
Research Article
Reinforcement Learning for Computational Guidance of Launch
Vehicle Upper Stage

Shiyao Li ,1 Yushen Yan ,1 Hao Qiao ,2 Xin Guan ,1 and Xinguo Li 1,3

1School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China
2Xi’an Modern Control Technology Research Institute, Xi’an 710065, China
3National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi’an 710072, China

Correspondence should be addressed to Shiyao Li; lishiyao@mail.nwpu.edu.cn

Received 9 March 2022; Revised 5 May 2022; Accepted 25 May 2022; Published 7 June 2022

Academic Editor: Franco Bernelli-Zazzera

Copyright © 2022 Shiyao Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This manuscript investigates the use of a reinforcement learning method for the guidance of launch vehicles and a computational
guidance algorithm based on a deep neural network (DNN). Computational guidance algorithms can deal with emergencies
during flight and improve the success rate of missions, and most of the current computational guidance algorithms are based
on optimal control, whose calculation efficiency cannot be guaranteed. However, guidance-based DNN has high computational
efficiency. A reward function that satisfies the flight process and terminal constraints is designed, then the mapping from state
to control is trained by the state-of-the-art proximal policy optimization algorithm. The results of the proposed algorithm are
compared with results obtained by the guidance-based optimal control, showing the effectiveness of the proposed algorithm. In
addition, an engine failure numerical experiment is designed in this manuscript, demonstrating that the proposed algorithm
can guide the launch vehicle to a feasible rescue orbit.

1. Introduction

This manuscript studies the computational guidance algo-
rithm based on DNN. Lu [1] proposed the concept of “com-
putational guidance and control,” in which the generation of
guidance and control commands relies extensively on
onboard computation and does not require a specified refer-
ence trajectory.

So far, most of the research on computational guidance
is based on the optimal trajectory planning problem. The
primary aim of the trajectory planning algorithm is to solve
the optimal control problem (OCP), which is generally based
on nonlinear dynamics and achieves specific performance
indicators under the constraints of state and control vari-
ables. The solution to the problem is mainly achieved using
indirect [2–4] and direct [5–7] methods. The indirect
method solves the optimal control problem by using the
classical variational method and Pontryagin’s minimum
principle to derive the necessary first-order conditions of
the optimal control and transform the problem into a two-
point boundary value problem (TPBVP) [8]. However, the

convergence of the numerical iteration is extremely sensitive
to the initial value, and the TPBVP is difficult to solve.
Therefore, the indirect method cannot be directly applied
to launch vehicles’ guidance systems without simplification.

The direct method transforms the optimal control prob-
lem of continuous space into a nonlinear programming
problem and uses a numerical method to directly optimize
the performance index [9–11]. In 2007, JPL proposed loss-
less convexity technology for dynamic descent guidance of
the Mars lander [12]. After that, a systematic summary of
the research and development of lossless convexity technol-
ogy was presented in [13]. Unfortunately, only a few non-
convex constraints can be used for lossless convexification.
For the problem that the lossless convexification technique
cannot be used, a sequential convexification method was
proposed. But this method was based on the linearization
technique, which required multiple iterations, and was also
sensitive to the initial value. Nevertheless, considering the
rapidity of the convex optimization algorithm in solving
convex problems, in recent years, trajectory planning based
on this algorithm, such as planetary landing [14], rocket

Hindawi
International Journal of Aerospace Engineering
Volume 2022, Article ID 2935929, 18 pages
https://doi.org/10.1155/2022/2935929

https://orcid.org/0000-0003-3467-3521
https://orcid.org/0000-0002-9148-0198
https://orcid.org/0000-0003-0979-8920
https://orcid.org/0000-0001-6410-3808
https://orcid.org/0000-0002-9619-9389
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2935929


ascent guidance [15], and entry guidance [16], has been
widely studied.

In recent years, with the application of machine learning
methods in various fields, researchers in the aerospace field
also began to pay attention to machine learning, especially
deep learning and reinforcement learning. DNNs are among
the most versatile and powerful machine learning tools,
thanks to their unique capability of accurately approximat-
ing complex nonlinear input-output functions when pro-
vided with a sufficiently large amount of data consisting of
sample input-output pairs (i.e., a training set) [17]. The term
“G&CNet” (namely, guidance, and control network) was
coined by the European Space Agency [18] to refer to an
onboard system that provides real-time guidance and con-
trol functionalities to the spacecraft by means of a DNN,
which replaced the traditional control and guidance archi-
tectures [19]. Aimed at dealing with the sensitive problem
of the initial value guess of the indirect method, a method
was proposed in [20] to obtain a good initial guess through
the DNN, and the numerical experimental results showed
that this improved the computational speed of the indirect
method. Carlos and Dario [21] directly applied the deep
learning method to the optimal control problem, and the
numerical experimental results showed that the trajectory
obtained by the DNN architecture was close to the optimal
one. This work opened up the possibility of using a DNN
to directly drive the state-action selection. To solve the 2D
trajectory optimization problem of a hypersonic vehicle,
the authors of [22] proposed a DNN architecture. The idea
in [22] was similar to that in [21], where the DNN was used
to obtain the mapping relationship between state and con-
trol. Compared with the traditional optimal control prob-
lem, the DNN can ensure real-time performance of the
algorithm. A fast approach to generating time-optimal aster-
oid landing trajectories was presented in [23], and a DNN
was developed to approximate the gravitational field of
asteroids, and the corresponding time consumption of grav-
ity calculation in trajectory propagation was significantly
reduced.

The above methods use the supervised learning (SL)
method to train the DNN. However, the SL method needs
large expert samples like state-control pairs, which are
obtained by solving the OCP. But obtaining expert samples
creates a heavy computational load to construct a dataset
for training. Another approach to training DNN is called
reinforcement learning (RL). RL does not require prior com-
putation for generating the expert samples. In RL, samples
are collected from the interaction between agent and envi-
ronment, and the agent understands and improves the cur-
rent performance through the reward obtained by
interaction. Therefore, the reward function is the key;
researchers may never get the ideal results if the reward
function is not designed well. In [24], the performance of
behavioral cloning (BC) and RL was investigated on a linear
multi-impulsive rendezvous mission. An interactive deep
reinforcement learning (DRL) algorithm with an actor-
indirect method architecture was presented in [25] to train
the DNN-driven controller for optimal control of the land-
ing problem. In [26], the authors applied reinforcement

learning to a Mars landing guidance system to directly gen-
erate guidance commands. In [27, 28], the authors applied
the RL meta-learning framework to optimize an integrated
and adaptive guidance and control system for exoatmo-
spheric and endoatmospheric interception problems, and
the numerical results showed the system was robust to the
parasitic attitude loop. In [29–31], the authors used RL
metalearning framework in the vehicle landing problems
with distributions like sensor noise and actuator failure,
and the numerical results showed that RL metalearning
could deal with these distributions well and get good results.
A robust trajectory design method based on reinforcement
learning was proposed in [19], and the experimental results
showed that good results could be obtained through differ-
ent models. In [32], the image-based reinforcement meta-
learning was applied to solve the lunar landing task with
uncertain dynamic parameters, and the numerical results
showed that the resulting closed-loop guidance policy was
effective even if the environment was partially observed.
The image-based reinforcement metalearning was also used
in the autonomous guidance of an impactor in a binary
asteroid system, and the numerical results showed that the
guidance system was robust and could be applied to almost
all test scenarios [33].

Once a neural network is trained, it only needs to do
simple matrix multiplication when in use. Compared with
guidance-based optimal control which requires solving the
optimal control problem, the calculation time can be
ignored. Thus, the method based on machine learning has
real-time performance. Aimed at the guidance of the launch
vehicle ascending phase, a guidance algorithm based on
reinforcement learning is proposed in this manuscript. In
Section 2, the background of reinforcement learning is intro-
duced, and in Section 3, the guidance-based reinforcement
learning framework is proposed, combined with a dynamics
equation. Section 4 presents the experimental results and a
discussion.

2. Reinforcement Learning

2.1. Markov Decision Process. The Markov decision process
(MDP) is a mathematical model of a sequential decision
problem. In an environment where the system state has a
Markov nature, it is used to simulate possible random strat-
egies and rewards of agents. The complete MDP is usually
described by ðs, a, R, PÞ, where s represents the state set fs0
, s1,⋯, sng, a represents the action set fa0, a1,⋯, ang, R rep-
resents the scalar reward, and P represents the state transi-
tion probability of the environment Pðs, a, s′Þ. In
reinforcement learning, the agent is the learner and
decision-maker of the whole system, and the state is the
description of environmental information; the action is the
agent’s response to the environment, and the reward is the
evaluation of action by the environment. The agent observes
the environment and selects the appropriate action accord-
ing to the obtained state information. The environment
receives the action, makes corresponding feedback, and
enters a new state. The agent obtains the reward from the
environment and adjusts the next action.

2 International Journal of Aerospace Engineering



The agent and environment interact at each time step.
This mapping from state to action is called the policy, which
is expressed as:

π ajsð Þ = P at = ajst = s½ �: ð1Þ

The goal of reinforcement learning is to find the optimal
action policy. The more positive feedback an agent receives
in the learning process, the better the policy it learns. There-
fore, the weighted cumulative sum of the reward value of
each step overtime is defined as the return, which is
expressed as:

Gt = Rt+1 + γRt+2 + γ2Rt+3+⋯ = 〠
∞

k=0
γkRt+k+1, ð2Þ

where γ represents the discount factor.
By maximizing the long-term return Gt , the correspond-

ing best action policy can be obtained. To describe the long-
term value when executing the policy at the state s, the
expectation of return at this time is defined as the state-
value function:

Vπ sð Þ = Eπ Gtstj = s½ �: ð3Þ

To measure the value of executing action a at the state s,
the action-value function can be defined as:

Qπ s, að Þ = Eπ Gt stj = s, at = a½ �: ð4Þ

According to the Bellman equation, the value function
can be decomposed as follows:

Vπ sð Þ = Eπ Rt+1 + γRt+2 + γ2Rt+3+⋯ stj = s
� �

= Eπ Rt+1 + γVπ st+1ð Þ stj = s½ �:
ð5Þ

Similarly, the Bellman equation form of the action-value
function can be obtained:

Qπ s, að Þ = Eπ Rt+1 + γQπ st+1, at+1ð Þ stj = s, at = a½ �: ð6Þ

According to Bellman’s principle of optimality, if the
value function is the max, the corresponding policy is the
optimal policy. Therefore, the Bellman equations of the opti-
mal state-value and action-value functions can be expressed
as:

V∗ sð Þ =max
a

Ra
s + γ〠

s′∈S
Pa
ss′V

∗ s′
� �

,

Q∗ s, að Þ = Ra
s + γ〠

s′
Pa
ss′ max

a′
Q∗ s′, a′
� �

:
ð7Þ

According to whether the environment model (state
transition probability) is known or not, reinforcement learn-
ing can be divided into model-based and model-free
methods. Generally speaking, because the model-free
method does not make full use of the empirical knowledge
obtained in learning, the convergence speed is slower than
in the model-based method. However, the model-free
method is one of the most important learning techniques

Figure 1: Training process by PPO [46]

Vehicle
(Environment)

RL-guidance
(Agent)

Guidance command
(Action)

Navigation
(State, observation)

(Reward)

Figure 2: Guidance-based RL process.

3International Journal of Aerospace Engineering



in reinforcement learning because of its small amount of cal-
culation per iteration and good adaptability to dynamic
unknown environments.

2.2. Policy Gradient Method. Reinforcement learning algo-
rithms can be divided into value function and policy
gradient-based according to the optimization objectives.
The algorithm based on the value function finds the optimal
policy by maximizing the state-value function or action-
value function, such as Q-learning [34] and sarsa [35]. The
algorithm based on policy gradient parameterizes the policy
using a nonlinear function and maximizes the cumulative
reward by directly iterating the policy, such as policy gradi-
ent (PG) [36] and REINFORCE [37].

In 2015, Mnih et al. [38] first proposed the deep Q
network (DQN), which achieved end-to-end learning by
introducing an experience replay mechanism and con-
structing an independent target network. DQN was
directly learned from high-dimensional perceptual input
to a successful policy, and the algorithm was applied to
Atari games with great success. However, there were still
some unavoidable problems, such as overestimation of Q
value, low sample utilization, and poor learning stability.
In 2016, Hasselt et al. designed a double Q network struc-
ture [39], which was responsible for selecting and evaluat-
ing actions through two Q networks; double DQN
effectively avoided the overestimation phenomenon caused
by the greedy strategy in the DQN algorithm and had bet-
ter performance. Schaul et al. proposed a DQN algorithm
based on the priority experience replay mechanism, which
used priority sampling instead of uniform sampling, and
improved the convergence speed by increasing the fre-
quency of resampling in the important transition process
[40]. Wang et al. proposed a dueling DQN algorithm
[41], which separately handled the evaluation of states

and actions on two branches of a network, and finally
combined them on the output layer for Q-value estima-
tion, which could obtain a better evaluation policy than
the traditional DQN. Aiming at the problem of partially
observable scenes, Hausknecht and Stone proposed a deep
recurrent Q network [42] algorithm, which used long-
short-term memory (LSTM) in the DQN structure and
could be applied in partially observable scenes. DeepMind
proposed the rainbow algorithm [43] in 2017, which inte-
grated six DQN-based methods, including double DQN
and dueling DQN, and could achieve better results than
any one of them. The algorithms mentioned above are
optimized from different perspectives, and the require-
ments for discrete action spaces are not changed.

In the reinforcement learning task of continuous action
space, to obtain the value function, the continuous action
space needs to be discretized, which will cause an action
dimension disaster. Moreover, the value function iteration
method usually uses a greedy strategy to update the value
function, which will make the agent learn a fixed policy.
To solve the above problems, a policy-based method was
proposed, which estimated the gradient of the objective
function relative to the policy parameters, then used the gra-
dient ascent algorithm to optimize the parameters and
finally obtained the optimal policy. The approximate expres-
sion of the policy function can be written as:

πθ a sjð Þ = P at = a stj = s, θt = θf g, ð8Þ

where θ represents the parameter of the policy, to solve this
parameter, the expectation of the agent about the reward J
ðθÞ is introduced as the objective function, and the following
expression is used to update:

θt+1 = θt + α∇ Ĵ θtð Þ, ð9Þ

where α represents the learning rate and ∇ ĴðθtÞ is the gradi-
ent value of the objective function.

According the policy gradient theory, ∇ ĴðθtÞ is rewritten
as:

∇θ J θð Þ = E
τ∼πθ

〠
N−1

k=0
∇θ log πθ a sjð ÞQπθ ,t s, að Þ

" #
, ð10Þ

Table 1: Parameters of boundary conditions.

Parameter Value

Min initial position (m) (371973.739, 114644.849, -13899.978)

Max initial position (m) (373973.739, 116644.849, -10899.978)

Min initial velocity (m/s) (3652.033, 556.843, -32.666)

Max initial velocity (m/s) (3852.033, 756.843, -12.666)

Initial pitch and yaw angle range (°) [50,60], [-20,-10]

Terminal position (m) (1912866.558, -73986.648, 2551.256)

Terminal velocity (m/s) (7457.930, -2220.619, 178.661)

Table 2: Hyperparameters.

Parameter Value Parameter Value

Shape reward coefficient 0.01 Epochs per update 30

Final reward coefficient 1000 Episodes per rollouts 50

Constant positive reward 0.001 Number of iterations 10000

Discount factor 0.995 Total episode 500000

GAE factor 0.98

4 International Journal of Aerospace Engineering



where Qπθ ,kðs, aÞ is the action-value function, and the
expression is:

Qπθ ,t s, að Þ = E
τ∼πθ

〠
N−1

t ′=t
γt ′−tRt ′ stj = s, at = a

" #
: ð11Þ

Qπθ ,kðs, aÞ can be estimated without bias by the Monte
Carlo method. Although this will reduce the deviation from
the target value, it will also make a large variance and affect
the convergence speed of the algorithm.

To solve the above problems, an actor-critic method was
proposed. The actor is responsible for updating the policy
gradient and executing the actions calculated by the policy.

105

104

Fi
na

l p
os

iti
on

 e
rr

or
 (m

)

103

102

0 100000 200000 300000 400000 500000

Episode

x
y
z

Figure 3: Learning curves for final position error.

103

102

Fi
na

l v
el

oc
ity

 e
rr

or
 (m

/s
)

101

100

10–1

0 100000 200000 300000 400000

Episode

x
y
z

Figure 4: Learning curves for final velocity error.

5International Journal of Aerospace Engineering



The critic is responsible for scoring the actor through the
evaluation mechanism and then feeding the score back to
the actor to guide it to update the policy gradient.

Trust region policy optimization (TRPO) [44], proposed
by Schulman et al., is a kind of actor-critic method. Accord-
ing to this method, the gradient of the reward objective func-

tion can be transformed into the following expression:

∇θ J θð Þ = E 〠
∞

t=0
Ψ∇θ log πθ a sjð Þ

" #
: ð12Þ

–101

–102

–103

Re
w

ar
d

0 100000 200000 300000 400000

Episode

Figure 5: Learning curves of reward.

0 50 100 150 200 250 300 350

Time (s)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Po
sit

io
n 

(m
)

× 106

RL-Guidance
Guidance based on optimal control algorithm

Figure 6: Position comparison of RL-guidance and guidance-based optimal control.

6 International Journal of Aerospace Engineering



The above expression can be regarded as a generalized
actor-critic framework, where Ψ is the evaluator.

To further improve the stability of the learning process
and reduce the variance in the policy gradient estimation, a
baseline function without changing the deviation is consid-
ered. Generally, the state-value function Vπθ

ðsÞ is selected

as the baseline function. By using the baseline function, an
advantage function Aπθ

ðs, aÞ can be obtained, and the
expression is:

Aπθ
s, að Þ =Qπθ

s, að Þ −Vπθ
sð Þ: ð13Þ

0 50 100 150 200 250 300 350

Time (s)

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

Ve
lo

ci
ty

 (m
/s

)

RL-Guidance
Guidance based on optimal control algorithm

Figure 7: Velocity comparison of RL-guidance and guidance-based optimal control.

0 50 100 150 200 250 300 350

Time (s)

120

130

140

150

160

170

180

190

200

210

220

H
ei

gh
t (

km
)

RL-Guidance
Guidance based on optimal control algorithm

Figure 8: Height comparison of RL-guidance and guidance-based optimal control.

7International Journal of Aerospace Engineering



Next, the advantage function is estimated by using
temporal-difference error (td-error); the expression is:

δπθ
= Rs,a + γVπθ

s′
� �

−Vπθ
sð Þ: ð14Þ

It can be proved that td-error is an unbiased estimator of
the advantage function by the following expression:

Eπθ
δπθ

s, aj� �
= Eπθ

Rs,a + γVπθ
s′
� �

s, aj
h i

−Vπθ
sð Þ

=Qπθ
s, að Þ − Vπθ

sð Þ = Aπθ
s, að Þ:

ð15Þ

Therefore, by estimating the advantage function by td-
error, the policy gradient can be obtained as:

∇θ J θð Þ = Eπθ
∇θ log πθ a sjð ÞAπθ

s, að Þ� �
: ð16Þ

In the above expression, the advantage function is
brought into the reward objective function, and the effect
caused by the change of the state-value function is removed
from the action-value function, thereby the variance is
reduced. In this method, a neural network can be set up to
approximate the policy and evaluation functions.

Table 3: Results of RL-guidance and guidance-based optimal control.

Parameter RL-guidance Guidance-based optimal control

Final time (s) 299.94 301.15

Final position error (m) (2.767, 15.614, 128.149) (47.263, -0.145, -16.306)

Final velocity error (m/s) (-0.642, -0.259, -0.107) (0.543, -0.007, -0.101)

0 50 100 150 200 250 300 350

Time (s)

0 50 100 150 200 250 300 350

Time (s)

–20

0

20

40

60

Pi
tc

h 
(d

eg
)

–15

–10

–5

0

Ya
w

 (d
eg

)

RL-Guidance
Guidance based on optimal control algorithm

RL-Guidance
Guidance based on optimal control algorithm

Figure 9: Attitude comparison of RL-guidance and guidance-based optimal control.

8 International Journal of Aerospace Engineering



2.3. Proximal Policy Optimization. The proximal policy opti-
mization (PPO) algorithm [45] is a policy gradient algo-
rithm that is derived from the TRPO algorithm. At
present, the PPO algorithm is one of the recommended algo-
rithms in the field of reinforcement learning. The policy gra-
dient algorithm is sensitive to the learning step size. To solve
this problem, Schulman et al. proposed the TRPO algorithm.
The TRPO algorithm adopts a monotonic maximum step
size method to update the policy, while using KL divergence
to express the special constraint that the new policy is better
than the old policy. The algorithm does not aim to update
the step size, but uses an alternative loss function, which
finally transforms the reinforcement learning policy update
problem into the following optimization problem:

max Ea,πold

π a sjð Þ
πold a sjð Þ Qπold

s, að Þ −Vπold
sð Þ� �� 	

,

s:t:�Dρπold
KL πold, πð Þ ≤ δ:

ð17Þ

The TRPO algorithm uses Taylor expansion to expand
the constraints and uses the conjugate gradient method to
optimize the network parameters, which can ensure mono-
tonic improvement of the policy model during optimization.

However, the theory of the algorithm is complex and not
easy to implement and debug by coding. To solve this prob-
lem, Schulman et al. made a first-order approximation of the
TRPO algorithm and proposed the PPO algorithm. The
expected approximation is completed by using the Monte
Carlo method, so the objective function becomes:

max 1
N
〠
N

t=1

πt a sjð Þ
πold,t a sjð Þ Qπold,t s, að Þ −Vπold,t sð Þ

� �� 	
, ð18Þ

where rtðθÞ represents the ratio of old and new policies πtð
ajsÞ/πold,tðajsÞ in the expression, and the objective function
is transformed into:

J θð Þ = Et rt θð Þ Qπold,t s, að Þ −Vπold,t sð Þ
� �� �

: ð19Þ

The PPO algorithm rewrites the objective function in the
TRPO algorithm as:

JCLIP θð Þ = Et min rt θð ÞAt , clip rt θð Þ, 1 − ϵ, 1 + ϵð ÞAtð Þ½ �,
ð20Þ

–6

–4

–2

0

Pi
tc

h 
ra

te
 (d

eg
/s

)

–0.5

0

0.5

1

1.5

Ya
w

 ra
te

 (d
eg

/s
)

0 50 100 150 200 250 300 350

Time (s)

RL-Guidance
Guidance based on optimal control algorithm

0 50 100 150 200 250 300 350

Time (s)

RL-Guidance
Guidance based on optimal control algorithm

Figure 10: Control comparison of RL-guidance and guidance-based on optimal control.

9International Journal of Aerospace Engineering



0 50 100 150 200 250 300 350

Time (s)

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

Ve
lo

ci
ty

 (m
/s

)

RL-Guidance
Traditional guidance (90% thrust magnitude)
RL-Guidance (90% thrust magnitude)

Figure 11: Velocity comparison of RL-guidance and traditional guidance in experiment 2.

0 50 100 150 200 250 300 350

Time (s)

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

Ve
lo

ci
ty

 (m
/s

)

Traditional guidance with expanding time (90% thrust magnitude)
RL-Guidance (90% thrust magnitude)

Figure 12: Velocity comparison of RL-guidance and traditional guidance with expanding flight time in experiment 2.

10 International Journal of Aerospace Engineering



where At =Qπold,tðs, aÞ −Vπold,tðsÞ. The clip function limits
the range of rtðθÞ to ½1 − ϵ, 1 + ϵ�, which ensures that each
update will not fluctuate too much, and ϵ is a hyperpara-
meter. The PPO algorithm adds the objective of the value
function to the optimization objective, and the expression is:

JPPOt θð Þ = Et JCLIPt θð Þ − cJVt θð Þ� �
, ð21Þ

where c is the value function coefficient and JVt ðθÞ is the
mean squared error between the current value function esti-
mation and the obtained reward to go, which is expressed as:

Jt
V θð Þ = Et Vt − 〠

t

t=0
Rt ′

 !2" #
: ð22Þ

In practice, the process of PPO is as follows (shown in
Figure 1):

(1) Rollouts phase. First, train n episodes in the environ-
ment through the current policy, and generate a
batch of trajectories; each trajectory associated with
a single episode, including the corresponding states,
actions, and rewards

(2) Update phase. The policy optimization algorithm
updates the policy using a batch of trajectories (roll-
outs). Then, the network’s parameter θ is updated by
the following expression:

θk+1 ⟵ θk + αk∇θk
Jk

ppo θð Þ: ð23Þ

(3) The training is stopped when a user-defined iteration
number is reached

3. Problem Statement

3.1. Dynamics Model. In the ascent process of the launch
vehicle, the flight time in the atmosphere is short, and devi-
ation in the atmosphere can be corrected by the guidance of
the upper stage. Thus, the guidance of the upper stage deter-
mines the orbit insert accuracy of the launch vehicle. There-
fore, this manuscript focuses on the guidance of the upper
stage of the launch vehicle. The dimensionless equations of
motion of a three-dimensional (3D) launch vehicle can be
expressed in launch-inertial coordinate as follows:

_x = vx,  _y = vy ,  _z = vz ,

_vx =
T cos φ cos ψ

m
−

x + Rexð Þ
rek k3 , 

_vy =
T sin φ cos ψ

m
−

y + Rey

� �
rek k3 , 

_vz = −
T sin ψ

m
−

z + Rezð Þ
rek k3 ,

_m = −
T

Ispg0
,

ð24Þ

5

Earth Tracking reference trajectory

Tracking reference trajectory with expanding flight timeTarget orbit RL-Guidance

0

–5

z 
(m

)

y 
(m

)

–3.5

–3.6

–3.7

5

0

–5 –5

0

5

× 106

× 106

× 106

× 106

y (m) x (m)

x (m)
–5.5 –5.4 –5.3

× 106

Figure 13: Orbit reached by using different guidance in experiment 2.

11International Journal of Aerospace Engineering



in which r = ½x, y, z� is the position of the launch vehicle in
the launch-inertial coordinate, which is normalized by the
radius of Earth R0 = 6378145m, and v = ½vx, vy , vz� is the
velocity of the launch vehicle in the launch-inertial coordi-
nate, which is normalized by

ffiffiffiffiffiffiffiffiffiffi
R0g0

p
, in which g0 = 9:81m

/s2. The position from Earth’s center to the vehicle re = ½x
+ Rex, y + Rey , z + Rez� is normalized by R0, and Re = ½Rex,
Rey, Rez� is the dimensionless position from Earth’s center
to the launch-inertial coordinate’s origin which is the launch
point. m is the mass of the launch vehicle. T is the thrust
magnitude; as in most launch vehicles, the mass flow is
uncontrollable; therefore, the thrust magnitude T is uncon-
trollable during the same flight phase [15, 47]. Isp is the spe-
cific impulse of the engine. φ and ψ are the pitch and yaw
angle, respectively, measured in the thrust vector in the
launch-inertial coordinate. The differentiation of equations
in Equation (24) is with respect to dimensionless time nor-
malized by

ffiffiffiffiffiffiffiffiffiffiffi
R0/g0

p
.

To apply reinforcement learning to launch vehicle guid-
ance problems and satisfy the constraints of the flight pro-
cess, this manuscript uses the optimal control expression,
which can represent initial, terminal, and process con-
straints. The guidance problem of the upper stage of the
launch vehicle can be written as follows:

Problem:

min J = −m tfð Þ,
s:t:

ð25Þ

Equation (24), tf free

r t0ð Þ = r0,
v t0ð Þ = v0,

ð26Þ

r tfð Þ = rf ,
v tfð Þ = vf ,

ð27Þ

_φmin ≤ _φ ≤ _φmax,
_ψmin ≤ _ψ ≤ _ψmax,

ð28Þ

m tfð Þ ≥mdry, ð29Þ
in which r = ½x y z� and v = vx vy vz

� �
. r0 and rf repre-

sent the initial and terminal position, respectively. v0 and
vf represent the initial and terminal velocity, respectively.

t0 and tf are the start and final time, respectively. And
mdry is the dry mass of the launch vehicle. Equation (25) is
the cost function. Equation (26) and Equation (27) represent
the initial and terminal constraints. The minimum and max-
imum values of pitch and yaw angle rates are presented in
Equation (28). In this manuscript, the angle constraint is
regarded as a hard constraint. Once the constraint is vio-
lated, the current episode is stopped, and a large negative
reward is returned, then a new episode is started. Equation
(29) represents the fuel constraint. When the fuel runs out,
the current episode is stopped.

3.2. Implementation Details. This section describes the tech-
niques we use in using reinforcement learning. For the net-
work of policy and value, we design a neural network with
tanh activations on each hidden layer. In the policy network,
the input layer has nps = 8 neurons, the output layer has npo
= 2 neurons, and the number of hidden layers is three,

and the sizes of the hidden layers are hp1 = 10ns, hp2 =ffiffiffiffiffiffiffiffiffi
hp1h

p
3

q
, and hp3 = 10npo, respectively, where hp1, h

p
2, and hp3 rep-

resent the size of each hidden layer. In the value network, the
input layer has nvs = nps neurons, the output layer has nvo = 1
neuron, the number of hidden layers is three, and the sizes
of the hidden layers are hv1 = 10nvs , hv2 =

ffiffiffiffiffiffiffiffiffi
hv1h

v
3

p
, and hv3 = 5,

respectively, where hv1, h
v
2, and hv3 represent the size of each

hidden layer. This structure has been studied in aerospace
trajectory optimization, such as Mars landing [26] and
Earth-Mars transfer orbit [19]. To generate the correspond-
ing action, the policy uses Gaussian distribution with mean
πθðakjskÞ and a diagonal covariance matrix for action distri-
bution. Moreover, the Adam optimizer is used to adjust the
learning rate of policy and value networks. A method similar
to the PPO2 algorithm [45] in OpenAI baselines is used to
approximate KL divergence. The expression is as follows:

ϵ =
min ϵmax, 1:5ϵð Þ, if kl < 1

2 kltarg,

max ϵmin,
1
1:5 ϵ

� �
, if kl > 2kltarg,

8>><
>>: ð30Þ

ζ =
1:5ζ, if kl < 1

2 kltarg and ϵ
1
2 ϵmaxand ζ < ζmax,

1
1:5 ζ, if kl > 2kltarg and ϵ<<2ϵminandζ > ζmin:

8>><
>>:

ð31Þ

Table 4: Results of experiment 2.

Parameter
Target
orbit

Tracking reference
trajectory

RL-
guidance

Tracking reference trajectory with expanding flight
time

Semimajor (m) 6588753 5953963 6588753 6588753

Eccentricity 0.0052 0.1046 0.0054 0.0102

Inclination (°) 20.009 19.991 20.009 20.019

Altitude of perigee
(km)

176 -1047 175 143

12 International Journal of Aerospace Engineering



According to the suggestions of [26], we adjust the
parameters according to the KL divergence between policy
updates, represented by kl. In addition, ϵmax and ϵmin are
designed to be 0.5 and 0.01, respectively. We also adjust
the parameters according to Equation (31), in which ζmax
and ζmin are designed as 10 and 0.1, respectively.

To apply the reinforcement learning method to launch
vehicle ascending guidance, in combination with the dynam-
ics model, the observation, action, and reward are designed.
In the research of reinforcement learning for aerospace guid-
ance, there is no unified choice for observation. In [48], the
authors designed s = fr − rref , v − vrefg for learning, in which
the subscript ref represents the reference trajectory. In [26],
the authors used a similar idea: they designed a velocity field
vtarg that mapped the lander’s position to a target velocity for
learning, which achieved good results. Unfortunately, the
construction of vtarg is not general, and it cannot be applied
to all problems. However, this method provides an inspira-
tion: if a good reference state can be designed, good learning
efficiency and final results can be obtained. In [19], the
authors did not use the reference trajectory, the state of the
aircraft was regarded as observation, and good results were
obtained. Combined with the motion equations introduced
in Section 3.1, the expression of observation designed in this
manuscript is as follows:

obs = r, v, φ, ψf g: ð32Þ

The guidance commands of the launch vehicle are gener-
ally the pitch angle and yaw angle, but the angular rate is
limited. If these angles are used as the action of the neural
network, the angular rate is not easy to control. To satisfy
the angular rate constraint, we use the angular rate as the
action and the attitude angle as a part of the observation.

In addition, it should be noted that stop conditions need
to be designed in reinforcement learning. In the research of
reinforcement learning guidance algorithms [24, 30], termi-
nal velocity or position constraints are usually used as stop
conditions for each episode. However, in low earth orbit
(LEO) missions studied in this manuscript, the semimajor
axis is one of the indicators of engine shutdown. If the semi-
major axis of the orbit at the current time exceeds the semi-
major axis of the target orbit, the guidance system sends an
engine shutdown command. In this manuscript, the current
episode is terminated if the semimajor axis of the orbit at the
current time exceeds the semimajor axis of the target orbit.

3.3. Reward Function. In [49], the authors presented the
hypothesis that the maximization of total reward may be
enough to understand intelligence and its associated abili-
ties. A suitable reward can make the agent learn knowledge
faster and better, but how to design a suitable reward func-
tion is one of the difficulties of reinforcement learning, espe-
cially in the aerospace guidance field. In the launch vehicle
guidance problem, the thrust magnitude cannot be con-
trolled, and the thrust direction can only be controlled by
the attitude of the vehicle, which makes the problem difficult
to solve. Thus, although many scholars now use mathemat-
ical optimization algorithms as the basis for computational

guidance, there are few engineering applications because
the problem is not easy to solve, and the calculation time is
too long to be applied online.

A common practice is to give a reward after running an
episode. However, reinforcement learning randomly selects
the control during the training. If the reward is only based
on the final result, it is very likely that the terminal condition
will never be satisfied. This is called the sparse reward prob-
lem. This problem is generally solved using inverse rein-
forcement learning, where the reward function for each
step is learned through expert representations. In this prob-
lem, solutions obtained by mathematical optimization algo-
rithms such as convex optimization can be used in expert
representations, but the calculation time of the mathematical
optimization algorithm is uncertain, and therefore, it cannot
be well applied to inverse reinforcement learning.

In the ascending flight of the launch vehicle, the velocity
and position increase gradually. At each time step, we can
reward the agent if the agent drives it toward the target
point. This method called shaping reward was proposed by
Ng [50]. Gaudet et al. used this method in the Mars landing
guidance [26], but the shaping reward constructed by Gau-
det et al. cannot be well applied in other fields. Therefore,
a simple but effective shaping reward is proposed in this
manuscript. The reward function expression is as follows:

rshape = λtrack r tkð Þ − rfk kð Þ, ð33Þ

where rshape is a negative reward, which represents the dis-
tance between the current position rðtkÞ and the terminal
position rf , and λtrack is a shaping reward coefficient. The
way to minimize the shaping reward is to move the vehicle
toward the target point directly. Moreover, because the
shaping reward is related to the number of steps, the fewer
steps, the fewer negative rewards. For a launch vehicle with
constant mass flow, the minimum number of steps means
the optimal energy. Therefore, the shaping reward designed
in this manuscript can not only guide the vehicle to the tar-
get but also minimize the number of steps, to achieve the
optimal energy.

When an episode is stopped, the final reward will be
given. We refer to the reward function in [19], and the
expression is as follows:

rdone = λd max 0, er,v − ε
 �

, ð34Þ

where rdone is a negative reward and called the final reward,
λd is the final reward coefficient, and ε is tolerance on termi-
nal violation. The expression of ε is as follows [46]:

ε =

ε0, k ≤ ki,

εi
εf
εi

� 	 k−kið Þ/ kf−kið Þ
, ki < k < kf ,

εf , k ≥ kf ,

8>>>><
>>>>:

ð35Þ

where k is the current episode number, ε0 = 0:0005, εf = 1e
− 6, ki = 0, and kf = 450000.

13International Journal of Aerospace Engineering



The expression of er,v is as follows:

er,v =
max er, evf g, if done,
0, if not done,

(
ð36Þ

where er and ev are represent the final position error and the
final velocity error, respectively. The expression of er and ev
are as follows:

er =
r tfð Þ − rfk k

rfk k ,

ev =
v tfð Þ − vfk k

vfk k :

ð37Þ

In addition, considering the process constraints on atti-
tude during flight, a penalty function is designed. When
the process constraints are violated, the current episode
stops immediately and returns the penalty. The penalty
function rpenalty is given by the following:

rpenalty =
−200, if Constraint violated,
0, if Constraint is not violated:

(
ð38Þ

To sum up, the design of the total reward function for
the guidance problem of the launch vehicle is given by the
following:

r = rshape + rpenalty + rdone + η, ð39Þ

where η is a constant positive reward. In the numerical
experiment, we found that without this positive reward, the
agent will immediately violate the constraint at the begin-
ning of the training. This positive reward is the key to
encouraging the agent to continue to move forward.

Figure 2 shows how reinforcement learning can be
applied to the guidance of the launch vehicle. It can be seen
that the DNN obtained by reinforcement learning is called
RL-guidance, which outputs the guidance commands, that
is, the actions in reinforcement learning. The vehicle flies Δ
t time according to the guidance command, and then, the
state of tk + Δt is obtained by the navigation system, and
reward is obtained by the reinforcement learning model
feedback to the RL-guidance system.

4. Experimental Results and Discussion

In this section, we apply the proposed algorithm to the
ascent problem of the launch vehicle to verify its validity.
All numerical simulations are implemented on a computer
with a 4-core Intel Core E3-1230 V5 CPU @3.4GHz, and
the RL-guidance and the guidance-based optimal control
are implemented in Python and Matlab environments,
respectively.

The launch vehicle thrust is 2843425N, and the specific
impulse is 3365m/s. The initial and dry mass are

350306 kg and 83090 kg, respectively. Maximum pitch and
yaw angle rate is 5°.

Table 1 shows the initial and terminal parameters of the
numerical experiment. The fourth-order Runge–Kutta inte-
gration is used by integrating with a 0.5 s step, and the guid-
ance step is 1 s.

4.1. Policy Optimization. This section presents the training
process of reinforcement learning.

Table 2 lists the reward coefficients and the hyperpara-
meters. Rollouts are generated by the interaction between
the agent and the environment for 50 episodes, the advan-
tages, the value, and policy function approximators are com-
puted and updated by the resulting trajectories. The total
episode is 500000, which took nearly 30 hours.

Figures 3 and 4 show the final position and velocity error
curves, respectively, it can be seen that with increased train-
ing episodes, and the final error gradually decreases and con-
verges after 400 thousand episodes. As can be seen from
Figure 5, the reward gradually increases as the training pro-
gresses; the value of reward increases rapidly in the early
stage of training and gradually converges after 400 thousand
episodes.

4.2. Policy Test. At present, in the research of aerospace com-
putational guidance, online trajectory planning is mostly
performed by optimal control solvers such as GPOPS or
CVX, which replace the traditional offline planning and
online tracking mode. It should be noted that if the distance
between the current and final point is less than 10,000m, the
integration step size is reduced from 0.5 s to 0.02 s. This
method is also usually used in practice, that is, when vehicle
approaches the target, the integration step size is reduced to
improve the final accuracy.

4.2.1. Experiment 1. Figures 6 and 7 show comparisons of
position and velocity, and Figure 8 shows the comparison
of flight height. It can be seen that the results obtained by
the two methods are basically the same. The final results of
the two methods are listed in Table 3. As can be seen in
the table, the accuracy of the proposed algorithm is consis-
tent with guidance-based optimal control, which fully proves
the effectiveness of the proposed algorithm. In addition, as
mentioned before, although the training time is very long,
once the training is completed, it only needs to perform
some matrix multiplication operations when in use. In this
experiment, the average and standard deviation time of a
generated guidance command are 0.00055 s and 0.00008 s,
respectively, and the median and maximum time are
0.00052 s and 0.0017 s, respectively. As a comparison, the
current guidance period in engineering applications is about
0.002 s, and it can be seen that the computational efficiency
of RL-guidance allows it to be fully applied online. In con-
trast, the guidance-based optimal control takes 20 s. Consid-
ering the difference in the application environment of the
two methods, the calculation speed is still much slower than
the proposed algorithm, and it is difficult to be applied
online.

14 International Journal of Aerospace Engineering



Figures 9 and 10 show the attitude and control curves,
respectively, of the vehicle. It can be seen that the solutions
of the two algorithms are very close. As mentioned before,
because the thrust magnitude of the launch vehicle is not
adjustable, the thrust direction can only be adjusted through
limited attitude changes, which leads to a small solution
space, so the solutions of the two methods are very close.
It can be seen in [26] that there is an obvious difference
between the solution of GPOPS and reinforcement learning;
because the thrust magnitude of landing vehicle is adjustable
and the solution space is large, reinforcement learning may
learn other solutions that satisfy the terminal conditions.
For problems with a small solution space, on the one hand,
once the DNN is trained, the solution obtained by the
DNN will be very close to the optimal solution, like the
results obtained in this experiment. On the other hand, it
will be difficult to find a suitable solution during training,
resulting in a failure to train a suitable network.

4.2.2. Experiment 2. In the mission of launch vehicles, the
decline of thrust is one of the fatal faults. If the thrust loss
is small, the trajectory can be reconstructed to guide the
vehicle to the target orbit. However, if the thrust loss is too
large, the trajectory planning problem becomes an infeasible
problem, and the optimal control algorithm cannot directly
give the feasible solution, which means the guidance-based
optimal control cannot give new guidance commands. Many
scholars have studied that [15, 51, 52], in that situation, the
primary goal of the mission changes from accurately enter-
ing the target orbit to moving in the orbit waiting for rescue.
And the basic idea is to change the terminal constraints to
make the new problems feasible, the new terminal constraint
represents the new orbit, which is called the rescue orbit.

The following experiment is that the thrust is reduced by
10%, which is very likely to happen when the upper-stage
engine was started.

In the case mentioned above, the remaining energy of
the launch vehicle may not be able to send the payload such
as a satellite into the target orbit. The guidance-based opti-
mal control transforms the guidance problem into a nonlin-
ear programming problem. If the launch vehicle cannot
reach the target orbit because the thurst drops, it means that
the original problem is infeasible, and there is no solution.
Therefore, the guidance-based optimal control will not work
during the flight. In this case, we assume that the guidance
algorithm will switch to the method of tracking the reference
trajectory, and the reference trajectory is preplanned under
nominal conditions. There are two tracking methods, the
first method is that the vehicle flies along the reference tra-
jectory and shut down at the reference final time; this
method is the traditional guidance. But we know that there
will be some surplus fuel in the launch vehicle. Therefore,
the second method will expand the flight time until the fuel
is completely exhausted or some other indicators meet the
requirements. However, there is a problem that when the
final time of the reference trajectory is exceeded, there is
no new guidance command. In this case, the last group of
guidance commands in the reference trajectory can only be
regarded as subsequent guidance commands.

In the first tracking method, Figure 11 shows the flight
curves of the tracking reference trajectory after the failure,
which is compared with RL-guidance. It can be seen from
Figure 11 that the vehicle loses a lot of velocity due to the
decline of thrust. And to satisfy the semimajor axis require-
ment, the RL-guidance expands the flight time.

In the second tracking method, Figure 12 shows the
velocity curves; the green line indicates that the vehicle flies
along the reference trajectory with expanding flight time
until the semimajor exceeds the target semimajor. The final
velocity of the launch vehicle is basically consistent with
the reference terminal velocity. However, we find that this
method still cannot put the launch vehicle into orbit through
the following analysis.

From Figure 13 and Table 4, it can be seen that the new
orbit obtained by RL-guidance is very close to the target
orbit and far better than the result of traditional guidance.
It should be noted that if the altitude of perigee of an orbit
is less than 160 km, it is considered that this orbit is inappro-
priate, and the payload on this orbit will gradually fall into
the atmosphere [52], the purple dash-dotted line indicates
the safe orbit mentioned in [52], and the safe orbit is a circu-
lar orbit with 160 km orbit altitude that is abovementioned.
As can be seen from Figure 13, the red dashed line indicates
that the traditional guidance cannot guide the vehicle in an
orbit. In addition, even if the flight time is increased, the
reached orbit indicated by the yellow dotted line still cannot
meet the requirements because the altitude of part of the
orbit is less than 160 km. The green solid line indicates the
orbit reached by RL-guidance when the thrust drops. It
can be seen that this orbit can be used as the rescue orbit.
Therefore, neither the first tracking method nor the second
tracking method can put the payload into orbit. As a result,
although expanding the flight time can increase the velocity,
inappropriate guidance commands cannot make the vehicle
enter the appropriate orbit. However, RL-guidance can gen-
erate the new guidance commands according the current
state and guide the launch vehicle to a suitable orbit after
the thrust drops.

For computational guidance-based optimal control, it
needs an extra strategy to find a new orbit [52], the strategy
takes into account various factors, such as the appropriate
orbit inclination or longitude of ascending node, so the orbit
obtained by this strategy is called the optimal rescue orbit.
However, the optimal rescue orbit requires many iterations
and takes a lot of time to find.

It still needs to discuss whether it is worth taking so
many iterations to obtain the optimal rescue orbit in case
of thrust failure and which rescue orbit is more important,
optimal, or feasible. The proposed RL-guidance algorithm
can quickly get a feasible rescue orbit, which may not be
optimal, but feasible. The proposed RL-guidance algorithm
continuously generates guidance commands according to
the mapping of states and controls that the DNN trained.
If the thrust drops, the proposed RL-guidance algorithm
can generate new guidance commands according to the cur-
rent state and guide the vehicle to a feasible rescue orbit. The
proposed RL-guidance algorithm is autonomous, can be

15International Journal of Aerospace Engineering



used as an alternative method, and is worthy of further
research in case of thrust failure of launch vehicle mission.

According to the two experimental results given in this
section, the results of the proposed RL-guidance are consis-
tent with guidance-based optimal control. In addition, the
proposed RL-guidance has higher computational efficiency
and can be applied online. In terms of the thrust decline,
the guidance-based optimal control transforms the guidance
problem into an optimization problem; if the thrust drops,
the original problem becomes infeasible because the target
orbit cannot be reached, and the optimization algorithm
cannot give a solution, which means that the guidance will
not work during the flight. In this case, if the guidance sys-
tem is switched to track the reference trajectory, the results
show that it cannot make the vehicle in a suitable orbit.
But the proposed RL-guidance can generate the new guid-
ance commands according to the current state and guide
the vehicle to a feasible orbit, which makes rescue possible.

5. Conclusions

This manuscript proposes a guidance-based reinforcement
learning method and intends to demonstrate that reinforce-
ment learning is a viable approach to developing a guidance
algorithm for launch vehicles. In the research of computa-
tional guidance, most methods are based on optimal control
algorithms, and the proposed guidance method is based on
DNN. First, the reward function was designed to cover all
constraints. After that, the mapping from state to control is
trained by the state-of-the-art proximal policy optimization
algorithm.

Two numerical experiments are designed to test the pro-
posed algorithm. In the first numerical experiment, the
results of the proposed algorithm are consistent with
guidance-based optimal control. It shows that the proposed
algorithm is effective and fast and has the potential for
online application. The second numerical experiment aims
to demonstrate the ability of the proposed algorithm under
thrust drops. The current guidance algorithm research is
based on the optimal control algorithm. If the original prob-
lem becomes infeasible because thrust drops, the guidance
cannot generate commands; therefore, it needs an extra
strategy to find a new orbit to make the programming prob-
lem feasible, and then, the guidance-based optimal control
can output commands, the orbit obtained through the strat-
egy is called an optimal rescue orbit, and it takes a lot of
computational time. Not aiming to get the optimal rescue
orbit, the proposed algorithm can guide launch vehicles to
a feasible orbit and wait for rescue without any extra strat-
egy. Moreover, the numerical experimental results indicate
that the traditional guidance that uses offline planning and
online tracking mode cannot deal with this kind of emer-
gency. Therefore, the proposed algorithm can be used as
an alternative guidance algorithm, especially in the case of
thrust decline fault. In future research, guiding the launch
vehicle to different rescue orbits under different faults will
be considered, as well as adding various disturbances to the
training. Since the mission is more complex, more training

epochs may be required, and therefore, parallel computing
techniques will be considered.

Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] P. Lu, “Introducing computational guidance and control,”
Journal of Guidance Control & Dynamics, vol. 40, no. 2,
pp. 193–193, 2017.

[2] P. Lu and B. Pan, “Highly constrained optimal launch ascent
guidance,” Journal of Guidance, Control, and Dynamics,
vol. 33, no. 2, pp. 404–414, 2010.

[3] M. J. Grant and R. D. Braun, “Rapid indirect trajectory optimi-
zation for conceptual design of hypersonic missions,” Journal
of Spacecraft and Rockets, vol. 52, no. 1, pp. 177–182, 2015.

[4] P. Lu, S. Hongsheng, and T. Bruce, “Closed-loop endoatmo-
spheric ascent guidance,” Journal of Guidance, Control, and
Dynamics, vol. 26, no. 2, pp. 283–294, 2003.

[5] F. Fariba and R. I. Michael, “Advances in pseudospectral
methods for optimal control,” in AIAA guidance, navigation
and control conference and exhibit, Honolulu, Hawaii, USA,
2008.

[6] M. A. Patterson and A. V. Rao, “GPOPS-II,” ACM Transac-
tions on Mathematical Software, vol. 41, no. 1, pp. 1–37, 2014.

[7] R. I. Michael and K. Mark, “A review of pseudospectral opti-
mal control: from theory to flight,” Annual Reviews in Control,
vol. 36, no. 2, pp. 182–197, 2012.

[8] A. E. Bryson and Y. Ho, “Applied optimal control,” Techno-
metrics, 1975.

[9] P. Haijun, X. Wang, L. Mingwu, and C. Biaosong, “An _hp_
symplectic pseudospectral method for nonlinear optimal con-
trol,” Communications in Nonlinear Science and Numerical
Simulation, vol. 42, pp. 623–644, 2017.

[10] P. Haijun, X. Wang, Z. Sheng, and C. Biaosong, “An iterative
symplectic pseudospectral method to solve nonlinear state-
delayed optimal control problems,” Communications in Non-
linear Science and Numerical Simulation, vol. 48, pp. 95–114,
2017.

[11] X. Wang, P. Haijun, Z. Sheng, C. Biaosong, and Z. Wanxie, “A
symplectic pseudospectral method for nonlinear optimal con-
trol problems with inequality constraints,” ISA Transactions,
vol. 68, pp. 335–352, 2017.

[12] A. Behcet and S. R. Ploen, “Convex programming approach to
powered descent guidance for Mars landing,” Journal of Guid-
ance, Control, and Dynamics, vol. 30, no. 5, pp. 1353–1366,
2007.

[13] H. M.Wade, Lossless Convexification of Optimal Control Prob-
lems, Doctor of Philosophy, 2014.

[14] A. Behcet, J. M. Carson, and B. Lars, “Lossless convexification
of nonconvex control bound and pointing constraints of the
soft landing optimal control problem,” IEEE Transactions on
Control Systems Technology, vol. 21, no. 6, pp. 2104–2113,
2013.

16 International Journal of Aerospace Engineering



[15] L. Yuan, P. Baojun, W. Changzhu, C. Naigang, and L. Yongbei,
“Online trajectory optimization for power system fault of
launch vehicles via convex programming,” Aerospace Science
and Technology, vol. 98, p. 105682, 2020.

[16] Z. Wang and M. J. Grant, “Constrained trajectory optimiza-
tion for planetary entry via sequential convex programming,”
Journal of Guidance, Control, and Dynamics, vol. 40, no. 10,
pp. 2603–2615, 2017.

[17] K. Hornik, M. Stinchcombe, and H.White, “Universal approx-
imation of an unknown mapping and its derivatives using
multilayer feedforward networks,” Neural Networks, vol. 3,
no. 5, pp. 551–560, 1990.

[18] I. Dario, M. Marcus, and B. Pan, “A survey on artificial intelli-
gence trends in spacecraft guidance dynamics and control,”
Astrodynamics, vol. 3, no. 4, pp. 287–299, 2019.

[19] Z. Alessandro and F. Lorenzo, “Reinforcement learning for
robust trajectory design of interplanetary missions,” Journal
of Guidance, Control, and Dynamics, vol. 44, no. 8, pp. 1440–
1453, 2021.

[20] L. Cheng, Z. Wang, J. Fanghua, and L. Junfeng, “Fast genera-
tion of optimal asteroid landing trajectories using deep neural
networks,” IEEE Transactions on Aerospace and Electronic Sys-
tems, vol. 56, 2019.

[21] S.-S. Carlos and I. Dario, “Real-time optimal control via deep
neural networks: study on landing problems,” Journal of Guid-
ance, Control, and Dynamics, vol. 41, no. 5, pp. 1122–1135,
2018.

[22] S. Yang and Z. Wang, “Onboard generation of optimal trajec-
tories for hypersonic vehicles using deep learning,” Journal of
Spacecraft and Rockets, vol. 58, no. 2, pp. 400–414, 2021.

[23] L. Cheng, L. Hengnian, Z. Wang, and J. Fanghua, “Fast solu-
tion continuation of time-optimal asteroid landing trajectories
using deep neural networks,” Acta Astronautica, vol. 167,
pp. 63–72, 2020.

[24] F. Lorenzo, B. Boris, and Z. Alessandro, “Deep learning tech-
niques for autonomous spacecraft guidance during proximity
operations,” Journal of Spacecraft and Rockets, vol. 58, no. 6,
pp. 1774–1785, 2021.

[25] L. Cheng, Z. Wang, and J. Fanghua, “Real-time control for
fuel-optimal moon landing based on an interactive deep rein-
forcement learning algorithm,” Astrodynamics, vol. 3, no. 4,
pp. 375–386, 2019.

[26] G. Brian, L. Richard, and F. Roberto, “Deep reinforcement
learning for six degree-of-freedom planetary landing,”
Advances in Space Research, vol. 65, no. 7, pp. 1723–1741,
2020.

[27] B. Gaudet, I. Charcos, and R. Furfaro, “Integrated and adaptive
guidance and control for endoatmospheric missiles via rein-
forcement learning,” 2021, http://arxiv.org/abs/2109.03880.

[28] G. Brian, F. Roberto, L. Richard, and S. Andrea, “Reinforce-
ment metalearning for interception of maneuvering exoatmo-
spheric targets with parasitic attitude loop,” Journal of
Spacecraft and Rockets, vol. 58, pp. 1–14, 2021.

[29] G. Brian, L. Richard, and F. Roberto, “Adaptive guidance and
integrated navigation with reinforcement meta-learning,” Acta
Astronautica, vol. 169, pp. 180–190, 2020.

[30] G. Brian, L. Richard, and F. Roberto, “Six degree-of-freedom
body-fixed hovering over unmapped asteroids via LIDAR
altimetry and reinforcement meta-learning,” Acta Astronau-
tica, vol. 172, pp. 90–99, 2020.

[31] G. Brian, L. Richard, and F. Roberto, “Terminal adaptive guid-
ance via reinforcement meta-learning: applications to autono-
mous asteroid close-proximity operations,” Acta Astronautica,
vol. 171, pp. 1–13, 2020.

[32] A. Scorsoglio, A. D’Ambrosio, L. Ghilardi, B. Gaudet, F. Curti,
and R. Furfaro, “Image-based deep reinforcement meta-
learning for autonomous lunar landing,” Journal of Spacecraft
and Rockets, vol. 59, no. 1, pp. 153–165, 2022.

[33] L. Federici, A. Scorsoglio, L. Ghilardi et al., “Image-based
meta-reinforcement learning for autonomous terminal guid-
ance of an impactor in a binary asteroid system,” AIAA SCI-
TECH 2022 Forum, 2021.

[34] C. J. C. H. Watkins and P. Dayan, Technical Note: Q-Learning,
Machine Learning, 1992.

[35] G. A. Rummery and M. Niranjan, “On-line Q-learning using
connectionist systems,” http://www.researchgate.net/
publicat ion/2500611_On-Line_Q-Learning_Using_
Connectionist_Systems.

[36] R. S. Sutton, D. Mcallester, S. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function
approximation,” Advances in neural information processing
systems, vol. 12, 1999.

[37] R. J. Williams, Simple Statistical Gradient-Following Algo-
rithms for Connectionist Reinforcement Learning, Machine
Learning, 1992.

[38] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Human-level con-
trol through deep reinforcement learning,” Nature, vol. 518,
2015.

[39] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement
learning with double Q-learning,” Proceedings of the AAAI
conference on artificial intelligence, vol. 30, 2016http://arxiv
.org/abs/1509.06461.

[40] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized
experience replay,” http://arxiv.org/abs/1511.05952.

[41] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and
N. Freitas, “Dueling network architectures for deep reinforce-
ment learning,” in Proceedings of The 33rd International Con-
ference on Machine Learning, pp. 1995–2003, New York, NY,
USA, 2016, https://proceedings.mlr.press/v48/wangf16.html.

[42] M. Hausknecht and P. Stone, “Deep recurrent Q-learning for
partially observable MDPs,” Aaai Fall Symposium Series,
2015, http://arxiv.org/abs/1507.06527v1.

[43] M. Hessel, J. Modayil, H. Van Hasselt et al., “Rainbow: com-
bining improvements in deep reinforcement learning,” in
Thirty-second AAAI conference on artificial intelligence, New
Orleans, Louisiana USA, 2018http://arxiv.org/abs/1710.02298.

[44] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel,
“Trust region policy optimization,” in International conference
on machine learning, pp. 1889–1897, Lille, France, 2018,
http://arxiv.org/abs/1502.05477v5.

[45] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” 2022,
http://arxiv.org/abs/1707.06347.

[46] F. Lorenzo, S. Andrea, Z. Alessandro, and F. Roberto, “Meta-
reinforcement learning for adaptive spacecraft guidance dur-
ing multi-target missions,” IAF Astrodynamics Symposium
2021 at the 72nd International Astronautical Congress, 2021.

[47] X. Cheng, L. Huifeng, and Z. Ran, “Efficient ascent trajectory
optimization using convex models based on the Newton-Kan-
torovich/pseudospectral approach,” Aerospace Science and
Technology, vol. 66, pp. 140–151, 2017.

17International Journal of Aerospace Engineering

http://arxiv.org/abs/2109.03880
http://www.researchgate.net/publication/2500611_On-Line_Q-Learning_Using_Connectionist_Systems
http://www.researchgate.net/publication/2500611_On-Line_Q-Learning_Using_Connectionist_Systems
http://www.researchgate.net/publication/2500611_On-Line_Q-Learning_Using_Connectionist_Systems
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1511.05952
https://proceedings.mlr.press/v48/wangf16.html
http://arxiv.org/abs/1507.06527v1
http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1502.05477v5
http://arxiv.org/abs/1707.06347


[48] N. B. LaFarge, D. Miller, K. C. Howell, and R. Linares, “Guid-
ance for closed-loop transfers using reinforcement learning
with application to libration point orbits,” AIAA Scitech 2020
Forum, 2020.

[49] D. Silver, S. Singh, D. Precup, and R. S. Sutton, “Reward is
enough,” Artificial Intelligence, vol. 299, p. 103535, 2021.

[50] A. Y. Ng, Shaping and Policy Search in Reinforcement Learn-
ing, University of California, Berkeley, 2003.

[51] H. Zeming, H. Hu, Y. He, Z. Ran, and L. Huifeng, Feasible-
Orbit-Set Generation for Launch Vehicles, Advances in Guid-
ance, Navigation and Control, Singapore, 2022.

[52] S. Zhengyu, C. Wang, and G. Qinghai, “Joint dynamic optimi-
zation of the target orbit and flight trajectory of a launch vehi-
cle based on state-triggered indices,” Acta Astronautica,
vol. 174, pp. 82–93, 2020.

18 International Journal of Aerospace Engineering


	Reinforcement Learning for Computational Guidance of Launch Vehicle Upper Stage
	1. Introduction
	2. Reinforcement Learning
	2.1. Markov Decision Process
	2.2. Policy Gradient Method
	2.3. Proximal Policy Optimization

	3. Problem Statement
	3.1. Dynamics Model
	3.2. Implementation Details
	3.3. Reward Function

	4. Experimental Results and Discussion
	4.1. Policy Optimization
	4.2. Policy Test
	4.2.1. Experiment 1
	4.2.2. Experiment 2


	5. Conclusions
	Data Availability
	Conflicts of Interest

