
Research Article
Robust Data-Driven Fault Detection: An Application to Aircraft
Air Data Sensors

Yunmei Zhao,1,2 Hang Zhao,1 Jianliang Ai,1 and Yiqun Dong 1

1Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
2School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China

Correspondence should be addressed to Yiqun Dong; yiqundong@fudan.edu.cn

Received 1 November 2021; Revised 17 January 2022; Accepted 21 January 2022; Published 16 March 2022

Academic Editor: Guillermo Valencia-Palomo

Copyright © 2022 Yunmei Zhao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fault detection (FD) is important for health monitoring and safe operation of dynamical systems. Previous studies use model-
based approaches which are sensitive to system specifics, attenuating the robustness. Data-driven methods have claimed
accurate performances which scale well to different cases, but the algorithmic structures and enclosed operations are “black,”
jeopardizing its robustness. To address these issues, exemplifying the FD problem of aircraft air data sensors, we explore to
develop a robust (accurate, scalable, explainable, and interpretable) FD scheme using a typical data-driven method, i.e., deep
neural networks (DNN). To guarantee the scalability, aircraft inertial reference unit measurements are adopted as equivalent
inputs to the DNN, and a database associated with 6 different aircraft/flight conditions is constructed. Convolutional neural
networks (CNN) and long-short time memory (LSTM) blocks are used in the DNN scheme for accurate FD performances. To
enhance robustness of the DNN, we also develop two new concepts: “large structure” which corresponds to the parameters
that can be objectively optimized (e.g., CNN kernel size) via certain metrics (e.g., accuracy) and “small structure” that conveys
subjective understanding of humans (e.g., class activation mapping in CNN) within a certain context (e.g., object detection).
We illustrate the optimization process we adopted in devising the DNN large structure, which yields accurate (90%) and
scalable (24 diverse cases) performances. We also interpret the DNN small structure via class activation mapping, which yields
promising results and solidifies the robustness of DNN. Lessons and experiences we learned are also summarized in the paper,
which we believe is instructive for addressing the FD problems in other similar fields.

1. Introduction

1.1. Motivation. Fault detection (FD) is important for safe
operations of dynamical systems. For instance, aircraft air
data sensors (ADS) provide measurements of aircraft’s air-
speed, angle of attack (AOA), and sideslip angle. The erro-
neous sensor measurements, however, were found to be
the cause of many catastrophic flight accidents including
the crashes of NASA X-31 [1], Airbus A330 [2], and most
recently Boeing B737 MAX [3]. A robust fault detection
strategy is imminent for the health monitoring of com-
mercial airlines.

At present, hardware redundancy (HR) is widely used
for FD problems. Particularly for ADS in the commercial
airlines, HR consists of installing multiple sensors to pro-
duce redundant measurements of the air data. Outputs from

all the sensors are continuously monitored by a voting logic,
which detects (and isolates) the erroneous sensor. The cor-
rect measurement is then reported using the remaining
other sensors [4–6].

One issue with the HR-based fault detection is the cost
and weight penalty (due to the redundant sensors). More-
over, recent accidents indicate that HR is not sufficient in
addressing the fault detection problem (e.g., the Boeing
737MAX accident due to AOA sensors). Alternative to HR,
analytical redundancy (AR) has been investigated. A major-
ity of the AR methods adopted model-based approaches.
Different from HR, AR investigates each sensor separately.
For a certain sensor, a mathematical model is developed in
conjunction with other sensors. An inferred sensor measure-
ment is then estimated and compared with the sensor’s
output to generate a residual. If the residual exceeds a

Hindawi
International Journal of Aerospace Engineering
Volume 2022, Article ID 2918458, 17 pages
https://doi.org/10.1155/2022/2918458

https://orcid.org/0000-0002-2568-2568
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2918458


predefined bound, fault is claimed to be detected for that
sensor [7].

The model-based AR, nevertheless, hinges on the model
that is derived from system specifics, which is sensitive to
operational conditions. The development of model-based
AR typically requires ad hoc parameter tuning, which is
time-consuming. Another line of AR adopts model-free
and mostly data-driven methods. This does not require sys-
tem specifics, but the recorded data (e.g., sensors measure-
ments and the associated faults) only. In particular, deep
neural networks (DNN) were widely used [8–14]. However,
no explainable rules exist for the architecture devising in
DNN, and most works adopted the trial-and-error method-
ology; mathematical operations enclosed within the DNN
are also considered “black,” and scalability of the DNN-
based FD scheme is doubtful. Referring to the development
of DNN in other fields (e.g., computer vision), many rules
have been proposed (and widely accepted) in devising the
DNN architectures (e.g., how many CNN filters should be
used in each layer). Ablation studies [15] and DNN visuali-
zation (e.g. class activation mapping [16]) are widely
adopted, which greatly elevate the physical understanding
(robustness) of the DNN. Similar concepts/approaches may
also be used in analyzing the DNN-based FD scheme.

We thus summarize the motivation of this paper:
Though DNN-based methods have yielded accurate and
scalable FD performances, the weaknesses are as follows:
explainability in devising the DNN architecture and inter-
pretability of the DNN operations. Exemplifying the FD
problem of aircraft air data sensors, we propose to develop
a robust DNN-based FD scheme. Whilst the FD accuracy
and scalability must be guaranteed, we also explain the rules
in devising the DNN architecture and interpret the opera-
tions enclosed in the DNN structure.

1.2. Related Work

1.2.1. Model-Based FD. Model-based FD hinges on a mathe-
matical model to infer the sensor measurement, which being
further used to generate a residual. A plethora of works were
found to use Kalman filtering (KF), e.g., the extended KF
[17–19], the unscented KF [20], the theoretical analysis of
an adaptive three-step KF [21], and implementation of the
KF-based method to real data in [22]. Other KF-based works
included [23, 24], wherein fuzzy logic was used in conjunc-
tion with KF to consolidate the sensor data [23], and the hid-
den Markov model has been used to decide the sensors state
(fault/healthy) based on the KF outputs in [24]. KF-based
FD schemes, however, rely on the evolution model that is
derived from the system dynamics/kinematics; ad hoc
parameter tuning is imminent in adjusting KF to different
systems (e.g., different aircraft) or operational cases (e.g., dif-
ferent flight conditions).

Other model-based FD methods adopted robust control
theory in [25–28], wherein the robustness synthesis-based
filter was constructed to output the residual, but a sensor
state evolution model is needed, and no rules pertaining to
the parameters tuning was studied. In [29–31], moving hori-
zon estimator was developed. It compensated for both sen-

sor faults and wind speed estimation in the fault tolerant
control. However, the authors discussed limited aircraft/
flight cases in the paper; scalability of the proposed methods
is unclear. A scheme designed particularly for systems with
two time-scale dynamics (e.g., phugoid and short periods
in the aircraft’s longitudinal plane) was discussed in [32,
33], wherein both nonlinear geometric approach and singu-
lar perturbation technique were involved, but computational
load of the algorithm was relatively high, and parameter tun-
ing was time-consuming. Barrier function-based learning
observer was proposed in [34], and in [35], a set-value
observer (SVO) was used. As acclaimed in the papers, these
works significantly decreased the FD false alarm rate. The
weaknesses of [34, 35], however, are also typical: model sen-
sitiveness and unclear scalability.

1.2.2. Data-Driven FD. Different data-driven methods have
been proposed for the FD problem. In [36], the fuzzy infer-
ence system in conjunction with thresholder was proposed
for the FD of DC motors. In [37], 4 different Wiener models
were ensembled for the fault analysis of an industrial gas tur-
bine. Dynamical primary components analysis was used
together with support vector machine in [38] for the FD prob-
lem of gear box. And finally, in [39], a total of 5 state-of-the-art
algorithms were studied for FD of marine machinery.
Although these methods have yielded promising results, how-
ever, the weakness is also obvious: heavy parameters tuning is
usually needed in finalizing the algorithm structures.

Other data-driven schemes were found to use neural net-
works (NN). In [8, 9], fully connected cascaded NN was
adopted, and the authors discussed fault detection and isola-
tion for inertial reference unit (IRU). Similar works were
found in [12, 40, 41], wherein feed-forward NN was used.
In [42, 43], NN-based adaptive observer was developed to
generate the sensor measurement residual; parameters of
the NN were adjusted online via KF [42]. Also, in [10–12],
NN was used to establish nonlinear identification models,
which being used as a state observer to generate the residual.
The essence of all these works was to regress a functional
relation that maps from the designated input to the desired
output (i.e., fault cases), but traditional NN lacks the
efficiency in abstracting high-level features. It is usually
used in a hybrid form with other methods (e.g., KF). In
addition, no research pertaining to the explainability and
interpretability analysis was thoroughly illustrated in the
associated publications.

Recent NN developments advocate the deep neural net-
works (DNN) in many academic/industrial fields [44]. DNN
typically has more (“deeper”) layers which are activated using
designated function (e.g., ReLU). More dedicated operations
were also designed in convolutional neural network (CNN)
and long-short time memory (LSTM) blocks for extracting
both spatial and temporal features enclosed in the DNN input.
Early works along the DNN-based FD line were found in
[45–47], wherein recurrent neural network (RNN) was used.
Later works adopted a variant of RNN, i.e., LSTM, which
attenuates the error vanishment/explosion problems in the
traditional RNN. CNN was also widely used either indepen-
dently [48, 49] or in conjunction with LSTM; new data

2 International Journal of Aerospace Engineering



formats defined as “state image” and “control image” were
proposed in [50, 51], via which the sensor FD accuracy was
significantly improved. The CNN-LSTM fusion-based DNN
architecture has claimed promising results in [51] for air data
sensors FD and most recently in [52] for fault estimation.
Despite the rapid developments of various DNN-based FD
architectures, however, research efforts along the explainabil-
ity and interpretability analysis line are still rare.

1.2.3. Explainability/Interpretability Analysis of DNN Large/
Small Structures. DNN is commonly considered “black”:
why the DNN specifics are devised as such and how the
enclosed operations work. To address such issue, we propose
the following: (1) to explain the large structure that
corresponds to the DNN architecture specifics and (2) to
interpret the small structure that depicts the operations
enclosed in the DNN architecture. Similar works have
appeared in literature.

The DNN large structure corresponds to the specifics
(e.g., CNN kernel size) that can be objectively optimized
via certain metrics (e.g., DNN testing accuracy). To explain
the large structure, comparative studies were commonly
used. In [53], different sets of parameters (number of CNN
filters, kernel sizes, etc.) were assembled in the DNN. The
authors then performed thorough training for each parame-
ter set and decided the optimal one via gleaning the trained
DNN. Technical tools designed specifically for optimizing
the DNN training were also found, of which the most pecu-
liar one is the Microsoft’s NNI, which decides the best train-
ing coefficients (e.g., learning rate and iterative epochs) for a
certain DNN architecture [54]. The Tree-structured Parzen
Estimator (TPE) is a sequential model-based optimization
(SMBO) approach, as a black-box optimization, which can
be used in various scenarios and shows good performance,
especially when limited by computation resources and can
only try a small number of trials [55]. When an “optimal”
DNN is found, ablation study is commonly used to verify
the architecture (e.g., CNN branches and CNN-LSTM

fusions), which involves cropping certain subarchitecture
from the “optimal” one, and comparing the DNN perfor-
mances. Typical examples are found in [15].

The DNN small structure depicts the operations
enclosed within the DNN (e.g., a certain CNN filter). It is
usually analyzed via mirroring the DNN outputs to what
humans understand in a certain context. For instance, in
the visual object classification problem, CNN is commonly
used. The understandable terms of humans in such a context
are the visual features that one hinges on to classify an object
(e.g., “ear” or “nose” of a cat/dog). Class activation mapping
(CAM) thus was proposed in [16] and rapidly developed in
[56–61], which points out the highlighted region(s) wherein
the CNN filters focus on. The CNN architecture may be con-
sidered reasonable (interpretable) if the highlighted
region(s) corresponds to what humans tend to watch (e.g.,
the “ear”/“nose”). Related studies in such line have made
promising progresses which promoted both academic
researches and industrial applications of CNN in vision-
related problems—but “vision-related” only; very rare studies
pertaining to such line were found in other DNN-based works
(e.g., DNN-based fault detection).

1.3. Overview of This Paper. In this paper, exemplifying the
FD problem of aircraft air data sensors, we aim to develop
a robust (accurate, scalable, explainable, and interpretable)
DNN-based fault detection scheme. We highlight our con-
tributions as follows:

(i) Accurate and scalable FD performances: we model
the FD problem using aircraft IRU measurements as
equivalent inputs; we also construct a dedicated data-
set; via delicate architecture tuning, the DNN-based
scheme claims accurate and scalable FD perfor-
mances for different aircraft at various conditions

(ii) Explainable DNN large structure: we exhibit the
methodology in devising the DNN architecture

Aircra� specific
flight condition

Aircra� specifics
flight condition

DNN-based
robust and generic

ADS fault detection scheme

Control inputs
(𝛿e, 𝛿a, 𝛿r, 𝛿th)

Air data states
(V, a, 𝛽)

Fx, Fy, Fz
Mx, My, Mz

Ax, Ay, Az
wx, wy, wz(S, B, c, V, a)

Air data/rotation
dynamics 

Generic
kinematics

IRU measurements

ADS measurementsADS fault case

Figure 1: Aircraft motion equations and the fault detection scheme formulated in this paper.

Table 1: Different aircraft and flight conditions adopted in this paper.

Aircraft General configuration Weight Span Data source Flight condition

Y Large cargo airplane, quadruple piston engines, high wing 41.0 t 38.0m Simulation (i) Low altitude, LTO, manual

B1 Large passenger aircraft, quadruple turbo engines, low wing 174 t 59.6m Simulation
(i) High altitude, cruise, AP

(ii) Low altitude, free flight, manual

B2 Large passenger aircraft, double turbo engines, low wing 44.6 t 35.8m Real flight (i) Low altitude, LTO, manual

D General aviation, double piston engines, high wing 3.12 t 19.8m Simulation (i) High altitude, cruise, AP

F Fighter aircraft, double turbo engines, delta wing 10.5 t 11.4m Real flight (i) Medium altitude, manual flight

3International Journal of Aerospace Engineering



and summarize the rules we adopted in optimizing
several large structure parameters—this enhances
the explainability on why such DNN specifics are
adopted

(iii) Interpretable DNN small structure: we borrow
feature visualization from computer vision in
analyzing the DNN small structure, of which the
results correspond to what human understand—this
elevates the interpretability on how the DNN oper-
ations work

The remainder of this paper is organized as follows. Section
2 defines the problem. Section 3 illustrates the database. Section
4 prepares the data and experimental setup. Studies on both
large and small structures are detailed in Section 5, wherein les-
sons and experiences we learned are also summarized. Finally,
conclusions and future works are discussed in Section 6.

2. Problem Definition

To define the FD problem of aircraft air data sensors, we
start with the air data evolution equations:

_V = Ax − gSθð ÞCαCβ+ Ay + gSϕCθ

� �
Sβ + Az + gCϕCθ

� �
SαCβ,

_α = −AxSα + AzCα + gCϕCθCα + gSθSα
� �

/VCβ +wy − wxCα +wzSαð ÞSβ/Cβ,

_β =
− Ax − gSθð ÞCαSβ + Ay + gSϕCθ

� �
Cβ − Az + gCϕCθ

� �
SαSβ

� �
V

+wxSα −wzCα,

8>>>><
>>>>:

ð1Þ

wherein S∗ and C∗ represent sin and cos operations, fV ,
α, βg are airspeed, AOA, and sideslip angle, g is the gravi-
tational acceleration, and fwx,wy,wzg and fψ, θ, ϕg denote
rotational speeds and angles, respectively. In Eq. (1), fAx,
Ay ,Azg indicates the accelerations along different axes of
the aircraft body, which are defined as fAi = Fi/mgi=x,y,z ,
wherein m is the mass of the aircraft, and fFx, Fy, Fzg are
the external forces generated by the control actions:

Fx = Fx δth, V , α, S,⋯ð Þ,
Fy = Fy δr , δa, V , α, S, b, c,⋯ð Þ
Fz = Fz δe, V , α, S, c,⋯ð Þ:

8>><
>>:

, ð2Þ

In Eq. (2), δ∗ indicates individual control input (e.g.,

Table 2: Measurement noise standard deviations in the simulation
for aircraft D.

Sensor Standard deviation Unit

Vm 0:1 m/s½ �
α, βf gm 0:1π/180 rad½ �
Ax , Ay , Az

� �
m 0:01 m/s2

� �

p, q, rf gm 0:01π/180 rad/s½ �
ψ, θ, ϕf gm 0:01π/180 rad½ �

0 60 120 180 240 300 360 0 60 120 180 240 300 360

0 60 120 180 240 300 3600 60 120 180 240 300 360

0 60 120 180 240 300 360 0 60 120 180 240 300 360

0 60 120 180 240 300 360 0 60 120 180 240 300 360

0
0.2

–0.2
–0.4

0

60 120 180 240 300 360

0 60 120 180
Time (s)Time (s)

A
z
 (g

)20

–20
0

𝜙
 (g

)

20

–20

0

𝜃
 (°

)

100

–100
0

𝜓
 (°

)

2

–2
0

𝛽
 (°

)

5

–5

0

𝛼
 (°

)

0.05

–0.05

0

A
y
 (g

)

0.1
0.2

–0.1
0A

y
 (g

)

0.2

–2
0

w
z
 (°

/s
)

0.2

–2
0

w
y
 (°

/s
)

0.2
0.4

–6
–4
–2

0

w
x
 (°

/s
)120

80
100

V
 (m

/s
)

240 300 3600 60 120 180 240 300 360

0 60 120 180 240 300 360

Figure 2: Plots of a sampled flight record allocated in our database.

4 International Journal of Aerospace Engineering



throttle δth, elevator δe, aileron δa, and rudder δr), and S, c,
and b are the aircraft wing area, mean chord length, and
span, respectively.

The kinematics of aircraft rotational speeds and angles is
written as follows:

_
ψ =

wySϕ
Cθ

+
wzCϕ

Cθ

,

_θ =wyCϕ −wzSϕ,

_ϕ =wx +
wySϕSθ
Cθ

+
wzCϕSθ
Cθ

,

8>>>>>>><
>>>>>>>:

ð3Þ

and dynamics of the aircraft rotation yields

Ix _wx − Ixy _wy =Mx + Iy − Iz
� �

wywz − Ixywxwz ,
Iy _wy − Ixy _wx =My + Iz − Ixð Þwxwz + Ixywywz,

Iz _wz =Mz + Ix − Iy
� �

wxwy + Ixy w2
z −w2

y

� 	
,

8>>><
>>>:

ð4Þ

wherein fMx,My,Mzg are the external control moments,
which are defined as

Mx =Mx δa, δr , V , α, S, b,⋯ð Þ,
My =My δa, δr , V , α, S, b,⋯ð Þ,
Mz =Mz δe,V , α, S, c,⋯ð Þ:

8>><
>>:

ð5Þ

Figure 1 depicts an overall flow for above equations. Tra-
ditional works hinge on model-based approaches to monitor
the control inputs and sensors outputs. Implicitly in such
model, the external control forces/moments must be consid-
ered, which are generated using associated control actions,
and directly related to the aircraft specifics (e.g., wing area
and mass) and flight conditions (e.g., airspeed and AOA).
Parameters within such model-based FD scheme typically
require ad hoc tuning per aircraft/flight condition. Its scal-
ability is therefore doubtful.

Despite the high dependency of control forces/moments
upon aircraft specifics/flight conditions, their outcome (i.e.,
fAigi=x,y,z and fwigi=x,y,z) can be directly measured using
inertial reference unit (IRU). Via Eq. (3), rotational angles
of the aircraft can also be calculated using fwigi=x,y,z

(although dedicated sensors do exist to directly measure
them). We thus adopt IRU measurements as a probe into the
overall system, model them as equivalent inputs to the air data
evolution, and perform the air data sensors FD task directly.

To be specific, the problem in this paper is defined as to
detect (classify) different faults that occur in the air data sen-
sors, given the air data measurements fV , α, βg, and other data
resources which may include fAx ,Ay ,Azg, fwx,wy,wzg, and
fψ, θ, ϕg. The FD scheme is modeled as a mapping process

0
0
1
2
3
45

Ca
se

 (–
)

60 120 180
Time (s)

240 300 360

5

–5
0

𝛽
 (°

)

5

–5
0

10

120
80
40

𝛼
 (°

)
V

 (m
/s

)

Figure 3: Illustrative plot for the fault injection. Black lines denote
clean states from real flight/simulation, and red lines denote the
fault-injected data. The FD scheme is expected to detect the
different fault cases (blue thick line) based on available data
measurements and proper DNN operations.

Table 4: ADS fault cases adopted in this paper.

Case Sensor Fault type Magnitude∗

5 Sideslip angle Extra noise 5°~10°

4 Sideslip angle Drift ±5°~10°

3 AOA Extra noise 5°~10°

2 AOA Drift ±5°~10°

1 Airspeed Drift -50%~100%

0
Clean measurement with noises and disturbances, no

fault
∗Noise standard deviation and drift values defined in this column.

Table 3: Training and testing data specifics in this paper.

Aircraft and
condition

Duration
(min)

Altitude (km) Airspeed (m/s) AOA (°)
Sideslip angle

(°)
Case distribution in

{0 ~ 5} (%)

Training
B1 AP cruise 327 [9.63, 10.7, 0.35] [227, 252, 9] [-1.3, 0.6, 0.4] [-1.9, 0.4, 0.6] {27, 13, 16, 16, 14, 14}

Y manual LTO 295 [0.03, 0.66, 0.11] [93, 167, 14] [-2.7, 7.7, 1.2] [-2.2, 1.6, 0.3] {28, 14, 13, 13, 18, 14}

Testing

B2 manual LTO 67 − [75, 151, 12] [0.8, 6.7, 0.8] [-1.5, 0.5, 0.3] {28, 20, 14, 11, 16, 11

F manual flight 30 − [80, 141, 21] [10, 11, 45] [-3.8, 9.6, 2.5] {10, 10, 17, 19, 15, 29}

D AP cruise 162 [3.50, 4.00, 0.19] [68, 71, 0.38] [0.5, 3.2, 0.37] [-7.3, 2.7, 2.2] {23, 16, 17, 14, 17, 13}

B2 manual flight 151 [0.01, 1.61, 0.26] [47, 276, 31] [-14, 19, 4] [-8, 5, 1] {29, 16, 11, 14, 14, 16}

Note: [minimum, maximum, stand deviation] of clean altitude and ADS states are characterized; altitude was not recorded in B2 and F real flight.

5International Journal of Aerospace Engineering



(input: available data resources, output: fault case), which we
aim to regress via deep neural networks.

3. Fault Datasets

3.1. Diverse Aircraft and Flight Conditions. Data is crucial for
DNN training and validation. Most previous works dis-
cussed 1 aircraft only. In this paper, we allocate both simula-
tion and real flight data from 5 different aircrafts which
include 1 large cargo airplane (Y [62]), 2 passenger aircrafts
(B1 and B2, [63, 64]), 1 general aviation (D [50, 51]), and 1
fighter aircraft (F [65]). We also involve 6 different flight
conditions to cover the aircraft’s entire envelope, i.e., high,
medium, and low altitudes for both cruise, manual free
flight, and low-altitude landing/take-off cycle (LTO). Differ-
ent control forms from both human pilot (manual) and
automated control laws (autopilot, AP) are also considered.
See Table 1 for more details. In Figure 2, we also plot a sam-
pled data we allocated in our database.

3.2. Measurement Noises and Disturbances. Both simulation
and real flight data are considered in the paper. While mea-
surement noises and disturbances exist naturally in the real
flight, we adopt the model following [66] in simulation. Dry-
den atmospheric disturbances are injected to perturb the
flight states, on which the measurement noises are added
to generate the noise-corrupted data. Measurement noises
are assumed to follow Gaussian process distribution. Stan-
dard deviations for the noise of each sensor are characterized
in Table 2 [17].

3.3. Designated Training and Testing. To avoid the overfit-
ting problem, training and testing data are strictly separated.
We put all the real flight data in testing to fully evaluate the
DNN performance. Diversity is crucial in specifying the
training data, as the training algorithm is expected to extract
from this data for an efficient FD mapping. We therefore
adopt the real data from B2, F, and simulated data from D
and B1 manual flight for testing. As for training, we use
the data from Y manual LTO and B1 AP cruise, see
Table 3. In the table, an overview of the data for each
aircraft/flight condition is also characterized using the

minimum, maximum, and stand deviation of key (clean)
flight states (i.e., altitude, airspeed, AOA, and sideslip angle).

3.4. ADS Fault Modeling and Injection. Different sensor fault
types have been discussed in previous works, which include
ramp bias, oscillations, and drift. For airspeed, most flight
accidents happened due to the pitot tube being clogged by
ice/rain. We thus consider drift fault for airspeed (measure-
ment loss). For AOA and sideslip angles, the deflection
vanes may be stuck or perturbed by external atmosphere,
which causes drift (constant bias) and extra noises. As in
Table 4, a total of 5 ADS fault cases are discussed in this
paper, wherein the magnitude for each case is specified fol-
lowing [51].

We implement the ADS faults in an additive form, i.e.,
the “clean” data (Case 0 in Table 4) are retrieved from real
flight/simulation. Sensor faults are then injected into the
ADS data. Following [51], this injection is performed in a
randomized manner, i.e., for every 60 seconds in the data,
the fault cases occur randomly at randomized moments,
with its duration (also randomized) not exceeding the 60
seconds. In Figure 3, different fault cases are injected to both
airspeed, AOA, and sideslip angle for illustrative purposes.
Table 3 also presents the distribution of different cases in
the final data we adopt for the DNN training/testing.

Airspeed …

…

…

…

…

…
Sideslip

angle

t-𝛥
T

t-𝛥
T+
i𝛥
T/
n t

t-𝛥
T

t-𝛥
T+
i𝛥
T/
n t

t-𝛥
T

t-𝛥
T+
i𝛥
T/
n t

AOA

V0

𝛼0

𝛽0

Vi

𝛼i

𝛽i

Vn
– – –

–––

– – –

𝛼n

𝛽n

…

…

…

…

…

…

V0

𝛼0

𝛽0

Vi

𝛼i

𝛽i

Vn

𝛼n

𝛽n

Figure 4: Data preprocessing for ADS. (a) ADS records are retrieved from real flight/simulation, faults are injected into the records; a time
window (ΔT) is implemented to clip the data, which is further down-sampled to 1Hz. (b) the clipped and downsampled data are stacked as
the matrix. (c) along each row, the states are normalized linearly within the range of [0, 1], which eventually yields a 3 × 31 state image for
the ADS data. Same approaches are also used for accelerations, rotational speeds, etc.

Learning rate Epochs Batch size Val_acc

0.970

0.965

0.9602000

3000

4000

900

900

1000

0.001

0.005

0.01

Figure 5: Illustration of NNI: different parameters set of learning
rate, epochs, and batch size are examined; the combination of
learning rate 0.005, iterative epochs 900, and batch size 2000
yields the optimal DNN training outcome (highest validation
accuracy at 0.972).

6 International Journal of Aerospace Engineering



4. Premise for the DNN-Based ADS
Fault Detection

4.1. A Brief Introduction of CNN and LSTM. We use both
2-dimensional CNN and LSTM in this paper. In CNN
[67], convolutional filters scan the input (e.g., an image), of
which the results are concatenated as feature maps. Multiple
filters yield various feature maps, which being stacked to con-
struct the designated mapping. Activation functions and
pooling operations may also be used, with the former adding
to nonlinearity in the mapping and the latter the noise toler-
ance [50, 51, 68].

LSTM is typically used for sequential data. Different
from the spatial local-connectivity features extraction in
CNN, it aims to abstract the temporal knowledge. Previous
DNN including RNN [67] also targets the temporal features.
RNN, however, may suffer error explosion/vanishing prob-
lems in the training. LSTM adopts gate operations to auto-

matically select the historic input that may be useful in the
mapping. As proved in many works, training efficiency,
mapping accuracy, and deployment cost of LSTM can all
be improved [50, 51].

In coping with the dynamics problem, both CNN and
LSTM may be useful. Via CNN, spatial correlations of differ-
ent states are abstracted. In LSTM, the temporal features of
each state are modeled. Previous works advocated a fusion of
CNN and LSTM in designing the DNN architecture [50, 51]
for parameter identification, icing detection, etc. As there is
not an input explicitly defined as “image,” the key in imple-
menting CNN and LSTM in these problems is to reshape the
dynamic data (e.g., flight states and control commands) into
an image-like format. We detail this in Section 4.2.

4.2. Data Preprocessing. We perform data preprocessing to
generate the image-formatted input to CNN and LSTM,
see Figure 4. Via real flight or simulation, we have the

Co
nv

Co
nv

M
P

Co
nv

Co
nv FL FC FC FC FC

FC FC FC FC FC FC FC

FCFCFC

M
er

ge

Ca
se

64

6

64 128 128

1024 512 256 128

1024 512 256 128 64 32 16

512 256 128

LS
TM

LS
TM

LS
TM

LS
TM

ADS states

3⨯128 3⨯128 3⨯128 128
8⨯128

Rotational speeds

Accelerations

Rotational angles

Figure 6: DNN-full; this “full” architecture adopts both CNN and LSTM operations for all variables that relate to the ADS evolution. CNN
kernel size, filter numbers, LSTM nodes, and fully connection (FC) layers are specified directly following [50, 51]. Conv: convolutional; MP:
max-pooling; FL: flatten.

Table 5: To simplify from a “full” DNN architecture to DNN-final.

Architecture Operations Air data Rotational speeds Accelerations Rotational angles Validation accuracy

DNN-full
CNN ✓ ✓ ✓ ✓

0.925
LSTM ✓ ✓ ✓ ✓

DNN-angles
CNN ✓ ✓ ✓

0.932
LSTM ✓ ✓ ✓

DNN-final
CNN ✓

0.946
LSTM ✓ ✓ ✓

0.96

0.95

0.94

0.93

0.92

0.91

0.90

0.89
800 900 1000850

200 400 600 800 1000
Epoch (–)

Va
lid

at
io

n 
ac

cu
ra

cy
 (–

)

Tr
ai

ni
ng

 lo
ss

 (–
)

200
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

400

DNN-K2

DNN-K1
DNN-final

600 800 1000
Epoch (–)

950

Figure 7: Studies on different CNN kernel sizes. The results are summarized from the training of DNN-final (kernel size 3 × 3), and 2
descendent architectures of DNN-final, i.e. DNN-K2 (kernel size tweaked as 2 × 2) and DNN-K1 (kernel size 1 × 1).

7International Journal of Aerospace Engineering



records of different states. We inject faults into the ADS
states, allocate all other flight data, and stack them into a
2D matrix (middle plot). In this matrix, each row stands
for the historic measurements of a certain state and column
the value of that state at a certain moment. For each group of
the aircraft flight state (e.g., air data, accelerations, rotational
speed, and rotational angles), we stack this matrix separately.

Time window is also used. At each moment t, we con-
sider the flight records in a range from previous t − ΔT to
t (both included), wherein ΔT is 30 s (following [50, 51], this
window may be understood as a compromise between the
aircraft “fast” motion modes of which the periods are in
seconds (e.g., longitudinal short period and lateral roll) and
“slow” modes which typically last for tens/hundreds of
seconds (e.g., longitudinal phugoid and Dutch roll)). For dif-
ferent aircrafts, the data is recorded in various sampling
rates (e.g., 20Hz for B1 and 30HZ for F). We downsample
them to a unified frequency at f s = 1/Δt, wherein Δt = ΔT/
n = ΔT/30 = 1s. We then stack the state matrix using the
resampled data.

In the downsampled flight data, the range of each state
varies significantly (see Table 3). In practice, this may create
numerical difficulties in the DNN training (singularities,
error vanishing/explosion). Normalization is adopted to
process the sampled data. Following [50, 51], this normaliza-
tion is performed linearly along each row of the stacked
matrix. After normalization, the “image” we obtain in the
right plot of Figure 4 is adopted as input to the DNN.

4.3. Experimental Setup. In training/testing the DNN, we
record both training loss and validation accuracy (with all
testing data designated as the validation dataset). Following
[51], we repeatably perform 30 training runs for all DNN
architectures, excluding the best/worst 5 runs, and summa-
rize the outcome via the remained 20 records. We also adopt
Keras (version 2.0.8) API with Tensorflow (version 1.3.0)
as backend in the programming. Our computational plat-
form is configured with CUDA 8.0 and cuDNN 6.0 with
Nvidia driver version 384.69 (GPU: Nvidia GTX2080Ti) in
Windows 10 system (Python 3.7). The platform has one
i9-9900K CPU and 32GB RAM.

8
0.90

0.91

0.92

0.93

0.94

0.95

0.96

16 24 32 40
Number of CNN filters (–)

Va
lid

at
io

n 
ac

cu
ra

cy
 (–

)

48 56 64 72 80

Figure 8: Training outcomes of DNN-K2 (with 64 CNN filters)
and other 9 descendant architectures (Table 6); horizontal axis
indicates the number of CNN filters enclosed in the first
convolutional layer.

84 16 32
Number of LSTM nodes (–)

48 64 1129680 128
0.940

0.950

0.945

0.955

0.960

0.965

0.970

0.975

Va
lid

at
io

n 
ac

cu
ra

cy
 (–

)

Figure 9: Training outcomes of DNN-C48 and other descendant
architectures; horizontal axis indicates the number of nodes
enclosed in the LSTM branches.

Table 6: Different CNN architectures adopted in studying the CNN filter numbers; LSTM branches of all listed architectures remain the
same as in Figure 6.

Architecture Conv (filter no.) Conv (filter no.) MP layer Conv (filter no.) Conv (filter no.) FC layers (FC node no.)
1 8 8 MP 16 16 256 128

2 16 16 MP 32 32 256 128

3 24 24 MP 48 48 512 256 128

4 32 32 MP 64 64 512 256 128

5 40 40 MP 80 80 768 384 192 128

6 48 48 MP 96 96 768 384 192 128

7 56 56 MP 112 112 1024 512 256 128

DNN-K2 64 64 MP 128 128 1024 512 256 128

8 72 72 MP 144 144 1280 640 320 160 128

9 80 80 MP 160 160 1280 640 320 160 128

8 International Journal of Aerospace Engineering



4.4. Optimal DNN Training. As illustrated in following con-
tents, comparative studies are adopted in evaluating the testing
performances of different DNN architectures. Different train-
ing coefficients (e.g. learning rate and batch size in the training
algorithm) may affect the training outcome, hence the testing
results. We thus adopt NNI developed by Microsoft [54].
Given different DNN architectures, NNI probes into the archi-
tecture, analyzes the training data, and decides an optimal
combination of the training parameters, see Figure 5. Via
NNI, different DNN architectures are trained separately in
associated “optimal” manners, which we believe provides
more solid ground for the comparative studies.

5. Development and Study on the DNN-Based
Fault Detection Scheme

Development of the DNN-based FD scheme involves two-
folds: to devise the DNN large architecture and to optimize

the parameters enclosed within, and both are detailed in Sec-
tions 5.1 and 5.2 and verified via ablation studies in 5.3.
Interpretability analysis on the DNN small structure is given
in 5.4. Experiences and lessons we have learned are dis-
cussed in Section 5.5.

5.1. Devising the Large Architecture. In devising the large
architecture, we need to (1) select the DNN input (output
being the fault cases directly) and (2) decide the CNN/LSTM
branches. To the authors’ best knowledge, there does not
exist a universal rule for such issue. We refer to [50, 51]
and start with a “full” architecture in Figure 6 (DNN-full).
In Eq. (1), both accelerations, rotational angles, and rota-
tional speeds relate to the ADS states. DNN-full thus absorbs
all these variables in the input layer and uses both CNN and
LSTM branches to fully extract the features. We follow [50,
51] in specifying the CNN filters/LSTM nodes. NNI is
adopted to decide the optimal training coefficients, and

3⨯31

3⨯31

3⨯31

3⨯31

3⨯31

Convolution+ReLU Convolution+ReLU Max pooling Convolution+ReLU Convolution+ReLU Flatten

64, 2⨯2, stride=1, valid 64, 2⨯2, stride=1, valid 64, 2⨯2, stride=1, valid 64, 2⨯2, stride=1, valid2⨯2

Co
nv

Co
nv M

P

Co
nv

Co
nv FL

M
er

ge

48

6

48

FC
FC

FC

FC FC FC FC FC FC FC

FCFC

FCFC

FCFC

96 96

1024 512 256 128

1024 512 256 128 64 32 16

512 256 128

512 256 128

FCFC

512 256 128
LS

TM
LS

TM
LS

TM

LS
TM

LS
TM

LS
TM

LS
TM

LS
TM

LS
TM

LS
TM

LS
TM

LS
TM

ADS states

Angular speeds

Accelerations

LSTM LSTM LSTMLSTM

128

128

128

128…

…

…

128

128

128

128

128

128

128

128

128

3⨯1283⨯1283⨯128 128

3⨯1283⨯1283⨯128 128

3⨯1283⨯128

3⨯128 3⨯128 3⨯128

3⨯128 128

FC

4⨯128

Fa
ul

t
ca

se

Figure 10: The DNN-opt architecture.

200
0

0.2

0.4

0.6

0.8

1.0

400 600 800 1000
Epoch (–)

200 400 600 800 1000
Epoch (–)

Va
lid

at
io

n 
ac

cu
ra

cy
 (–

)

0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 lo
ss

 (–
)

Figure 11: Training history of DNN-opt; green indicates the 30 independent runs, and red the summarized outcome (averaged value
excluding the best/worst 5 runs).

9International Journal of Aerospace Engineering



training outcome in Table 5 yields promising results (valida-
tion accuracy 0.925).

Starting with DNN-full, we proceed to simplify the DNN
architecture (whilst the performance still needs to be guar-
anteed). Referring to Eq. (3), the input of rotational angles
may be redundant, as they can be completely calculated
using rotational speeds. Input branches of the rotational
angles are then cropped from DNN-full, and the rest
remained unchanged as DNN-angles (Table 5). Again via
NNI, DNN-angles are trained in an optimal manner, which
yields an even better outcome when compared with DNN-
full (validation accuracy 0.932).

The better training outcome of DNN-angles provides an
import cue in devising the DNN architecture: whilst input
(e.g., data resources) and operations (e.g., CNN and LSTM)
enclosed within the DNN must be complete, the architecture
should be as simple as possible—to render the training load
lighter. In DNN-angles, referring to Eq. (1), we consider the
that input air data, accelerations, and rotational speeds are
complete (all necessary), as they are all independently

related with the ADS evolution in (1). However, CNN is typ-
ically used to abstract the coupling effects. While the cou-
pling does exist in air data, the 3 states of rotational speeds
and accelerations are considered uncoupled as each state is
generated via independent control actions. We thus exclude
CNN in the rotational speeds and acceleration branches and
propose the DNN-final architecture (Table 5). Again via
NNI, an optimal training outcome of DNN-final yields per-
formances even better than DNN-angles (0.946). DNN-final
also yields the architecture we adopt in developing the
DNN-based FD scheme.

5.2. Optimizing the Large Structure Parameters. In the previ-
ous chapter, via gradually cropping the DNN architecture
and investigating the training outcome, we adopt DNN-
final. Whilst this architecture is further verified in the next
chapter via ablation studies, in this chapter, we focus on
DNN-final and seek to find the optimal large structure
parameters. In particular, we aim to find the best CNN

Table 7: Confusion matrix in testing the DNN-opt.

Aircraft and condition FD accuracy in cases {0-5} (%) Aircraft and condition FD accuracy in cases {0-5} (%)

B2 manual LTO

92.08 0.40 0.24 1.28 3.16 2.84

D AP cruise

93.66 0 0 2.46 2.16 1.72

7.24 92.43 0 0 0.33 0 0 100 0 0 0 0

3.54 0 90.16 2.97 1.63 1.70 0.06 0 96.64 0.47 1.53 1.30

2.18 0 0.07 96.70 0 1.05 2.28 0 0.78 95.52 0 1.42

3.27 0 0 0.08 95.83 0.82 3.32 0 0.14 0.34 94.98 1.22

1.71 0 0.47 0.54 0.31 96.97 3.95 0 0.25 0.67 0.34 94.79

Aircraft and condition FD accuracy in cases {0-5} (%) Aircraft and Condition FD accuracy in cases {0-5} (%)

F manual flight

90.00 0 0 0 2.00 8.00

B1 manual flight

98.44 0 0 0 0.39 1.17

0 100 0 0 0 0 0 100 0 0 0 0

0 0 100 0 0 0 0 0 96.65 0 1.12 2.23

0 0 0 100 0 0 1.27 0 0 95.55 0 3.18

1.67 0 0 0 98.33 0 0 0 0 0 100 0

0.56 0 2.23 0 0 97.21 4.46 0 1.27 3.82 0 90.45

Table 8: Ablation studies on DNN-opt.

Architecture Operations Air data Rotational speeds Accelerations Validation accuracy

DNN-opt
CNN ✓

0.972
LSTM ✓ ✓ ✓

opt-accLSTM
CNN ✓

0.945
LSTM ✓ ✓

opt-spdLSTM
CNN ✓

0.893
LSTM ✓ ✓

opt-adsLSTM
CNN ✓

0.875
LSTM ✓ ✓

opt-allLSTM
CNN ✓

0.773
LSTM

opt-adsCNN
CNN

0.668
LSTM ✓ ✓ ✓

10 International Journal of Aerospace Engineering



kernel size and decide the optimal CNN filters/LSTM node
number in DNN-final.

5.2.1. CNN Kernel Size. In DNN-final, we follow [50, 51] and
adopt a 3 × 3 CNN kernel size. The input size in this paper,
however, is smaller (3 × 31) than in [50, 51] (11 × 31). We
thus study 3 different CNN kernel sizes, i.e., 3 × 3, 2 × 2,
and 1 × 1, see Figure 7. Based on the comparative results in
the figure, kernel size 2 × 2 yields the best training outcome
(i.e., DNN-K2).

DNN-K2 corresponds to the physical understanding of
convolutional operations. On the one hand, although 1 × 1
kernels have appeared in literature to provide a delicate
scanning on the input [69], the essence of CNN filters is to
extract local-connectivity features. A kernel is imminent
for “patching” the features. DNN-K1 in Figure 7 thus yields
the worst performance. On the other hand, a full kernel
which operates on the whole input dimension (e.g., 3 × 3
in our case for the 3 × 31 image) has appeared [70], which
was claimed to provide a panoramic view of the entire
image, but a larger CNN kernel may render the training
more difficult, hence jeopardizing the training outcome, as
yielded by DNN-final in Figure 7. In the following contents,
we perform the iterative studies all starting with DNN-K2.

5.2.2. CNN Filter Numbers. Based on DNN-K2, we proceed
to decide how many filters should be used in each layer of
the CNN. In DNN-K2, we use 64 filters for 2 consecutive
CNN layers, followed by another 2 layers with 128 filters,
with a max-pooling layer laid in between. In our studies,
we retain this structure and inflate/deflate CNN filter num-
bers in the 4 layers synchronously, thus creating a total of
9 descendant architectures (Table 6). Note that in the table,
subsequent fully connection layers are also tuned to match
the CNN output size. Training outcomes of the 10 architec-
tures in Table 6 are plotted in Figure 8, wherein 48 CNN
filters yields the best performance.

The plots in Figure 8 correspond to the understanding of
CNN filters. To start with, multiple CNN filters must be
used to stack various features. With more filters being
adopted in the CNN, the performance may elevate. How-
ever, there also exists a certain level of CNN filters that yields
“saturated” feature extraction which is illustrated by the pla-
teau in Figure 8. We mark the DNN-K2 with 48 CNN filters
as DNN-C48, starting from which we perform the iterative
studies on LSTM node number in following contents.

5.2.3. LSTM Node Numbers. In DNN-C48, all LSTM opera-
tions remain unchanged as in [50, 51], and 128 LSTM nodes
are used ubiquitously in all LSTM layers. We retain the CNN
branches in DNN-C48, tweak the node number in all LSTM
layers (synchronously), and create multiple descendant
architectures. Again, via NNI, we perform optimal training
for all these architectures. The associated training results
are shown in Figure 9. Clearly, the training outcome reaches
a peak at 16 nodes.

In Figure 9, starting from 4 nodes to 16, we observe an
almost linear elevation in the training outcome—this proba-
bly is due to the relative simple activation functions being

used in the LSTM, and more LSTM nodes provides better
performance as more temporal features are extracted. After
the 16 nodes, however, there exists a slow drop (also almost
linear) towards 80 nodes, mainly due to the heavier LSTM
training load. The plateau is again found after 80 nodes,
and the reason is similar: LSTM node number is saturated
already; purely increasing the LSTM nodes will not elevate
the performance.

5.2.4. DNN-Opt. In Sections 5.2.1-5.2.3, we optimize the
large structure parameters enclosed within DNN-final. We
mark the best DNN-final descendant as DNN-opt (CNN

–

–

V (–)

–
𝛼 (–)

–
𝛽 (–)

1

0.5
0

1

0.5

0

1

0.5

0
1 11 21

Time windows (30s)
31

Figure 13: Normalized flight records for features visualization; as
in Figure 4, the data has been downsampled to 1Hz; the sideslip
drift fault occurs at last 1/3 of the window, i.e., 21 ~ 31 s.

Figure 14: State image visualization for the records in Figure 13;
width of the image corresponds to the time window (30s), and
the 3 rows (from top to bottom) indicate normalized airspeed,
AOA, and sideslip angle, respectively; the sideslip drift fault is
marked with a red box.

DNN-op
t

Opt-a
ccL

ST
M

Opt-s
pdLST

M
Opt-a

dsLST
M

Opt-a
llL

ST
M

Opt-a
dsLST

M

Va
lid

at
io

n 
ac

cu
ra

cy
 (–

) 0.95
1

0.90
0.85
0.80
0.75

0.65
0.80

Figure 12: Ablation studies on DNN-opt. Specifics of each ablated
architecture are presented in Table 6. DNN-opt yields the best
validation accuracy at 0.972.

11International Journal of Aerospace Engineering



kernel size 2 × 2, filter number 48, and LSTMnode number 16)
and detail its architecture in Figure 10. Via NNI, training
coefficients of DNN-opt are optimized in Figure 5. Training
histories of DNN-opt are illustrated in Figure 11.

We also implement DNN-opt for the testing data in
Section 3 and characterize the testing confusion matrix in
Table 7. In the table, the FD accuracies in 6 different cases
(see Table 4) for 4 different aircraft and conditions (see
Table 3) were investigated. In the confusion matrix for each
aircraft and condition, the horizontal direction indicates the
real cases and vertical the detected cases from DNN-opt.
Shadowed diagonal elements in the matrix represents the
detection accuracy for each case, and the offdiagonal values
indicate wrong detection rates (e.g., 2.46% in the D AP cruise
matrix indicates that 2.46% of the real case 3 data were detected
as case 0 via DNN-opt). As shown in the table, DNN-opt yields
promising results (90% accuracy) in the ADS fault detection
problem for all 4 aircraft at diverse flight conditions.

5.3. Ablation Studies on Large Structure. The DNN-opt
architecture originates from DNN-final, which was obtained
via cropping redundant operations from DNN-full architec-
ture. In this part, we verify the DNN-opt architecture via
ablation studies, see Table 8 and Figure 12. We crop the
LSTM and CNN branches for designated inputs from
DNN-opt, optimize the training of the remained part via
NNI, and investigate the training outcomes. As found in
Table 8 and Figure 12, convolution of the air data branch
in DNN-opt relates to the DNN-opt performance most sig-
nificantly (accuracy of opt-adsCNN drops most drastically).
This corresponds to the previous analysis in cropping from

DNN-full to DNN-final: convolution strives to abstract the
coupling effects of the input; in our case, we rely primarily
on the correlations in air data to assert the fault. Although
other structures (e.g., LSTM for accelerations and opt-
accLSTM) does not relate as significantly as the air data con-
volution, the associated performances still deteriorate from
the best DNN-opt. The results in Table 8 and Figure 12
prove that DNN-opt claims the best performance as com-
pared with other ablated structures.

5.4. Interpretable Analysis on Small Structure. We explore to
interpret the air data convolutional operations in DNN-opt,
as it affects the DNN-opt performance most significantly. In
Figure 13, flight records corresponding to fault case 4
(Table 4, sideslip angle drift) are plotted. The associated state
image is stacked in Figure 14. Features abstracted in the 4
convolution layers in DNN-opt are shown in Figures 15–
18. Note that we adopt “same” padding in DNN-opt, and
feature dimension exported from the first 2 convolutional
layers thus remains the same as input state image. The high-
lighted features on Figures 15 and 16 corresponds to the
fault occurrence marked with red box in Figure 14 (last 1/3
of the time window, i.e., 21 ~ 31 s). In the second 2 convolu-
tional layers after the max-pooling, size of the features is
reduced to half; the highlighted features also reflect the fault
marked on Figure 14 (last 1/3 along the horizontal axis).

To better illustrate the feature extraction in DNN-opt,
we adopt the class activation mapping (CAM) technique
proposed in [61] and visualize the CAM plots for the 6 cases
separately in Figure 19. For illustrative purposes, the state
image imported to DNN-opt is also shown on the left of

Figure 15: Feature visualization of the first convolution layer (48 in total).

12 International Journal of Aerospace Engineering



the figure. Note that a “hotter” mapping on CAM indicates
the highlighted regions that convolution hinges on to assert
the FD output. In Figure 19, CAM corresponds to the gen-
eral understanding of the FD problem, as the highlighted
hotter (red) regions overlap the areas that the fault occurs
(marked with red).

5.5. Experiences and Lessons. In Sections 5.1-5.4, we have
completed the training/testing of DNN-opt; explainability
and interpretability analysis is also presented. In this part,

we summarize our experiences and lessons in developing
the DNN-based FD scheme:

Start with a “full” DNN. Iterative studies are usually
adopted in devising the DNN large structure and optimizing
the associated parameters. This iteration, however, must start
from a certain architecture. Although there still lacks a rule
as to how to initialize such a DNN architecture, staring from
a “full” one proves to be effective in our work (i.e., DNN-full).
The full DNN should involve all available data sources in the
input layer and implement all potentially useful DNN

Figure 16: Feature visualization of the second convolution layer (48 in total).

Figure 17: Feature visualization of the third convolution layer (96 in total).

13International Journal of Aerospace Engineering



operations to fully extract the features (e.g., CNN for spatial
and LSTM for temporal).

(i) Simplify the architecture: although redundant
inputs/operations in the DNN architecture may
provide extra information in extracting the features,
the training load is usually high. The DNN architec-
ture should be simplified (cropped) as much as pos-
sible, to the point that an accuracy plateau/peak is
found (e.g., DNN-C48 in our work)

(ii) The iteration policy: multiple large structure param-
eters need to be studied in simplifying the DNN
architecture (e.g., CNN kernel size and filter num-
ber). Whilst we suggest to study one parameter at
a time, the iteration policy is eminent: which to iter-
ate first. In our studies, we have tried different com-
binations in iterating the CNN kernel size, CNN
filter number, and LSTM node number and decided
the work presented in the paper prove to be most
effective. In other related works, more parameters
may need to be tuned (e.g., fully connection node
number); similar policy still needs to be studied

(iii) Explainability and interpretability analysis: neural
networks were long considered as a “black box”.
Recent developments in computer vision and
natural language processing, however, indicate that
certain rules do exist in explaining (devising) the
DNN large structure, and the enclosed operations
correspond to what humans understand. Similar
concepts/approaches are advocated in developing/
analyzing the DNN-based FD schemes (e.g.,
ablation studies and CAM which claim promising
results in our work)

6. Conclusion and Future Works

Exemplifying the fault detection (FD) problem of aircraft
air data sensors, we aim to develop a robust DNN-based
FD scheme in this paper. We model the FD problem using
aircraft inertial referent unit measurements as equivalent
inputs and construct a dedicated database which involves
different aircraft/conditions; both provide a solid basis in
training/testing the DNN. In devising the DNN architec-
ture, we adopt iterative studies on specifying the large
structures and optimizing the parameters enclosed within.
Ablation studies are also adopted to explain the con-
structed DNN architecture. Whilst the developed DNN
yields promising training/testing performances, we adopt
methods widely adopted in computer vision (i.e., feature
visualization and CAM) in interpreting the DNN small
structure operations, which correspond to what humans
understand in similar contexts. Combining all the above,
the developed DNN is considered robust: performance
accurate and scalable, large structure explainable, and small
structure interpretable.

As a continuation of the work, we plan to implement
similar formulations to other FD problems, e.g., aircraft
actuators faults and communication datalink failures in
commercial airlines. Interpretation of other operations (e.g.,
LSTM) in the fault detection context will also be studied.

Figure 18: Feature visualization of the fourth convolution layer (96 in total).

Figure 19: Illustrative CAM plots for the 6 cases (top to bottom,
cases 0 ~ 5 in Table 4); the highlighted (red hot) features
correspond to the faults occurred on the state image (marked
with red boxes).

14 International Journal of Aerospace Engineering



Data Availability

Data is available upon request to the corresponding author.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was sponsored by the Shanghai Sailing Program
under Grant No. 20YF1402500 and Natural Science Founda-
tion of Shanghai under Grant No. 22ZR1404500.

References

[1] J. Levine, X-31’s loss, 2004, Accessed September 2020 URL
http://www.nasa.gov/centers/dryden/news/X-Press/stories/
2004/013004/new_x31.html.

[2] F. Bureau d’Enquetes, et d’Analyses pour la securite de l’avia-
tion civile, Paris, Report 3: on the accident on 1 june 2009 To
the Airbus a330–203 Registered f-Gzcp Operated by Air France
Flight Af 447 Rio de Janeiro–Paris, 2011, Accessed September
2020 URL https://www.bea.aero/docspa/2009/f-cp090601e3
.en/pdf/f-cp090601e3.en.pdf.

[3] FAA, FAA Updates on Boeing 737 MAX, 2020, Accessed Octo-
ber, 2020 https://www.faa.gov/news/updates/?newsId=93206.

[4] P. Goupil, J. Boada-Bauxell, A. Marcos, E. Cortet, M. Kerr, and
H. Costa, “Airbus efforts towards advanced real-time fault
diagnosis and fault tolerant control,” IFAC Proceedings Vol-
umes, vol. 47, no. 3, pp. 3471–3476, 2014.

[5] E. Dubrova, Fault-tolerant design, Springer, 2013.
[6] P. Goupil, “Airbus state of the art and practices on FDI and

FTC in flight control system,” Control Engineering Practice,
vol. 19, no. 6, pp. 524–539, 2011.

[7] J. Marzat, H. Piet-Lahanier, F. Damongeot, and E. Walter,
“Model-based fault diagnosis for aerospace systems: a survey,”
Proceedings of the Institution of Mechanical Engineers, Part G:
Journal of Aerospace Engineering, vol. 226, no. 10, pp. 1329–
1360, 2012.

[8] S. Hussain, M.Mokhtar, and J. M. Howe, “Sensor failure detec-
tion, identification, and accommodation using fully connected
cascade neural network,” IEEE Transactions on Industrial Elec-
tronics, vol. 62, no. 3, pp. 1683–1692, 2014.

[9] S. Hussain, M. Mokhtar, and J. M. Howe, “Aircraft sensor esti-
mation for fault tolerant flight control system using fully con-
nected cascade neural network,” in The 2013 International
Joint Conference on Neural Networks (IJCNN), pp. 1–8, IEEE,
2013.

[10] M. L. Fravolini, G. Del Core, U. Papa, P. Valigi, and M. R.
Napolitano, “Data548 driven schemes for robust fault detec-
tion of air data system sensors,” IEEE Transactions on Control
Systems Technology, vol. 27, no. 1, pp. 234–248, 2017.

[11] M. L. Fravolini, M. Rhudy, S. Gururajan, S. Cascianelli, and
M. Napolitano, “Experimental evaluation of two pitot free ana-
lytical redundancy techniques for the estimation of the air-
speed of an UAV,” SAE International Journal of Aerospace,
vol. 7, no. 1, pp. 109–116, 2014.

[12] S. Gururajan, M. L. Fravolini, H. Chao, M. Rhudy, and M. R.
Napolitano, “Performance evaluation of neural network based
approaches for airspeed sensor failure accommodation on a

small UAV,” in 21st Mediterranean Conference on Control
and Automation, pp. 603–608, IEEE, 2013.

[13] M. Kordestani, M. Saif, M. E. Orchard, R. Razavi-Far, and
K. Khorasani, “Failure prognosis and applications—a survey
of recent literature,” IEEE transactions on reliability, vol. 70,
no. 2, pp. 728–748, 2019.

[14] M. Rezamand, M. Kordestani, R. Carriveau, D. S. Ting, M. E.
Orchard, and M. Saif, “Critical wind turbine components
prognostics: a comprehensive review,” IEEE Transactions on
Instrumentation and Measurement, vol. 69, no. 12, pp. 9306–
9328, 2020.

[15] R. Meyes, M. Lu, C. W. de Puiseau, and T. Meisen, “Ablation
studies in artificial neural networks,” http://arxiv.org/abs/
1901.08644.

[16] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba,
“Learning deep features for discriminative localization,” in
Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pp. 2921–2929, 2016.

[17] L. Van Eykeren and Q. Chu, “Sensor fault detection and
isolation for aircraft control systems by kinematic rela-
tions,” Control Engineering Practice, vol. 31, pp. 200–210,
2014.

[18] M. Ariola, M. Mattei, I. Notaro, F. Corraro, and A. Sollazzo,
“An SFDI observer–based scheme for a general aviation air-
craft,” International Journal of Applied Mathematics and Com-
puter Science, vol. 25, no. 1, pp. 149–158, 2015.

[19] Q. He, W. Zhang, P. Lu, and J. Liu, “Performance comparison
of representative model-based fault reconstruction algorithms
for aircraft sensor fault detection and diagnosis,” Aerospace
Science and Technology, vol. 98, p. 105649, 2020.

[20] P. Lu, L. Van Eykeren, E.-J. Van Kampen, Q. P. Chu, and
B. Yu, “Adaptive hybrid unscented Kalman filter for aircraft
sensor fault detection, isolation and reconstruction,” in AIAA
Guidance, Navigation, and Control Conference, 2014.

[21] P. Lu, L. Van Eykeren, E. Van Kampen, C. De Visser, and
Q. Chu, “Adaptive three-step Kalman filter for air data sensor
fault detection and diagnosis,” Journal of Guidance, Control,
and Dynamics, vol. 39, no. 3, pp. 590–604, 2016.

[22] P. Lu, L. Van Eykeren, E.-J. Van Kampen, and Q. P. Chu, “Air
data sensor fault detection and diagnosis with application to
real flight data,” in AIAA Guidance, Navigation, and Control
Conference, 2015.

[23] D. Berdjag, J. Cieslak, and A. Zolghadri, “Fault detection and
isolation of aircraft air data/inertial system,” Progress in Flight
Dynamics, Guidance, Navigation, Control, Fault Detection,
and Avionics, vol. 6, pp. 317–332, 2013.

[24] K. Rudin, G. J. Ducard, and R. Y. Siegwart, “A sensor fault
detection for aircraft using a single Kalman filter and hidden
Markov models,” in 2014 IEEE Conference on Control Applica-
tions (CCA), pp. 991–996, IEEE, 2014.

[25] P. Freeman, P. Seiler, and G. J. Balas, “Air data system fault
modeling and detection,” Control Engineering Practice,
vol. 21, no. 10, pp. 1290–1301, 2013.

[26] M. Mattei and G. Paviglianiti, “Managing sensor hardware
redundancy on a small commercial aircraft with H∞ FDI
observers,” IFAC Proceedings Volumes, vol. 38, no. 1,
pp. 347–352, 2005.

[27] F. Amato, C. Cosentino, M. Mattei, and G. Paviglianiti, “A
direct/functional redundancy scheme for fault detection and
isolation on an aircraft,” Aerospace Science and Technology,
vol. 10, no. 4, pp. 338–345, 2006.

15International Journal of Aerospace Engineering

http://www.nasa.gov/centers/dryden/news/X-Press/stories/2004/013004/new_x31.html
http://www.nasa.gov/centers/dryden/news/X-Press/stories/2004/013004/new_x31.html
https://www.bea.aero/docspa/2009/f-cp090601e3.en/pdf/f-cp090601e3.en.pdf
https://www.bea.aero/docspa/2009/f-cp090601e3.en/pdf/f-cp090601e3.en.pdf
https://www.faa.gov/news/updates/?newsId=93206
http://arxiv.org/abs/1901.08644
http://arxiv.org/abs/1901.08644


[28] Y. Xue, Z. Zhen, L. Yang, and L. Wen, “Adaptive fault-tolerant
control for carrier-based uav with actuator failures,” Aerospace
Science and Technology, vol. 107, p. 106227, 2020.

[29] Y. Wan and T. Keviczky, “Real-time fault-tolerant moving
horizon air data estimation for the reconfigure benchmark,”
IEEE Transactions on Control Systems Technology, vol. 27,
no. 3, pp. 997–1011, 2018.

[30] Y. Wan, T. Keviczky, and M. Verhaegen, “Robust air data
sensor fault diagnosis with enhanced fault sensitivity using
moving horizon estimation,” in 2016 American control confer-
ence (ACC), pp. 5969–5975, IEEE, 2016.

[31] Y. Wan and T. Keviczky, “Implementation of real-time mov-
ing horizon estimation for robust air data sensor fault diagno-
sis in the reconfigure benchmark,” IFAC-PapersOnLine,
vol. 49, no. 17, pp. 64–69, 2016.

[32] P. Castaldi, N. Mimmo, and S. Simani, “Avionic air data sensors
fault detection and isolation by means of singular perturbation
and geometric approach,” Sensors, vol. 17, no. 10, p. 2202, 2017.

[33] P. Castaldi, W. Geri, M. Bonfe, S. Simani, and M. Benini,
“Design of residual generators and adaptive filters for the
FDI of aircraft model sensors,” Control Engineering Practice,
vol. 18, no. 5, pp. 449–459, 2010.

[34] X. Zhu, J. Chen, and Z. H. Zhu, “Adaptive learning observer
for spacecraft attitude control with actuator fault,” Aerospace
Science and Technology, vol. 108, 2021.

[35] P. Rosa and C. Silvestre, “Fault detection and isolation of LPV
systems using set-valued observers: an application to a fixed-
wing aircraft,” Control Engineering Practice, vol. 21, no. 3,
pp. 242–252, 2013.

[36] R. Toscano and P. Lyonnet, “Diagnosis of the industrial sys-
tems by fuzzy classification,” ISA Transactions, vol. 42, no. 2,
pp. 327–335, 2003.

[37] M. Mousavi, M. Moradi, A. Chaibakhsh, M. Kordestani, and
M. Saif, “Ensemble based fault detection and isolation of an
industrial gas turbine,” in 2020 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), pp. 2351–2358,
IEEE, 2020.

[38] M. Kordestani, M. Rezamand, M. Orchard, R. Carriveau,
D. Ting, and M. Saif, “Planetary gear faults detection in wind
turbine gearbox based on a ten years historical data from three
wind farms,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 10318–
10323, 2020.

[39] Y. Tan, J. Zhang, H. Tian et al., “Multi-label classification for
simultaneous fault diagnosis of marine machinery: a compar-
ative study,” Ocean Engineering, vol. 239, p. 109723, 2021.

[40] L. Garbarino, G. Zazzaro, N. Genito, G. Fasano, and
D. Accardo, “Neural network based architecture for fault
detection and isolation in air data systems,” in 2013 IEEE/
AIAA 32nd Digital Avionics Systems Conference (DASC)IEEE.

[41] M. Kordestani, M. F. Samadi, and M. Saif, “A distributed fault
detection and isolation method for multifunctional spoiler sys-
tem,” in 2018 IEEE 61st international Midwest symposium on
circuits and systems (MWSCAS), pp. 380–383, IEEE, 2018.

[42] A. Abbaspour, P. Aboutalebi, K. K. Yen, and A. Sargolzaei,
“Neural adaptive observer-based sensor and actuator fault
detection in nonlinear systems: application in UAV,” ISA
Transactions, vol. 67, pp. 317–329, 2017.

[43] M. L. Fravolini, M. R. Napolitano, G. Del Core, and U. Papa,
“Experimental interval models for the robust fault detection
of aircraft air data sensors,” Control Engineering Practice,
vol. 78, pp. 196–212, 2018.

[44] Y. Dong, J. Tao, Y. Zhang, W. Lin, and J. Ai, “Deep learning in
aircraft design, dynamics, and control: review and prospects,”
IEEE Transactions on Aerospace and Electronic Systems,
vol. 57, no. 4, pp. 2346–2368, 2021.

[45] H. A. Talebi, K. Khorasani, and S. Tafazoli, “A recurrent
neural-network-based sensor and actuator fault detection
and isolation for nonlinear systems with application to the sat-
ellite’s attitude control subsystem,” IEEE Transactions on Neu-
ral Networks, vol. 20, no. 1, pp. 45–60, 2008.

[46] M. Chen, P. Shi, and C.-C. Lim, “Adaptive neural fault-
tolerant control of a 3-DOF model helicopter system,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems,
vol. 46, no. 2, pp. 260–270, 2015.

[47] E. Sobhani-Tehrani, H. A. Talebi, and K. Khorasani, “Hybrid
fault diagnosis of nonlinear systems using neural parameter
estimators,” Neural Networks, vol. 50, pp. 12–32, 2014.

[48] L. Chen, J. Cao, K. Wu, and Z. Zhang, “Application of general-
ized frequency response functions and improved convolutional
neural network to fault diagnosis of heavy-duty industrial
robot,” Robotics and Computer-Integrated Manufacturing,
vol. 73, p. 102228, 2022.

[49] R. M. Souza, E. G. Nascimento, U. A. Miranda, W. J. Silva, and
H. A. Lepikson, “Deep learning for diagnosis and classification
of faults in industrial rotating machinery,” Computers &
Industrial Engineering, vol. 153, p. 107060, 2021.

[50] Y. Dong, “An application of deep neural networks to the in-
flight parameter identification for detection and characteriza-
tion of aircraft icing,” Aerospace Science and Technology,
vol. 77, pp. 34–49, 2018.

[51] Y. Dong, “Implementing deep learning for comprehensive air-
craft icing and actuator/sensor fault detection/identification,”
Engineering Applications of Artificial Intelligence, vol. 83,
pp. 28–44, 2019.

[52] B. Eroglu, M. C. Sahin, and N. K. Ure, “Autolanding control
system design with deep learning based fault estimation,”
Aerospace Science and Technology, vol. 102, 2020.

[53] Y. Lin, J.-W. Zhang, and H. Liu, “Deep learning based short-
term air traffic flow prediction considering temporal–spatial
correlation,” Aerospace Science and Technology, vol. 93, 2019.

[54] Microsoft, NNIhttps://github.com/microsoft/nni.

[55] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
for hyper-parameter optimization,” Advances in neural infor-
mation processing systems, vol. 24, 2011.

[56] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh,
and D. Batra, “Grad-CAM: visual explanations from deep net-
works via gradient-based localization,” in Proceedings of the
IEEE international conference on computer vision, pp. 618–
626, 2017.

[57] A. Chattopadhay, A. Sarkar, P. Howlader, and V. N.
Balasubramanian, “Grad-CAM++: generalized gradient-
based visual explanations for deep con-volutional networks,”
in 2018 IEEE winter conference on applications of computer
vision (WACV), pp. 839–847, IEEE, 2018.

[58] D. Omeiza, S. Speakman, C. Cintas, and K. Weldermariam,
“Smooth Grad-CAM++: an enhanced inference level visuali-
zation technique for deep convolutional neural network
models,” http://arxiv.org/abs/1908.01224.

[59] H. Wang, Z. Wang, M. Du et al., “Score-CAM: score-weighted
visual explanations for convolutional neural networks,” in Pro-
ceedings of the IEEE/CVF conference on computer vision and
pattern recognition workshops, pp. 24-25, 2020.

16 International Journal of Aerospace Engineering

https://github.com/microsoft/nni
http://arxiv.org/abs/1908.01224


[60] H. Wang, R. Naidu, J. Michael, and S. S. Kundu, “SS-CAM:
smoothed score-CAM for sharper visual feature localization,”
http://arxiv.org/abs/2006.14255.

[61] S. Desai and G. Ramaswamy, “Ablation-CAM: visual explana-
tions for deep convolutional network via gradient-free local-
ization,” in Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pp. 983–991, 2020.

[62] Y. Dong, Y. Zhang, and J. Ai, “Full-altitude attitude angles
envelope and model predictive control-based attitude angles
protection for civil aircraft,” Aerospace Science and Technol-
ogy, vol. 55, pp. 292–306, 2016.

[63] L. Höhndorf, J. Siegel, J. Sembiring, P. Koppitz, and
F. Holzapfel, “Reconstruction of aircraft states during landing
based on quick access recorder data,” Journal of Guidance,
Control, and Dynamics, vol. 40, no. 9, pp. 2393–2398, 2017.

[64] R. C. Nelson, Flight Stability and Automatic Control, vol. 2,
WCB/McGraw Hill New York, 1998.

[65] V. Klein, T. R. Ratvasky, and B. R. Cobleigh, Aerodynamic
parameters of high-angle-of attack research vehicle (HARV)
estimated from flight data, NASA, NASA-TM-102692, 1990.

[66] Department of Defense, Flying Qualities of Piloted Aircraft,
1997, Accessed October 2020 URL https://cafe.foundation/
v2/pdf_tech/Flying.Qualities/PAV.FlyQual.Mil1797A.pdf.

[67] I. Goodfellow, A. Courville, and Y. Bengio, Deep Learning,
vol. 1, MIT press Cambridge, 2016.

[68] Y. Dong, “Deep learning-based opponent aircraft attitude
detection in autonomous air combat,” Journal of Aerospace
Information Systems, vol. 16, no. 4, pp. 162–167, 2019.

[69] M. Lin, Q. Chen, and S. Yan, Network in network, http://arxiv
.org/abs/1312.4400.

[70] M. Tan and Q. V. Le,Mixconv: Mixed depthwise convolutional
kernelshttp://arxiv.org/abs/1907.09595.

17International Journal of Aerospace Engineering

http://arxiv.org/abs/2006.14255
https://cafe.foundation/v2/pdf_tech/Flying.Qualities/PAV.FlyQual.Mil1797A.pdf
https://cafe.foundation/v2/pdf_tech/Flying.Qualities/PAV.FlyQual.Mil1797A.pdf
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1907.09595

	Robust Data-Driven Fault Detection: An Application to Aircraft Air Data Sensors
	1. Introduction
	1.1. Motivation
	1.2. Related Work
	1.2.1. Model-Based FD
	1.2.2. Data-Driven FD
	1.2.3. Explainability/Interpretability Analysis of DNN Large/Small Structures

	1.3. Overview of This Paper

	2. Problem Definition
	3. Fault Datasets
	3.1. Diverse Aircraft and Flight Conditions
	3.2. Measurement Noises and Disturbances
	3.3. Designated Training and Testing
	3.4. ADS Fault Modeling and Injection

	4. Premise for the DNN-Based ADS Fault Detection
	4.1. A Brief Introduction of CNN and LSTM
	4.2. Data Preprocessing
	4.3. Experimental Setup
	4.4. Optimal DNN Training

	5. Development and Study on the DNN-Based Fault Detection Scheme
	5.1. Devising the Large Architecture
	5.2. Optimizing the Large Structure Parameters
	5.2.1. CNN Kernel Size
	5.2.2. CNN Filter Numbers
	5.2.3. LSTM Node Numbers
	5.2.4. DNN-Opt

	5.3. Ablation Studies on Large Structure
	5.4. Interpretable Analysis on Small Structure
	5.5. Experiences and Lessons

	6. Conclusion and Future Works
	Data Availability
	Conflicts of Interest
	Acknowledgments

