the order of 0.001; n is the number of type function; and f kðxÞ
is a primary function. To reinforce the optimized airfoil’s trail-
ing edge optimization and to achieve control over the airfoil’s
trailing edge points, it is defined as

f k xð Þ =
x0:25 1 − xð Þe−20x, k = 1ð Þ
sin3 πxe kð Þ

� �
, 2 ≤ k ≤ n − 1ð Þ

ax 1 − xð Þe−β 1−xð Þ, k = nð Þ

8>>><
>>>:

,

e kð Þ = ln 0:5ð Þ/ln xk, 0 ≤ xk ≤ 1ð Þ:

ð14Þ

The Hicks-Henne method suffers from a lack of trailing
edge disturbance [38]. The airfoil profile’s trailing edge distur-
bance function was optimized to provide effective trailing edge
disturbance, as illustrated in the following equations:

f n xð Þ = x 1 − xð Þ0:5e−20 1−xð Þ,

f n′ xð Þ = −20x2 + 18x + 1
� �

1 − xð Þ0:5e−20 1−xð Þ:
ð15Þ

4.3. Flow Field Solving andMesh Generation of the Airfoil.N-S
equation was used as the main governing equation for flow
field calculation [39], and space discretization was performed

using the finite volumemethod. The field was solved on a den-
sity basis, and the flux difference was calculated using the Roe
scheme. The Spalart-Allmaras (S-A) model was used as the
turbulence model [40], and the spatial discretization scheme
used was the upwind scheme with second-order accuracy.
The pressure far field was chosen as the boundary condition,
and the nonslip boundary was used for the airfoil wall. The air-
foil calculation area was a circular area with the midpoint of
the chord as the center and 20 times the length of the chord
as the radius, and the grid distance near the wall was 1:0 ×
10−6, the number of grids was 21,000, and the structured O-
shaped grid was generated as shown in Figure 7.

In order to ensure the reliability of the simulation results,
the numerical calculation results were compared with the
wind tunnel test results [41]. The results show that the
numerical calculation results could accurately calculate the
aerodynamic characteristics of the airfoil before the stall of
the airfoil, as shown in Figure 8.

The radial basis function neural network (RBFNN)
could be used to nonlinear fit the function. It had high pre-
diction accuracy and strong generalization ability for indi-
viduals outside the learning samples. The input of the
neural network were the parameterized parameters of the
sample airfoil, and the corresponding maximum power fac-
tor, average coefficient of the pitching moment, and the out-
put were the approximate mapping relationship between the
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Figure 13: Comparison of flow field velocity cloud for baseline and optimum airfoils.
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parameterized parameters and the maximum power factor,
average coefficient of the pitching moment. In order to
ensure the coverage of the training samples to the design
space, this paper used the Latin hypercube method to gen-
erate 160 groups of initial training samples, 150 of which
were used to train the neural network. The remaining 10
groups were used to test the prediction accuracy of the
neural network. The average relative and absolute errors
of the maximum power factor and the average coefficient
of the pitching moment of the 10 groups of prediction
samples are shown in Table 1. The relative error was the
error of the predicted value of the proxy model for the lift
resistance of the optimized airfoil relative to the CFD cal-
culated value. The error accuracy had reached the order of
10−3, which shows that the prediction accuracy of RBFNN
is relatively high.

5. Result Analysis

In this paper, an airfoil is used as the reference airfoil for
optimization, and the ambient states of airfoil analysis is as
follows:

V = 30m/s, c = 0:2m, α = −5, 12½ �∘: ð16Þ

The parameters of the improved PSO were configured as
in Table 2, and the same were those of the standard PSO.
The range of the parameters to be identified, ξiði = 1, 2,⋯
⋯ , 12Þ,was ½−0:005, 0:005�.

The maximum number of optimization steps N iterm was
200. To verify the convergence of the improved algorithm,
the convergence criterion, E.G., was set to a minimum of
10−6. Figure 9 depicts the objective function’s iteration con-
vergence curve. The improved PSO proposed in this paper
iterates 31 times to find the optimal solution, whereas the
selective regenerative PSO and the standard PSO iterate 52
and 112 steps, respectively, to find the optimal solution.
The improved algorithm’s optimization speed has increased
significantly.

The comparison of the profiles before and after the
dimensionless airfoil optimization is shown in Figure 10.
The dashed lines represent the airfoil optimization’s inner
and outer boundary constraints, and the optimized airfoil’s
maximum thickness decreases from 19.77% to 18.76%. The
comparison curves of aerodynamic characteristics before
and after airfoil optimization are shown in Figure 11. As
can be seen, the optimized rear airfoil’s lift coefficient perfor-
mance remains unchanged, but the drag coefficient and
pitching moment both decrease significantly. The maximum
lift-drag ratio ðCl/CdÞmax increases by 11.9%, the maximum
power factor PImax increases by 12.5%, the average pitching
moment jCm avej decreases by 8.4%, and the average drag
Cd ave decreases by 6.7%.

To test the sensitivity of airfoil performance to incoming
flow velocity, the aerodynamic characteristics of the airfoil in
the range of 25m/s~45m/s were analyzed. Figures 12 and 13
are aerodynamic characteristic curves and velocity contours
of the airfoil at different speeds with α = 4∘. The flow separa-
tion phenomenon at the trailing edge of the optimized airfoil

was lower than that of the basic airfoil, and the power factor
of the optimized airfoil was better than that of the basic air-
foil in the range of 25m/s~45m/s.

6. Conclusions

Airfoil is an important basic technology of aircraft. At pres-
ent, with the increasing demand for small UAV flight capa-
bility, higher requirements are put forward for UAV airfoil,
including higher power factor and better torque characteris-
tics in mission state, which leads to the problem of airfoil
optimization. To solve this problem, an optimization design
method for the low-speed airfoil of small UAVs was pro-
posed based on an improved PSO algorithm, The objective
optimization function for the airfoil was established based
on the power factor and handling of the airfoil. An improved
PSO algorithm was proposed to address the PSO algorithm’s
slow convergence, inclination to fall into local optimal solu-
tions, and late-stage oscillation. The results indicate that the
improved PSO significantly improves search performance
and reduces the number of iteration steps from 112 to 31;
the aerodynamic performance of the optimized airfoil is
improved considerably, the maximum power factor PImax
increases by 12.5%, the average pitching moment jCm avej
reduces by 8.4%, and the aerodynamic robustness and stabil-
ity are strong. The future research work will further expand
the optimization method, consider the Pareto solution prob-
lem in multi-objective optimization, and expand the applica-
tion scope of the proposed method. In the aspect of
optimization algorithm research, the results of more optimi-
zation methods are compared to continuously improve the
identification performance of the model algorithm.
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