
Research Article
PySCP: A Multiple-Phase Optimal Control Software Using
Sequential Convex Programming

Daxi Zhang 1 and Yulin Zhang 2,3

1School of Aerospace Science and Technology, National University of Defense Technology, Changsha 410073, China
2School of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
3Huzhou Institute of Zhejiang University, Huzhou 310027, China

Correspondence should be addressed to Daxi Zhang; zdx011580@126.com

Received 7 December 2021; Revised 7 March 2022; Accepted 10 March 2022; Published 13 April 2022

Academic Editor: Chen Pengyun

Copyright © 2022 Daxi Zhang and Yulin Zhang. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

Optimal control problems are common in aerospace engineering. A Python software program called PySCP is described for
solving multiple-phase optimal control problems using sequential convex programming methods. By constructing a series of
approximated second-order cone programming subproblems, PySCP approaches to the solution of the original optimal control
problem in an iterative way. The key components of the software are described in detail, including convexification,
discretization, and the adaptive trust region method. The convexification of the first-order differential dynamic equation is
implemented using successive linearization. Six discretization methods, including zero-order hold, first-order hold, Runge-
Kutta, and three hp pseudospectral collocation methods, are implemented so that different types of optimal control problems
can be tackled efficiently. Adaptive trust region method is employed, and robust convergence is achieved. Both free-final-time
problem and fixed-final-time problem can be solved by the software. The application of the software is demonstrated on three
optimal control problems with varying complexity. PySCP provides researchers a useful toolkit to solve a wide variety of
optimal control problems using sequential convex programming.

1. Introduction

Many aerospace engineering problems require to solve an
optimal control problem (OCP) [1], such as the ascent tra-
jectory of launch vehicles [2, 3], hypersonic vehicle reentry
[4], spacecraft rendezvous [5, 6], and extraterrestrial objects
soft landing [7]. Traditionally, there are two methods that
can be used to solve OCPs, the indirect methods and direct
methods [8]. The former derives the optimality condition
based on the Pontryagin maximum principle and classical
calculus of variation theories, resulting in a two-point
boundary value problem (TPBVP). The costate variables in
the TPBVP have no explicit meaning and are extremely sen-
sitive to initial guesses, making the TPBVP very difficult to
solve. In contrast, the direct methods discrete the original
continuous-time OCP into a nonlinear programming
(NLP) problem, which can be then solved by an NLP solver.
The direct methods are more often used in practice [9]

because the analytical optimality condition is generally very
complicated.

In most aerospace engineering problems, the NLP prob-
lems obtained by direct methods are large-scale sparse and
nondeterministic polynomial-time hard, and the computa-
tion time to reach the expected accuracy is not guaranteed
or limited. It is possible that the computation time is so long
that no result can be reached. Although the dramatic
increase in computing power in past decades makes it possi-
ble for direct methods to be widely used in aerospace engi-
neering, rapid computation and guaranteed convergence
are still in pursuit, especially in multidisciplinary design
optimization [10] studies and online guidance and control
[11] where computation efficiency is essential.

Convex optimization problems are computationally
tractable and globally convergent and can be solved in poly-
nomial time [12, 13]. These outstanding characteristics have
attracted many researchers to try to solve OCPs by convex

Hindawi
International Journal of Aerospace Engineering
Volume 2022, Article ID 2969809, 18 pages
https://doi.org/10.1155/2022/2969809

https://orcid.org/0000-0003-1367-9377
https://orcid.org/0000-0001-7231-3880
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2969809


approaches [14]. There are two ways to do this. The first way
is called lossless convexification. The word “lossless” indi-
cates that the convexification process does not lose the prob-
lem’s characterization, and the convexified convex problem
is equivalent to the original OCP. However, most optimal
control problems cannot be approached using lossless con-
vexification due to the intrinsic nonconvexity. In this case,
the second way is applied, which is called sequential convex
programming (SCP), also known as successive convex pro-
gramming. Since equivalent convex problem cannot be con-
structed, approximate convex problem is constructed in the
local neighbourhood of a reference solution (i.e., the refer-
ence trajectory). By solving the approximate convex prob-
lem, new reference trajectory is obtained, and new
approximate convex problem can be generated. The solution
to the optimal control problem can then be approached in
an iterative way.

In recent years, significant effort has been devoted into
this topic, and many aerospace engineering problems have
been solved by convex approaches. Açıkmeşe et al. [15–18]
proposed lossless convexification to solve the single-phase
OCP of Mars pinpoint landing, which was then extended
to onboard guidance for vertical landing launch vehicles
and asteroid landing [19, 20]. Many advanced techniques
have been developed and combined with SCP, for instance,
problem reformulation by equivalent transformation [21,
22] and pseudospectral methods [23]. Both aerodynamic
control and thrust control for powered landing have also
been tackled using SCP [24, 25]. Sequential convex
approaches have achieved significant progress in this area,
and even six-degree-of-freedom free-final-time powered
landing can be solved in real time [26].

Hypersonic reentry is another difficult problem that has
been well addressed. Subject to significant aerodynamic
forces and strict path constraints, trajectory optimization
of hypersonic reentry is a highly nonlinear problem. Liu
et al. [27] first introduced new control variables and
obtained corresponding linear dynamics plus additional
nonconvex control constraints which were then relaxed into
convex constraints. By successive linearization, the original
nonconvex problem is converted into a sequence of
second-order convex programming (SOCP) problems. Line
search and trust region methods [28], adaptive mesh refine-
ment [29], pseudospectral discretization methods [30], and
equivalent transformation [31] have also been employed
associated with SCP to cope with this highly nonlinear
OCP. SCP has also been extensively applied in many other
problems, such as unmanned arial vehicle formation flight
[32] and spacecraft rendezvous guidance [33, 34].

In past decades, there has been many scientific comput-
ing software that implemented direct methods and widely
used in aerospace engineering. The first well-known direct
collocation software was Optimal Trajectories by Implicit
Simulation [35] (OTIS), a FORTRAN software that has
general-purpose capabilities for problems in aeronautics
and astronautics. Commercial general-purpose optimal con-
trol software GPOPS II [36, 37] is a Matlab toolkit that uses
hp-adaptive pseudospectral methods to discrete OCPs and
large-scale NLP solvers (SNOPT [38] and IPOPT [39]) for

the transcribed NLP problems; DIDO [40, 41] uses pseudos-
pectral methods and sequential quadratic programming
(SQP) to solve OCPs, which are widely used in orbit maneu-
vering studies. Program to optimize simulated trajectory II
(POST II) [42] developed by NASA uses direct shooting
methods and gradient descent/SQP and is applicable in var-
ious ascent and descent trajectory optimization problems.
DLR developed first European tool based on flipped Radau
pseudospectral methods, referred as SPARTAN [43, 44].
IClocs2 [45, 46] is another comprehensive software suite
for solving OCPs implemented in Matlab and Simulink,
aiming at providing a user-friendly interface. However, there
has been no public software that implements SCP to boost
the research on optimal control problems using convex
optimization.

This paper presents a Python software program for solv-
ing multiple-phase optimal control problems using sequen-
tial convex programming methods. PySCP first maps the
time horizon of each phase onto a normalized time horizon
τ ∈ ½−1, 1� so that both fixed-final-time and free-time-time
cases can be handled. The nonconvex functions in the opti-
mal control problem need to be convexified. PySCP provides
a template to convexify the dynamic equation using succes-
sive linearization. After convexification, the continuous-
time problem is discretized to form a discrete SOCP problem.
To do this, PySCP implements six discretization methods,
including zero-order hold (ZOH), first-order hold (FOH),
Runge-Kutta (RK), and three Legendre pseudospectral
methods. The trust region size has a deterministic influence
on the convergence property of the iteration process. An
adaptive trust region method is employed to adjust the trust
region size. To demonstrate the utility of PySCP, three exam-
ples of different complexity are illustrated. We hope this soft-
ware can help to provide researchers a platform to deal with
optimal control problems with less effort and promote the
application of SCP in aerospace engineering.

2. Multiple-Phase Optimal Control Problem

The general multiple-phase optimal control problems that
can be solved by PySCP are given as follows.

Problem P0. Minimize the objective function

J = 〠
P

p=1
Φ pð Þ x pð Þ t0ð Þ, x pð Þ t f

� �h i
+
ðt pð Þ

f

t pð Þ
0

g pð Þ x pð Þ tð Þ, u pð Þ tð Þ
h i

dt

( )
, p = 1, 2,⋯, Pð Þ,

ð1Þ

subject to the dynamic constraints

d
dt

x pð Þ tð Þ = f pð Þ x pð Þ tð Þ, u pð Þ tð Þ
h i

, ð2Þ

the path constraints

C pð Þ x pð Þ tð Þ, u pð Þ tð Þ
h i

≤ 0, ð3Þ

2 International Journal of Aerospace Engineering



the boundary constraints

φ pð Þ x pð Þ t0ð Þ, x pð Þ t f
� �h i

≤ 0, ð4Þ

and the linkage constraints

L
pl,b
pl,a x pið Þ t f

� �
, x pjð Þ t0ð Þ

h i
≤ 0,

pl,a, pl,b ∈ 1,⋯, P½ �,
l = 1,⋯, nL:

(
ð5Þ

The above functions are defined by the following map-
pings:

Φ pð Þ : ℝ2n pð Þ
x ⟶ℝ,

g pð Þ : ℝn pð Þ
x +n pð Þ

u ⟶ℝ,

f pð Þ : ℝn pð Þ
x +n pð Þ

u ⟶ℝn pð Þ
x ,

C pð Þ : ℝn pð Þ
x +n pð Þ

u ⟶ℝn pð Þ
c ,

φ pð Þ : ℝ2n pð Þ
x ⟶ℝn pð Þ

φ ,

L
pl,b
pl,a : ℝ

n
pið Þ
x +n pjð Þ

x ⟶ℝn lð Þ
L :

ð6Þ

xðpÞ ∈ℝnðpÞx is the state variable vector in the p-th phase,

and uðpÞ ∈ℝnðpÞu is the control variable vector. nðpÞx , nðpÞu , nðpÞc ,

and nðpÞφ are the state variable dimension, control variable
dimension, number of path constraints, and number of
boundary constraints in the p-th phase. nL is the number

of linkage couples, and nðlÞL is the linkage constraints in the
l-th linkage couple. An example of how phases can be linked
is given in Figure 1. There are four phases and three linkage
couples in total.

Phases can be either free-final-time or fixed-final-time.
The time domain of each phase is mapped onto a normal-
ized time domain τ ∈ ½−1, 1� based on the following expres-
sion:

t pð Þ =
t pð Þ
f − t pð Þ

0
2 τ +

t pð Þ
f + t pð Þ

0
2 , τ ∈ −1, 1½ �: ð7Þ

Denote σðpÞ = ðtðpÞf − tðpÞ0 Þ/2. The multiple-phase optimal
control problem can be rewritten as follows.

Problem P1. Minimize the objective function

J = 〠
P

p=1
Φ pð Þ x pð Þ −1ð Þ, x pð Þ 1ð Þ

h i
+ σ
ð1
−1
g pð Þ x pð Þ −1ð Þ, u pð Þ 1ð Þ
h i

dτ
� �

,

ð8Þ

subject to the dynamic constraints

d
dτ

x pð Þ τð Þ = σ pð Þf x pð Þ τð Þ, u pð Þ τð Þ
h i

, ð9Þ

the path constraints

C pð Þ x pð Þ τð Þ, u pð Þ τð Þ
h i

≤ 0, ð10Þ

the boundary constraints

φ pð Þ x pð Þ −1ð Þ, x pð Þ +1ð Þ
h i

≤ 0, ð11Þ

and the linkage constraints

L
pl,b
pl,a x pl,að Þ 1ð Þ, x pl,bð Þ −1ð Þ
h i

≤ 0: ð12Þ

The dynamic equations are a first-order differential
equation set, and all the other functions are algebraic. For
simplification, the symbol for phase number ðpÞ is omitted
in the remaining part of this paper, except for the functions
in the objective and linkage constraints.

2.1. Workflow of PySCP. The workflow of PySCP is illus-
trated in Figure 2. The basic idea behind this is that “con-
struct the approximated SOCP and iterate to approach the
original problem.”

Step 1. Convexification. If all functions and constraints of the
optimal control problem are convex, the optimal control
problem can be reformulated as convex optimization prob-
lem without requirement for approximation, and the solu-
tion to the convex problem is also the optimal solution to
the original problem. Otherwise, all nonconvex functions
and constraints must be transformed into convex ones.
There are many different convexification methods, and most
of them require a reference trajectory for approximation.

Step 2. Discretization. The convexified convex problem is
still continuous-time problem which cannot be directly han-
dled by computers. Discretization methods approximate the
functions in the continuous-time problem using state vari-
ables and control variables at the discrete points, after which
a SOCP problem is constructed. The discretization method
determines the unknown variable number and the computa-
tion efficiency of the transcribed convex optimization prob-
lem. In PySCP, six discretization methods are implemented,
including ZOH, FOH, Runge-Kutta, and three Legendre
pseudospectral methods.

Step 3. Solve the convex optimization problem. The SOCP
problem can be solved efficiently in bounded computation
time [12, 47]. There are many mature software or toolkit
that implements SOCP solvers, such as MOSEK [48],
CPLEX, SDPT3 [49], SeDuMi [50], and ECOS [51]. There
is also a variety of software that provides interfaces to for-
mulate SOCP problems, such as CVX [52], CVXPY [53],
CVXOPT [54], and CVXGEN [55], to name a few. PySCP
uses CVXPY to address the SOCP problem, which is solved
by the primal-dual internal point method using ECOS by
default.

3International Journal of Aerospace Engineering



In each iteration, the solution to the SOCP problem is
checked whether it meets the convergence requirement. If
positive, the algorithm stops. Otherwise, go to Step 4.

Step 4. Trust region adaption. In mathematical optimiza-
tion, those methods that iterate to approach to the solu-
tion by constructing approximated problems are usually
called local descent methods [56], including trust region
method and line search method. The former first deter-
mines the step size and then finds the search direction.
In contrast, the latter method determines the search direc-
tion first and then the step size. The basic idea behind
SCP is the same as the local descent methods. Both the
trust region method and line search method can be
applied for iterative optimization [57]. PySCP adopts a
method called adaptive trust region method. The solution
to the SOCP serves as the new reference trajectory for
constructing a new SOCP problem.

In the next three sections, the convexification, discretiza-
tion, and adaptive trust region method will be discussed one
by one.

2.2. Convexification Methods. Convexification and discreti-
zation are aimed at constructing a discrete SOCP problem
in the local neighbourhood of a reference trajectory. SOCP
is a kind of convex optimization problems defined as

min aTi x

s:t: A0x = b0

Aix + bik k ≤ cTi x + d, i = 1, 2,⋯,m,

ð13Þ

where k·k is 2-norm operator. In a SOCP problem, the
equality function must be linear, and inequality function is
convex in the sense that the constrained feasible space is a
second-order cone. All the function in Problem P1 must be
convexified into functions with the same form as Equation

Time

Trajectory

Phase 1

Phase 2

Phase 4
Linkage

t0

Linkage

Phase 3

t1 t2 t3 t4

Figure 1: Schematic of linkage conditions for multiphase optimal control problem.

Start

Converged?

End

Yes

No

Trust region adaption

Convexification

Discretization

ECOS

New reference trajectory

Initial reference trajectory

Figure 2: Workflow of PySCP.

4 International Journal of Aerospace Engineering



(13). There are many convexification methods, including
equivalent transformation, change of variables, successive
linearization, successive approximation, and relaxation. We
refer the readers to [14] for more details.

The convexification method depends on the specific
problem. In this paper, we focus on the convexification of
the dynamic equation. The successive linearization is
employed, which refers to the process of repeatedly lineariz-
ing a nonconvex function around a reference trajectory by
Taylor expansion. Denote the reference trajectory of the k
-th iteration as fxðkÞ, uðkÞ, σðkÞg. For a first-order differential
equation in the following form

dx
dτ

= σf x, uð Þ, ð14Þ

the right-hand side can be linearized by Taylor expan-
sion. If the final time is fixed, σ is known and a constant
value; then, the linearized differential equation can be
expressed as

dx
dτ

����
x kð Þ ,u kð Þ ,σ kð Þf g

= σf x, uð Þj x kð Þ ,u kð Þ ,σ kð Þf g ≈ σ kð ÞA x kð Þ, u kð Þ
h i

� x − x kð Þ
� �

+ σ kð ÞB x kð Þ, u kð Þ
h i

� u − u kð Þ
� �

+ σ kð Þf x kð Þ, u kð Þ
h i

:

ð15Þ

When the final time is free, σ is an unknown variable.
The dynamic equation can be approximated as

dx
dτ

����
x kð Þ ,u kð Þ ,σ kð Þf g

= σf x, uð Þj x kð Þ ,u kð Þ ,σ kð Þf g ≈ σ kð ÞA x kð Þ, u kð Þ
h i

� x − x kð Þ
� �

+ σ kð ÞB x kð Þ, u kð Þ
h i

u − u kð Þ
� �

+ σf x kð Þ, u kð Þ
h i

:

ð16Þ

In Equations (15) and (16),

A = fx =
∂
∂x f x τð Þ, u τð Þ, τ½ � ∈ℝnx×nx ð17Þ

is the Jacobian matrix of f respect to x, and

B = fu =
∂
∂u f x τð Þ, u τð Þ, τ½ � ∈ℝnx×nu ð18Þ

is the Jacobian matrix of f respect to u. Denote

R x kð Þ, u kð Þ, σ kð Þ
h i

= −σ kð Þ Ax kð Þ + Bu kð Þ
h i

: ð19Þ

Equation (15) can be rewritten as

d
dτ

x = σ kð ÞAx + σ kð ÞBu + σ kð Þf + R, ð20Þ

and Equation (16) is rewritten as

d
dτ

x = σ kð ÞAx + σ kð ÞBu + σf + R: ð21Þ

In this way, the right-hand side of the first-order differ-
ential equation is linearized. The only difference between
Equation (20) and Equation (21) lies at the third term on
the right-hand side. To keep it simple, only Equation (21)
will be discussed, and the case for fixed-final-time phases
can be obtained in a similar way.

3. Discretization Methods

The objective function, path constraints, boundary con-
straints, and linkage constraints are all algebraic functions,
and the discrete form of these functions is the same as the
original functions. However, the dynamic constraints are
first-order differential functions and require to be approxi-
mated and transformed to algebraic functions.

To do this, PySCP implements six discretization
methods, as shown in Figure 3. ZOH, FOH, and RK belong
to low-order discretization methods.

Global Legendre pseudospectral methods benefit from
two outstanding characteristics [58, 59]: (1) when the solu-
tion is smooth, the pseudospectral methods have quasi-
exponential convergence when the number of discrete points
is increased; (2) Runge phenomenon is avoided. However, if
the solution is not smooth, the quasi-exponential conver-
gence is invalid. In order to overcome this phenomenon,
hp Legendre pseudospectral methods are adopted. Low-
order methods only have quasi-linear convergence [60]
when the number of discrete points is increased. If the solu-
tion accuracy is high, the required number of discrete points
becomes very large. These two kinds of discretization
methods have their own advantages and disadvantages.
Users can select appropriate methods for their problems.

3.1. Legendre Pseudospectral Methods. Global Legendre
pseudospectral methods use the roots of orthogonal Legen-
dre polynomials as the collocation points and construct a

Discretization
methods

Legendre
pseudospectral

methods

Low-order
methods

hp LG

hp LGR

hp fLGR

ZOH

FOH

RK

Figure 3: Discretization methods.

5International Journal of Aerospace Engineering



set of Lagrangian polynomials to approximate the functions.
Depending on the difference of collocation points, global
Legendre pseudospectral methods can be divided into
Legendre-Gauss (LG) pseudospectral method, Legendre-
Gauss-Radau (LGR) pseudospectral method, and Legendre-
Gauss-Lobatto (LGL) pseudospectral method.

The discretization points, also known as nodes, are the
points where to approximate the variables. An illustration
of the pseudospectral collocation points and nodes is shown
in Figure 4 (the circles represent the collocation points, and
the nodes include both the circles and the crosses). Denote
the N-th-order Legendre polynomial as PNðτÞ. The colloca-
tion points of the LG are the root of PNðτÞ, which contains
neither τ = −1 nor τ = +1. The LGR points are the root of
PN−1ðτÞ + PNðτÞ, which contains the left bound of the time
interval τ = −1 but does not contain τ = +1. The LGL points
are the root of _PN−1ðτÞ together with τ = −1 and τ = +1. The
LG and LGL points are symmetric about the origin whereas
the LGR points are not. There is another version of LGR,
which is called flipped LGR (fLGR). The fLGR points are
obtained by flipping the LGR points with respect to the y
axis.

The global Legendre pseudospectral methods approxi-
mate the functions on the time interval of τ ∈ ½−1, 1� using
global polynomials. They lose pseudoexponential conver-
gence when the optimal control is not smooth. To overcome
this problem, hp pseudospectral methods are implemented
in PySCP. hp methods first divide the time interval into sev-
eral subintervals and then approximate the function on the
subintervals with local Lagrangian polynomials. “h” repre-
sents the number of the subintervals, and “p” represents
the polynomial degree in the subinterval. The global pseu-
dospectral methods can be considered as special cases of
hp pseudospectral methods in the sense that h = 1.

Take hp fLGR as example. The time interval τ ∈ ½−1, 1� is
divided into H subintervals. Denote the h-th ðh = 1,⋯,HÞ

subinterval as Sh = ½τh,l, τh,r� and the left bound and right
bound of this subinterval as τh,l, τh,r ∈ ½−1, 1�. Assume that
there are Nh collocation points in this subinterval. A set of
Lagrangian polynomials are constructed using the variables
at the nodes

ℓi τð Þ =
YNh

j=0
j≠i

τ − τj
τi − τj

, i = 0,⋯,Nhð Þ: ð22Þ

The functions in the subinterval Sh can be approximated
as

x τð Þ ≈X τð Þ = 〠
Nh

i=0
X h½ �,iℓ h½ �,i τð Þ, τ ∈ Sh, ð23Þ

where X½h� and U½h� are the state variables and control vari-
ables at the nodes in Sh and ℓiðτÞ have the following prop-
erty

ℓi τj
� �

= δij =
1, i = j,
0, i ≠ j:

(
ð24Þ

δij is the Kronecker Delta function. Differentiating Equa-
tion (23), we have

d
dτ

x τj
� �

≈ 〠
Nh

i=0
Xiℓi τj

� �
= 〠

Nh

i=0
D Nh½ �,jiXi, j = 1,⋯,Nhð Þ, ð25Þ

where D½Nh� ∈ℝ
Nh×ðNh+1Þ is the pseudospectral differential

matrix and D½Nh�,ji = _ℓ½h�,iðτ½h�,jÞ. Thus, the dynamic equation

fLGR

LGR

LGL

LG

–1.00 0.50 0.75 1.000.250.00

τ

–0.25–0.50–0.75

Figure 4: The distribution of collocation points and nodes in LG, LGL, LGR, and fLGR (N = 8).

6 International Journal of Aerospace Engineering



can be discretized by the following form:

D Nh½ �X h½ � = σ kð ÞAX h½ � + σ kð ÞBU h½ � + σf X h½ �,U h½ �, σ kð Þ
� �

+ R X h½ �,U h½ �, σ kð Þ
� �

:

ð26Þ

Denote the state variables in all H subintervals as fol-
lows:

X = X 1½ �,X 2½ �,⋯,X H½ �
h iT

: ð27Þ

The dynamic equation can be approximated by

DX = σ kð ÞAX + σ kð ÞBU + σf X,U, σ kð Þ
� �

+ R X,U, σ kð Þ
� �

:

ð28Þ

This is called the pseudospectral differential form. Corre-
sponding to this form, the dynamic equation can also be
approximated in another form called the pseudospectral
integral form. In the h-th subinterval, the state variable is
approximated by

X h½ � =X h½ �,0 + 〠
Nh

i=0
I Nh½ �,ji σ kð ÞAX h½ �,i + σ kð ÞBU h½ �,i

n
+ σf X h½ �,i,U h½ �,i, σ kð Þ

� �
+ R X h½ �,i,U h½ �,i, σ kð Þ
� �o

,

ð29Þ

where I½Nh� is Nh × ðNh + 1Þ matrix and I½Nh�,ji =
Ð τ½h�, j
τh,l

ℓ½h�,iðξÞ
dξ. Combing all subintervals, the integral form can be
expressed as

X =X0 + 〠
H

h=1
〠
Nh

i=0
I Nh½ �,ji σ kð ÞAX h½ �,i + σ kð ÞBU h½ �,i

n

+ σf X h½ �,i,U h½ �,i, σ kð Þ
� �

+ R X h½ �,i,U h½ �,i, σ kð Þ
� �o

:

ð30Þ

X0 is a vector containing the state variables on the left
bound of all subintervals. The differential form and integral
form of hp LG pseudospectral method and hp LGR are sim-
ilar. It should be noted that the differential form and the
integral form are equivalent [61]. However, this is not the
case for hp LGL. Therefore, hp LGL is not implemented in
PySCP.

Apart from the dynamic equation, the integral term in
the objective is approximated by

ð1
−1
g x, u, τð Þdτ = 〠

N

i=1
wig X,Uð Þ: ð31Þ

wi is the integral weights of the pseudospectral methods.
We refer the readers to [62] for the computation of the dif-
ferential matrix D, the integral matrix I, and the integral
weights wi.

3.2. Low-Order Discretization Methods. The convexified
dynamic equation

d
dτ

x = σ kð ÞA τð Þx + σ kð ÞB τð Þu + σf τð Þ + R τð Þ ð32Þ

can be considered as a continuous-time linear control
system. In control theory, this control system can be discre-
tized using ZOH, FOH, and RK methods. Assume that the
normalized time horizon is discretized into N subintervals
by N + 1 discretization points, which can also be called
nodes. The subintervals can be either uniformly distributed
or nonuniformly distributed.

According to the control theory [63], the state transition
of Equation (32) over an subinterval can be expressed as

x τð Þ =Ψ τ, τið Þx τið Þ +
ðτ
τi

Ψ τ, ξð ÞBudξ + σ
ðτ
τi

Ψ τ, ξð Þfdξ

+
ðτ
τi

Ψ τ, ξð ÞRdξ,

ð33Þ

where Ψðτ, τiÞ is the state transition matrix which has the
following properties:

(1) Ψðτ, τiÞ is first-order continuous
(2) Nonsingular and invertible: Ψðτ, τiÞ =Ψ−1ðτi, τÞ and

Ψðτ, τiÞΨðτi, τÞ = I, where I is the unit matrix

(3) For all τ, Ψðτ, τÞ = I

(4) Ψ is the unique solution to the linear matrix ordi-
nary differential equation

d
dτ

Ψ τ, τkð Þ = σ kð ÞA τð Þx + σ kð ÞB τð Þu + σf τð Þ + R τð Þ: ð34Þ

ZOH assumes that the control variables keep constant
during each subinterval and are always equal to the control
variable on the left bound of each subinterval, i.e.,

u τð Þ = u τið Þ, τ ∈ τi, τi+1½ Þ: ð35Þ

FOH assumes that the control variables are linearly
interpolated by the control variables on the left bound and
right bound of each subinterval, i.e.,

u τð Þ = −τ + τk+1
τk+1 − τk

u τkð Þ + τ − τk
τk+1 − τk

u τk+1ð Þ, τ ∈ τk, τk+1½ Þ:

ð36Þ

The illustration of ZOH and FOH is shown in Figure 5.
In the ZOH method, the state variables Xi+1 at τ = τi+1

can be approximated by

Xi+1 = ÂiXi + B̂iUi + σf̂i + R̂i, ð37Þ

7International Journal of Aerospace Engineering



where the matrices are given by

Âi =Ψ τi+1, τið Þ,

B̂i =Ψ τi+1, τið Þ
ðτi+1
τi

Ψ−1 ξ, τið Þσ kð ÞB X kð Þ,U kð Þ, ξ
h i

dξ,

f̂ =Ψ τi+1, τkð Þ
ðτi+1
τi

Ψ−1 ξ, τið Þf X kð Þ,U kð Þ, ξ
h i

dξ,

R̂ =Ψ τi+1, τkð Þ
ðτi+1
τi

Ψ−1 ξ, τið ÞR X kð Þ,U kð Þ, ξ
h i

dξ:

ð38Þ

Thus, the state variables on adjacent points are associ-
ated with each other by an algebraic equation. In the FOH
method, the state variables Xi+1 at τ = τi+1 can be associated
with Xi by the following equation:

Xi+1 = ÂiXi + B̂i−Ui + B̂i+Ui+1 + σf̂i + R̂i, ð39Þ

where the matrices are given by

Âi =Ψ τi+1, τið Þ,

B̂i− =Ψ τi+1, τið Þ
ðτi+1
τi

Ψ−1 ξ, τið Þσ kð ÞB x, u, ξð Þλ−dξ,

B̂i+ =Ψ τi+1, τið Þ
ðτi+1
τi

Ψ−1 ξ, τið Þσ kð ÞB x, u, ξð Þλ+dξ,

f̂ =Ψ τi+1, τkð Þ
ðτi+1
τi

Ψ−1 ξ, τið Þf x, u, ξð Þdξ,

R̂ =Φ τi+1, τkð Þ
ðτi+1
τi

Φ−1 ξ, τið ÞR x, u, ξð Þdξ:

ð40Þ

In the RK method, the transcribed dynamic equation is
given as follows:

Xi+1 =Xi +
Δτ

6 k1 + 2k2 + 2k3 + k4ð Þ, ð41Þ

where

k1 = σ kð ÞAiXi + σ kð ÞBiUi + fiσ + Ri,

k2 = σ kð ÞAi+1/2 Xi +
Δτ

2 k1
	 


+ Bi+1/2Ui+1/2 + fi+1/2σ + Ri+1/2,

k3 = σ kð ÞAi+1/2 Xi +
Δτ

2 k2
	 


+ Bi+1/2Ui+1/2 + fi+1/2σ + Ri+1/2,

k4 = σ kð ÞAi+1 Xi + Δτk3ð Þ + Bi+1Ui+1 + fi+1σ + Ri+1:

ð42Þ

The subscript i + 1/2 indicates the value is evaluated at
the middle point of τ = τi and τ = τi+1. Subscribing Equation
(42) into Equation (41), the latter equation can be refor-
matted into the same form as that of Equation (39).

4. Adaptive Trust Region Method

After convexification and discretization, the multiple-phase
optimal control problem is transcribed to a SOCP problem
around a reference trajectory fXðkÞ,UðkÞ, σðkÞg, which is
summarized as follows:

Problem P2. Minimize the objective

L = 〠
P

p=1
Φ pð Þ X0,XN½ � + σ〠

N

i=1
w pð Þ

i g pð Þ X pð Þ
i ,U pð Þ

i , t
h i( )

, ð43Þ

subject to the transcribed dynamic constraints (Equation
(28), Equation (30), Equation (37), or Equation (39) depend-
ing on the discretization method), path constraints

C Xi,Ui, τi½ � ≤ 0, ð44Þ

the boundary constraints

φ Xi½ � ≤ 0, ð45Þ

the linkage constraints

L
pl,b
pl,a X pl,að Þ

N ,X pl,bð Þ
0

� �
≤ 0, ð46Þ

Table 1: Simulation parameters.

Parameter Value

ων 1 × 103

ωf 1 × 102

ρ1 0.1

ρ2 0.2

ρ3 0.75

c1 0.5

c2 3.2

...

...
τ0 τ1 τ2

τ0 τ1 τ2

τN

τN

τN–1

τN–1

u0 u1

u0 u1 u2

uN–1

uN–1 uN

ZOH

FOH

Figure 5: Illustration of ZOH and FOH.

8 International Journal of Aerospace Engineering



and the trust region constraints

X −X kð Þ
��� ��� ≤ δx ,

U −U kð Þ
��� ��� ≤ δu,

σ − σ kð Þ
��� ��� ≤ δσ:

ð47Þ

The dynamic constraints are equality functions, and the
feasible space is very small in most situations, or even null,

especially in the first several iterations. This phenomenon
is usually called artificial infeasibility. To avoid the situation
that no solution exists, a slack variable νf ∈ℝ

nx×ncp
+ is intro-

duced. In pseudospectral methods, ncp is the number of col-
location points. For low-order discretization methods, ncp is
the number of the subintervals. Take Equation (37) as an
example, the dynamic constraints are converted to an
inequality function

Xi+1 − ÂiXi + B̂iUi + σf̂i + R̂i

� ��� �� ≤ νf : ð48Þ

x

Initial guess
PySCP
GPOPS II

0.10 1.00

0.75

0.50

0.25

0.00

–1.00

–0.75

–0.50

–0.25

0.08

0.06

0.04

0.00

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.01.2

0.02

Time (s) Time (s)

υ

Figure 6: Optimal states of the Breakwell problem.

Time (s)

4

–4

–6

–8

–10

0.80.4 1.00.60.20.0

2

–2

0

u

Initial guess
PySCP
GPOPS II

Figure 7: Optimal control of the Breakwell problem.

9International Journal of Aerospace Engineering



The slack variable enlarges the feasible space of the dynamic
constraints. The norm of νf represents how much the dynamic
constraints are violated; therefore, kνf k should be as small as
possible to make sure that the solution to the SOCP problem
is also the solution to the original OCP. In addition to the
dynamic constraints, a slack variable νc ∈ℝ

nc×ncp
+ for the path

constraints is also introduced. The path constraints are trans-
formed to the following inequality function:

C X,U½ � ≤ νc: ð49Þ

To ensure that two slack variables approach to zero at con-
vergence, they are penalized in the objective function. Construct
an augmented objective function of the original optimal control
problem, defined as follows:

J
_
= J + ωf νf

  + ωc vck k: ð50Þ

The penalty on the slack variables is also introduced onto

Table 2: Comparison of accuracy and CPU times.

Method Nodes h p CPU time, ms Objective Objective relative error Max relative error, x1 Max relative error, x2

ZOH

10 - - 7.59 4.57452 2:93 × 10−2 9:46 × 10−4 7:73 × 10−2

20 - - 16.87 4.47573 7:03 × 10−3 4:04 × 10−4 3:23 × 10−2

50 - - 52.99 4.44945 1:11 × 10−3 2:07 × 10−4 1:64 × 10−2

100 - - 144.31 4.44578 2:78 × 10−4 1:04 × 10−4 8:26 × 10−2

FOH

10 - - 2.49 4.66915 5:06 × 10−2 1:24 × 10−7 6:55 × 10−8

20 - - 7.85 4.50242 1:30 × 10−3 1:98 × 10−7 4:30 × 10−8

50 - - 29.69 4.45408 2:16 × 10−3 1:89 × 10−7 7:14 × 10−8

100 - - 61.58 4.44694 5:46 × 10−4 1:71 × 10−7 7:88 × 10−8

RK

10 - - 8.01 4.66912 5:06 × 10−2 3:03 × 10−8 1:20 × 10−7

20 - - 17.52 4.50255 1:30 × 10−2 6:34 × 10−8 1:38 × 10−8

50 - - 57.71 4.45403 2:16 × 10−3 1:00 × 10−7 6:69 × 10−8

100 - - 129.11 4.44692 5:47 × 10−4 7:08 × 10−8 7:71 × 10−8

hp LG

20 1 18 36.5 4.44068 8:47 × 10−4 8:91 × 10−3 1:80 × 10−2

42 1 40 135.1 4.44428 3:60 × 10−5 2:34 × 10−3 4:76 × 10−3

56 5 10 96.8 4.44393 1:15 × 10−4 1:61 × 10−3 3:19 × 10−3

106 5 20 274.8 4.44437 1:58 × 10−5 4:31 × 10−4 8:68 × 10−4

hp LGR

21 1 20 33.4 4.44067 8:50 × 10−4 9:61 × 10−3 1:81 × 10−2

41 1 40 119.0 4.44404 9:06 × 10−5 2:38 × 10−3 4:94 × 10−3

51 5 10 84.9 4.44406 8:62 × 10−5 1:67 × 10−3 3:43 × 10−3

101 5 20 252.4 4.44439 1:19 × 10−5 4:62 × 10−4 9:46 × 10−4

hp fLGR

21 1 20 32.0 4.44067 8:50 × 10−4 9:53 × 10−3 1:86 × 10−2

41 1 40 127.1 4.44404 9:06 × 10−5 2:40 × 10−3 4:66 × 10−3

51 5 10 84.2 4.44406 8:62 × 10−5 1:72 × 10−3 3:49 × 10−3

101 5 20 247.7 4.44439 1:19 × 10−5 4:59 × 10−4 9:06 × 10−4

N+1

0 0

0

0

N1+1

N1

0

0

Figure 8: The sparsity of the pseudospectral differential matrix for
hp fLGR method.

10 International Journal of Aerospace Engineering



the objective function of Problem 2, as follows:

L
_

X kð Þ,U kð Þ, σ kð Þ
h i

= L + ωf νf
  + ωc vck k, ð51Þ

where ωf and ωc are the penalty factors on the slack variables.
Define a ratio parameter

ρ kð Þ = J
_

X kð Þ,U kð Þ, σ kð Þ� �
− J

_
X k−1ð Þ,U k−1ð Þ, σ k−1ð Þ� �

J
_

X kð Þ,U kð Þ, σ kð Þ� �
− L

_
X kð Þ,U kð Þ, σ kð Þ� � , ð52Þ

to measure the accuracy of approximation. The numerator is
the improvement in the performance index of the original
optimal control problem, and the denominator is the
improvement in the performance index of the SOCP prob-
lem. If ρðkÞ is close to 1, the approximation is very accurate,
and the trust region can be enlarged. If ρðkÞ ≪ 1, the approx-
imation is poor, and the trust region must be scaled down.

Based on the above analysis, define the following param-
eters: 0 < ρ1 < ρ2 < 1 and c1 < 1 < c2. If ρ

ðkÞ < ρ1, then adjust

the trust region by δðkÞ = c1δðk−1Þ. If ρ1 ≤ ρðkÞ < ρ2, then the

trust region keeps unchanged, δðkÞ = δðk−1Þ. Otherwise. if
ρðkÞ ≥ ρ2, enlarge the trust region by δðkÞ = c2δðk−1Þ. The
PySCP algorithm is terminated when the nonlinear cost

reduction Δ J
_
goes below a tolerance 1 × 10−4.

5. Examples

In this section, PySCP is demonstrated on three examples.
The first example is the Breakwell problem and demon-
strates the ability of PySCP to solve single-phase smooth
OCPs with fixed final time. The second example is the lunar
landing problem to show its ability to cope with nonsmooth
free-final-time problems. The third example is the ascent

trajectory optimization of two-stage-to-orbit launch vehicle,
which is a nonsmooth multiple-phase optimal control
problem.

The simulation parameters in all the following examples
are listed in Table 1, including the penalty factors and
parameters for the adaptive trust region method. Suitable
values of these parameters here are selected according to a
trial-and-error process. The virtual control weights are typi-
cally 1-3 orders of magnitude larger to ensure that the corre-
sponding terms in the right-hand side of Equation (50) go to
0.

5.1. Breakwell Problem. The Breakwell problem [60] is a
single-phase fixed-final-time optimal control problem whose
optimum control variable is smooth. The objective is given
by

J = 1
2

ð1
0
u2dt, ð53Þ

subject to a convex dynamic equation

_x = v, _v = u, ð54Þ

fixed boundary constraints

x 0ð Þ = 0, x 1ð Þ = 1, v 0ð Þ = 1, v 1ð Þ = −1, ð55Þ

and state constraints

x tð Þ ≤ l = 0:1: ð56Þ

In this problem, all functions and constraints are convex.
PySCP achieves the solution on the first iteration because no
approximation is made when transcribing the problem to

10 20 30 40

Node number Node number

ZOH
FOH
RK
p-LG

h-LG
h-LGR
h-fLGR

p-LGR

p-LGR

50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

10–1

10–2

St
at

e e
rr

or

O
bj

ec
tiv

e e
rr

or

10–3

10–4

10–5

10–2

10–3

10–4

10–5

10–6

10–7

Figure 9: Accuracy with the increase of node number.

11International Journal of Aerospace Engineering



the SOCP problem. The analytical optimal objective is J =
4/ð9lÞ ≈ 0:44444.

The optimal state variables are shown in Figure 6, and
the optimal control variable is shown in Figure 7. The discre-
tization method is FOH, and the subinterval number is 40.
All other discretization methods lead to the same optimal
solution. The straight lines are the initial guess, which are
far away from the final solution.

To assess the precision of the implemented PySCP
method, the state variables are integrated by open-loop
propagation given the computed control signals. The inte-

grated state vector is denoted as X
_
. The open-loop propaga-

tion is implemented and integrated in PySCP, which is
automatically called after iteration stops. The relative error
between the integrated state and the computed state is
defined as

ej τið Þ = X̂ j τið Þ −X j τið Þ�� ��
1 +max X j τið Þ�� �� , i = 1,⋯,N , j = 1,⋯, nx: ð57Þ

The max relative error of each state variable is

emax,j = max
i=1,⋯,N

ej τið Þ, j = 1,⋯, nx: ð58Þ

Multiple discretization methods are implemented in
PySCP. All these methods are employed, and the CPU times
and max relative errors for different methods are listed in
Table 2.

The CPU times for the low-order methods become
larger when the node number grows. However, this is not
the case for the pseudospectral methods. For instance, hp
LG with 42 nodes is faster than that with 56 nodes. This is
mainly because of the structure of the differential matrix D
and integral matrix I, as illustrated in Figure 8. The nonzero
elements only exist in the diagonal blocks, and the number
of nonzero elements in each block is proportional to the
square of the polynomial degrees in corresponding interval.
Higher polynomial degree leads to a longer solution time.

Optimal objective can be obtained by all methods, but
the pseudospectral methods outperform the low-order
methods. ZOH has a much worse accuracy and objective
value than other methods. FOH and RK have a very small
relative error compared to other methods, which is probably

Time (s)

0

0

h υ

2

4

6

8

10

2 41 3

Initial guess
PySCP
GPOPS II

–2

–1

0

–3

–4

Time (s)

0 2 41 3

Figure 10: The optimal states of the lunar landing problem.

Co
nt

ro
l

Initial guess
PySCP
GPOPS II

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0 1 2

Time (s)

3 4

Figure 11: The optimal control variable of the lunar landing
problem.

12 International Journal of Aerospace Engineering



due to the way that FOH and RK discrete the dynamic func-
tions. They approximate the dynamic functions by integrat-
ing from one node to the next, similar to open-loop
propagation. However, they are characterized with larger
objective error. The pseudospectral methods are better in
obtaining the optimal objective. Even low degree can lead
to an optimal objective close to the analytical value.

The state relative error and objective error are plotted in
Figure 9. The hp pseudospectral methods are implemented
using both h-scheme and p-scheme. The character “h” indi-
cates that a fixed low-degree polynomial (in this case, p = 10)
is used in each interval, and the number of subintervalsH is
changed, while “p” indicates that H is fixed to be 1, and the
polynomial degree is changed.

This is an example problem whose state and control var-
iables are all smooth. The pseudospectral methods outper-
form the low-order methods by 1-2 orders of magnitude.
h-scheme and p-scheme have a similar behaviour. They both
have a quasi-exponential convergence behaviour as stated
before when solving smooth problems.

5.2. Lunar Landing Problem. The lunar landing problem
[64] is a single-phase free-final-time bang-bang control
problem. The objective is

J =
ðt f
t0

udt: ð59Þ

The state variables are the flight altitude h and velocity v,
subject to convex dynamic equations

_h = v,
_v = −g + u,

ð60Þ

where g = 1:6m/s2 is the gravitational acceleration at the
Moon surface. The boundary condition is given by

h t0ð Þ = 10, v t0ð Þ = −2,
h t f
� �

= 0, v t f
� �

= 0:
ð61Þ

The control variable is bounded by u ∈ ½0, 3�. After nor-
malization, the objective function is given by

J =
ð1
−1
σudt, ð62Þ

which is not convex. Therefore, successive linearization is
employed to approximate the objective function.

J = 〠
N

i=0
σ kð ÞwiUi + σwiU

kð Þ
i − σ kð ÞwiU

kð Þ
i

� �
: ð63Þ

The optimal states are shown in Figure 10, and the opti-
mal control is shown in Figure 11. The analytical optimal
objective is 8.7831. The plotted curve by PySCP is calculated
using the hp fLGR method with three subintervals, each with
ten collocation points.

The state relative error and objective error for this non-
smooth problem are plotted in Figure 12. Different from the
previous smooth problem, the pseudospectral methods have
a similar behaviour with that of FOH and RK when the node
number is increased. This is mainly due to the noncontinuity
in the control variable. The breaking point in control vari-
able makes the pseudospectral methods loss its convergence
superiority over the low-order methods. An adaptive mesh
refinement might help to mitigate this phenomenon, and
faster convergence might be obtained for the pseudospectral
methods.

5.3. Ascent Trajectory Optimization of a Two-Stage-to-Orbit
Launch Vehicle. This problem is a multiple-phase optimal
control problem. The state can be described by four

100

10–1

10–3

10–4

10–5

10–2

10–3

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

ZOH
FOH
RK
p-LG

h-LG
h-LGR
h-fLGR

p-LGR

p-LGR

Node number Node number

St
at

e e
rr

or

O
bj

ec
tiv

e e
rr

or
Figure 12: Accuracy with the increase of node number.

13International Journal of Aerospace Engineering



variables: the altitude h, downrange s, velocity v, and hori-
zontal flight path angle γ, as depicted in Figure 13.

The objective is to maximize the payload mass, equiva-
lent to the minimization of the opposite value of the final
mass

J = −mf , ð64Þ

subject to the dynamic equation

_h = v sin γ,

_d = v cos γ Re

h + Re
,

_v = Tv cos δ
m

−D −
μ

h + Reð Þ2 sin γ,

_γ =
Tγ sin δ

mv
+ v

h + Re
−

μ

h + Reð Þ2v

 !
cos γ,

_m = −
T

g0Isp
:

ð65Þ

The control variables are Tv, Tγ, and thrust magnitude T
. They satisfy the following equation:

T2
v + T2

γ = T2, ð66Þ

which is nonconvex. This constraint is convexified by simply
changing the equality into inequality

T2
v + T2

γ ≤ T2: ð67Þ

In the optimal solution, the equality always holds. The
aerodynamic drag accelerationD is calculated by

D = ρV2CDSref
2m , ð68Þ

where Sref is the reference area and ρ is calculated by the
exponential atmospheric model

ρ = ρ0 exp −
h
H0

	 

: ð69Þ

ρ0 = 1:225kg/m3 is the sea level atmosphere density, and
H0 = 7200m is the reference altitude. By successive lineariza-
tion, the following are determined as follows:

A xð Þ =

0 0 sin γ v cos γ 0
a21 0 a23 a24 0

a31 0 0 a34
D
m2

a41 0 a43 a44 0
0 0 0 0 0

2
6666666664

3
7777777775
, B =

0 0 0
0 0 0
1 0 0

0 1
v

0

0 0 −
1

g0Isp

2
666666666664

3
777777777775
,

ð70Þ

with

a21 = −v cos γRe

r2
,

a23 = cos γRe

r
,

a24 = −v sin γ
Re

r
,

a31 =
μ

r3
sin γ,

a34 = −
μ

r2
cos γ

a41 = −
v
r2

+ 2μ
r3v

	 

cos γ,

a43 =
1
r
+ μ

r2v2

	 

cos γ,

a44 = −
v
r
−

μ

r2v

� �
sin γ:

ð71Þ

mg

γ
V

D

T
δ

Earth

s

r

h

Figure 13: Flight dynamics of the launch vehicle.

Table 3: Data of Falcon 9 full thrust rocket.

Stage First Second

Dry mass (t) 22.2 4.0

Propellant mass (t) 410.9 107.5

Vacuum thrust (kN) 8227 934

Specific impulse (s) 300 350

Nozzle exit area (m2) 11.039 N/A

Table 4: Boundary conditions of the flight mission.

State variables Initial condition Final condition

Altitude (km) 0 500

Downrange (km) 0 [2000, 5000]

Velocity (km) 50 7905

Flight path angle (deg) [85, 90] 0

14 International Journal of Aerospace Engineering



8

6

4

2

0

500

400

300

200

100

0

500

400

300

200

100

0

5000

4000

3000

2000

1000

0

0 200 400 600 800 1000 0 200 400 600 800 1000

Downrange

t (s) t (s)

Altitude Velocity

Mass

t (s) t (s)

km
D

eg

t

km m
 (s

)

0 200 400 600 800 1000 0 200 400 600 800 1000

8

6

4

2

0

0 200 400 600 800 1000

Thrust magnitudeFlight path angle

t (s)

M
N

Initial guess
PySCP
GPOPS II

0

80

60

40

20

0

200 400 600 800 1000

t (s)

Figure 14: The optimal ascent trajectory.

15International Journal of Aerospace Engineering



The dynamic pressure path constraints must be met,
which is 1/2ρv2 ≤ qmax. This is a nonconvex constraint,
which can be approximated by

v2 ≤
2qmax

ρ0 exp −h kð Þ/H0
� � : ð72Þ

The linkage condition between two flight phases is given
by the following equality functions:

h 1ð Þ t f
� �

= h 2ð Þ t0ð Þ,
s 1ð Þ t f
� �

= s 2ð Þ t0ð Þ,
v 1ð Þ t f
� �

= v 2ð Þ t0ð Þ,
γ 1ð Þ t f
� �

= γ 2ð Þ t0ð Þ,
m 1ð Þ t f

� �
=m 2ð Þ t0ð Þ −ms,1,

ð73Þ

wherems,1 is the structural mass of the first stage. The trajec-
tory optimization is based on the parameter of the available
data of an existing launch vehicle, Falcon 9, as listed in
Table 3.

The boundary conditions of the flight mission are listed
in Table 4. The parameters of the final downrange and the
initial flight path angle are not constant values; instead, they
can take values in reasonable ranges and are determined by
the optimization result.

The optimized states and control are plotted in
Figure 14, including the altitude, downrange, velocity, flight
path angle, mass, and the thrust magnitude, respectively.
The results from GPOPS II are also shown. It can be seen
that the results by SCP and NLP-based method coincide
with each other, but slight difference exists in the thrust
magnitude. GPOPS II obtains a perfect bang-bang control
profile, while that of PySCP has a slight slope. This is
because the GPOPS II implements hp-adaptive mesh refine-
ment so that it can capture the discontinuity in the control,
whereas PySCP does not implement mesh refinement yet.

Twelve iterations are performed before the algorithm
converges, and all constraints are satisfied. The trajectory
obtained by two methods is almost identical. PySCP only
costs 1/6 CPU time of GPOPS II, which proves the high
computational efficiency of the PySCP. As optimization the-
ory points out, there is no theoretical guarantee on the max-
imum iteration and convergence rate for NLP-based
methods. In contrast, the SOCP subproblems can be solved
in a limited iteration number.

6. Conclusions

A Python software called PySCP has been described for
multiple-phase optimal control problems using sequential
convex programming. The software uses successive lineari-
zation to convexify nonconvex dynamic constraints. The
software employs zero-order hold, first-order hold, Runge-
Kutta, hp Legendre-Gauss, hp Legendre-Gauss-Radau, and
hp flipped Legendre-Gauss-Radau to convert the

continuous-time optimal control problem into discrete
second-order cone programming problem, which is then
solved by primal-dual internal point method. Soft penalty
method and adaptive trust region method are employed to
manage the iteration process. The utility of the software is
demonstrated on three optimal control problems. The soft-
ware described in this article provides a useful toolkit to
solve a wide variety of optimal control problems.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This research is supported by the Huzhou Institute of Zhe-
jiang University under the Huzhou Distinguished Scholar
Program (ZJIHI-KY0016).

References

[1] N. Berend and C. Talbot, “Overview of some optimal control
methods adapted to expendable and reusable launch vehicle
trajectories,” Aerospace Science and Technology, vol. 10,
no. 3, pp. 222–232, 2006.

[2] X. Yang and W. Zhang, “Rapid optimization of ascent trajec-
tory for solid launch vehicles based on Gauss pseudospectral
method,” Journal of Astronautics, vol. 32, no. 1, pp. 15–21,
2011.

[3] H. Bei and W. Xin, “Trajectory optimization of solid launch
vehicle based on Hp-adaptive pseudospectral method,” Aero-
space Control, vol. 30, no. 4, pp. 18–22, 2012.

[4] Z. Wang, “Optimal trajectories and normal load analysis of
hypersonic glide vehicles via convex optimization,” Aerospace
Science and Technology, vol. 87, pp. 357–368, 2019.

[5] J. T. Betts and S. O. Erb, “Optimal low thrust trajectories to the
moon,” SIAM Journal on Applied Dynamical Systems, vol. 2,
no. 2, pp. 144–170, 2003.

[6] E. M. Yong, L. Chen, and G. J. Tang, “A survey of numerical
methods for trajectory optimization of spacecraft,” Journal of
Astronautics, vol. 29, no. 2, pp. 397–406, 2008.

[7] X. Yuan and S. Y. Zhu, “Small body descent trajectory optimi-
zation based on pseudospectral method,” Journal of Deep
Space Exploration, vol. 3, no. 1, pp. 51–55, 2016.

[8] J. T. Betts, “Survey of numerical methods for trajectory optimi-
zation,” Journal of Guidance Control & Dynamics, vol. 21,
no. 2, pp. 193–207, 1998.

[9] J. T. Betts, “Practical methods for optimal control using non-
linear programming,” Society for Industrial and Applied Math-
ematics, vol. 55, no. 4, p. B68, 2002.

[10] J. de Muelenaere, High-Fidelity Trajectory-Based Multidisci-
plinary Design Optimization for the Conceptual Design of a
Reusable Air-Launched Spaceplane, Stanford University, 2018.

[11] J. Juan, S. Merkli, S. Bennani, and H. Strauch, “FORCES-
RTTO: a tool for on-board real-time autonomous trajectory

16 International Journal of Aerospace Engineering



planning,” in 10th International ESA Conference on Guidance,
Navigation and Control Systems, Salzburg, Austria: ESA, 2017.

[12] S. Boyd, S. T. Boyd, and L. Vandenberghe, Convex Optimiza-
tion, Cambridge University Press, New York, 2013.

[13] D. Malyuta, T. P. Reynolds, M. Szmuk et al., “Convex optimi-
zation for trajectory generation,” 2021, http://arxiv.org/abs/
2106.09125.

[14] X. Liu, P. Lu, and P. Pan, “Survey of convex optimization for
aerospace applications,” Astrodynamics, vol. 1, no. 1, pp. 23–
40, 2017.

[15] B. Acikmese and P. R. Scott, “Convex programming approach
to powered descent guidance for Mars landing,” Journal of
Guidance, Control, and Dynamics, vol. 30, no. 5, pp. 1353–
1366, 2007.

[16] B. Acikmese, D. Scharf, L. Blackmore, and A. Wolf, “Enhance-
ments on the convex programming based powered descent
guidance algorithm for Mars landing,” in Proceedings of the
AIAA/AAS Astrodynamics Specialist Conference and Exhibit,,
Honulolo, Hawaii, August 2008.

[17] L. Blackmore, B. Açikmeşe, and D. P. Scharf, “Minimum-land-
ing-error powered-descent guidance for Mars landing using
convex optimization,” Journal of Guidance, Control, and
Dynamics, vol. 33, no. 4, pp. 1161–1171, 2010.

[18] B. Açıkmeşe, J. M. Carson, and L. Blackmore, “Lossless con-
vexification of nonconvex control bound and pointing con-
straints of the soft-landing optimal control problem,” IEEE
Transactions on Control Systems Technology, vol. 21, no. 6,
pp. 2104–2113, 2013.

[19] R. Pinson and P. Lu, “Trajectory design employing convex
optimization for landing on irregularly shaped asteroids,” in
Proceedings of the AIAA/AAS Astrodynamics Specialist Confer-
ence, AIAA 2016-5378, Long Beach, California, 2016.

[20] R. Pinson and P. Lu, “Rapid generation of optimal asteroid
powered descent trajectories,” in Proceedings of the AAS/AIAA
Astrodynamics Specialist Conference, AAS 15-616, Vail, Colo-
rado, 2015.

[21] T. P. Reynolds, M. Szmuk, D. Malyuta, M. Mesbahi,
B. Açıkmeşe, and J. M. Carson, “Dual quaternion-based pow-
ered descent guidance with state-triggered constraints,” Jour-
nal of Guidance, Control, and Dynamics, vol. 43, no. 9,
pp. 1584–1599, 2020.

[22] M. Szmuk, T. Reynolds, B. Acikmese, M. Mesbahi, and J. M.
Carson, Successive convexification for 6-dof powered descent
guidance with compound state-triggered constraints, In AIAA
Scitech Forum, San Diego California, 2019.

[23] M. Sagliano, “Generalized hp pseudospectral-convex program-
ming for powered descent and landing,” Journal of Guidance,
Control, and Dynamics, vol. 42, no. 7, pp. 1562–1570, 2019.

[24] R. Yang and X. Liu, “Fuel-optimal powered descent guidance
with free final-time and path constraints,” Acta Astronautica,
vol. 172, pp. 70–81, 2020.

[25] M. Sagliano, A. Heidecker, J. M. Hernández et al., Onboard
guidance for reusable rockets: aerodynamic descent and pow-
ered landing, AIAA Scitech 2021 Forum, 2021.

[26] Y. Mao, M. Szmuk, X. Xu, and B. Açikmese, “Successive con-
vexification: a superlinearly convergent algorithm for non-
convex optimal control problems,” 2018, http://arxiv.org/abs/
1804.06539.

[27] X. Liu, Z. Shen, and P. Lu, “Entry trajectory optimization by
second-order cone programming,” Journal of Guidance, Con-
trol, and Dynamics, vol. 39, no. 2, pp. 227–241, 2016.

[28] Z. Wang and M. J. Grant, “Improved sequential convex pro-
gramming algorithms for entry trajectory optimization,” Jour-
nal of Spacecraft and Rockets, vol. 57, no. 6, pp. 1373–1386,
2020.

[29] X. Zhao, R. He, H. Zhang, G. Tang, and W. Bao, “Sequential
convex programming method using adaptive mesh refinement
for entry trajectory planning problem,” Aerospace Science and
Technology, vol. 109, article 106374, 2021.

[30] M. Sagliano and E. Mooij, “Optimal drag-energy entry guid-
ance via pseudospectral convex optimization,” in AIAA Guid-
ance, Navigation, and Control Conference, Kissimmee, Florida,
2018.

[31] C. Wang, C. Pei, R. Dai, G. Jing, and J. R. Rea, Six-dimensional
atmosphere entry guidance based on dual quaternion, In AIAA
Scitech 2021 Forum, Virtual Event, 2021.

[32] J. Alonso-Mora, S. Baker, and D. Rus, “Multi-robot navigation
information via sequential convex programming,” Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2015, pp. 4634–4641, Hamburg, Germany, Oct.
2015.

[33] J. Grzymisch and W. Fichter, “Optimal rendezvous guidance
with enhanced bearings-only observability,” Journal of Guid-
ance, Control, and Dynamics, vol. 38, pp. 1131–1140, 2015.

[34] C. Louembet, D. Arzelier, and G. Deaconu, “Robust rendez-
vous planning under maneuver execution errors,” Journal of
Guidance, Control, and Dynamics, vol. 38, no. 1, pp. 76–93,
2015.

[35] W. G. Vlases, S. W. Paris, R. M. Lajoie, and M. J. Martens,
“Optimal trajectories by implicit simulation,” in Technical
report WRDC-TR-90-3056, Boeing Aerospace and Electronics,
Wright-Patterson Air Force Base, Ohio, 1990.

[36] A. V. Rao, D. A. Benson, C. L. Darby et al., “Algorithm 902:
GPOPS, A MATLAB software for solving multiple-phase opti-
mal control problems using the gauss pseudospectral method,”
ACM Transactions on Mathematical Software, vol. 37, no. 2,
pp. 22–39, 2010.

[37] M. A. Patterson and A. V. Rao, “GPOPS-II: a MATLAB soft-
ware for solving multiple-phase optimal control problems
using hp-adaptive Gaussian quadrature collocation methods
and sparse nonlinear programming,” ACM Transactions on
Mathematical Software, vol. 41, no. 1, pp. 1–37, 2014.

[38] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT an SQP
algorithm for large-scale constrained optimization,” SIAM
Review, vol. 47, no. 1, 2001.

[39] L. T. Biegler and V. M. Zavala, “Large-scale nonlinear pro-
gramming using IPOPT: an integrating framework for
enterprise-wide dynamic optimization,” Computers & Chemi-
cal Engineering, vol. 33, no. 3, pp. 575–582, 2009.

[40] I. M. Ross and F. Fahroo, User’s Manual for DIDO 2001 α: A
MATLAB Application for Solving Optimal Control ProbleTech-
nique report ID AAS-01-03, Department of Aeronautics and
Astronautics, Naval Postgraduate School, Monterey, CA, 2001.

[41] I. M. Ross, “Enhancements to the DIDO optimal control tool-
box,” p. 17, 2020, http://arxiv.org/abs/2004.13112.

[42] G. L. Brauer, D. Cornick, and R. Stevenson, “Capabilities and
Applications of the Program to Optimize Simulated Trajecto-
ries,” in Program Summary Document, No. NASA-CR-2770.
NASA, 1977.

[43] L. Huneker, M. Sagliano, and Y. Arslantas, “Spartan: an
improved global pseudospectral algorithm for high-fidelity
entry-descent-landing guidance analysis,” in 30th

17International Journal of Aerospace Engineering



International Symposium on Space Technology and Science,
ISTS and IEPC Paper 2015-d-43, Kobe Japan, 2015.

[44] M. Sagliano, S. Theil, V. D. Onofrio, and M. Bergsma, “Spar-
tan: A Novel Pseudospectral Algorithm for Entry, Descent,
and Landing Analysis,” in Advances in Aerospace Guidance,
Navigation and Control, pp. 669–688, Springer, Cham, 2018.

[45] Y. Nie, O. Faqir, and E. C. Kerrigan, “ICLOCS2: try this opti-
mal control problem solver before you try the rest,” in 2018
UKACC 12th International Conference on Control, Sheffield,
UK, Sept. 2018.

[46] Y. Nie, O. Faqir, and E. C. Kerrigan, “ICLOCS2: solve your
optimal control problems with less pain,” in 6th IFAC Confer-
ence on Nonlinear Model Predictive Control, Wisconsin, 2018.

[47] S. J. Wright, Primal-dual interior-point methods, Society for
Industrial and Applied Mathematics, 1997.

[48] E. D. Andersen, C. Roos, and T. Terlaky, “On implementing a
primal-dual interior-point method for conic quadratic optimi-
zation,” Mathematical Programming, vol. 95, no. 2, pp. 249–
277, 2003.

[49] K. C. Toh, M. J. Todd, and R. H. Tutuncu, “SDPT3— a Matlab
software package for semidefinite programming, version 1.3,”
Optimization Methods and Software, vol. 11, no. 1-4,
pp. 545–581, 1999.

[50] J. F. Sturm, “Using SeDuMi 1.02: a Matlab toolbox for optimi-
zation over symmetric cones,”OptimizationMethods and Soft-
ware, vol. 11, no. 1-4, pp. 625–653, 1999.

[51] A. Domahidi, E. Chu, and S. Boyd, “ECOS: an SOCP solver for
embedded system,” Proceedings of the European Control Con-
ference, 2013, pp. 3071–3076, Zurich, Switzerland, July 2013.

[52] M. Grant and S. Boyd, “CVX: Matlab software for disciplined
convex programming, version 2.1,” 2016, http://cvxr.com/cvx.

[53] S. Diamond and S. Boyd, “CVXPY: a python-embedded
modeling language for convex optimization,” The Journal of
Machine Learning Research, vol. 17, no. 1, pp. 2909–2913,
2016.

[54] M. Andersen, J. Dahl, and L. Vandenberghe, “CVXOPT:
Python software for convex optimization, version 1.1,” 2015,
http://cvxopt.org.

[55] E. Chu, P. Neal, A. Domahidi, and S. Boyd, “Code generation
for embedded second-order cone programming,” in Proceed-
ings of the European Control Conference, Zurich, Switzerland,
July 2013.

[56] M. J. Kochenderfer and T. A. Wheeler, Algorithms for Optimi-
zation, The MIT Press, London, England, 2019.

[57] X. Liu, Z. Shen, and P. Lu, “Solving the maximum-crossrange
problem via successive second-order cone programming with
a line search,” Aerospace Science and Technology, vol. 47,
pp. 10–20, 2015.

[58] D. Garg, M. Patterson, W. W. Hager, A. V. Rao, D. A. Benson,
and G. T. Huntington, “A unified framework for the numerical
solution of optimal control problems using pseudospectral
methods,” Automatica, vol. 46, no. 11, pp. 1843–1851, 2010.

[59] M. Sagliano, “Pseudospectral convex optimization for pow-
ered descent and landing,” Journal of Guidance Control and
Dynamics, vol. 41, no. 2, pp. 1–15, 2015.

[60] I. M. Ross and F. Fahroo, Legendre Pseudospectral Approxima-
tions of Optimal Control Problems, Springer, Berlin Heidel-
berg, 2004.

[61] D. Garg, M. A. Patterson, W. Hager, A. V. Rao, D. Benson, and
G. Huntington, “An overview of three pseudospectral methods
for the numerical solution of optimal control problems,”

Advances in the Astronautical Sciences, vol. 135, pp. 1–17,
2017.

[62] X. Tang, Z. Liu, and Y. Hu, “New results on pseudospectral
methods for optimal control,” Automatica, vol. 65, pp. 160–
163, 2016.

[63] C. A. Rabbath and N. Lechevin,Discrete-Time Continuous Sys-
tem Design with Applications, Springer Science & Business
Media, New York, 2014.

[64] J. S. Meditch, “On the problem of optimal thrust programming
for a lunar soft landing,” IEEE Transactions on Automatic
Control, vol. 9, no. 4, pp. 477–484, 1964.

18 International Journal of Aerospace Engineering

http://cvxr.com/cvx
http://cvxopt.org

	PySCP: A Multiple-Phase Optimal Control Software Using Sequential Convex Programming
	1. Introduction
	2. Multiple-Phase Optimal Control Problem
	2.1. Workflow of PySCP
	2.2. Convexification Methods

	3. Discretization Methods
	3.1. Legendre Pseudospectral Methods
	3.2. Low-Order Discretization Methods

	4. Adaptive Trust Region Method
	5. Examples
	5.1. Breakwell Problem
	5.2. Lunar Landing Problem
	5.3. Ascent Trajectory Optimization of a Two-Stage-to-Orbit Launch Vehicle

	6. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

