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Building a simulated weightless test system on the ground while making comprehensive comparisons of design controllers for a
large and heavy multijointed space station robot is not an easy task. To save cost and improve the efficiency of the test, this paper
develops a plan in which controllers undergo preliminary testing in a 6-DOF industrial robot. The key idea is gravity
compensation included within the dynamic control algorithm of the robot to replace the function of the microgravity
environment. It is generally difficult to build an accurate dynamic model for a serial-joint robot in a practical manner.
Therefore, to guarantee the stability of the 6-DOF industrial robot in which the dynamic model is built inaccurately, we
propose one of the simplest variable structure (VS) controllers, and the stability of the system is analyzed through the
Lyapunov method. Last, experiments are carried out to provide preliminary comparisons among three potential algorithms for
the space robot in a low-cost and efficient approach.

1. Introduction

Space robots have been playing an important role in orbital
servicing missions, such as assisting the assembly of space
stations, capturing or repairing faulty satellites, and cleaning
orbital debris [1–5]. The primary characteristics of applied
space equipment controllers are typically simple but reliable
and effective. At present, there is a lack of confidence in
launching equipment controlled by complex advanced con-
trol algorithms into space considering the risk and price of
failure. Space-bound robots are used to serve the corre-
sponding space station routines and tasks, after their perfor-
mance and reliability in various types of working conditions
are verified by trial and error, and under the simulated
weightlessness or microgravity environment on the ground.
Furthermore, without the weightlessness simulation system,
the space robot designed for the space station may not even
carry its own weight on the ground. To date, a variety of
strategies have been published to compensate for the gravity
of space robots for experimental tests on the ground. [6]

emulates the zero-gravity environment for the space manip-
ulator using an air-bearing platform, while the platform is
mainly suitable for the planar mechanism whose motion is
parallel to the air-bearing table [7]; A microgravity environ-
ment can also be created in a plane while in a free fall or a
free-falling capsule at the microgravity center; however, the
test time is too short, and available space for the robot is lim-
ited [8–10]; A microgravity test can be performed in the pool
using neutral buoyancy. Nevertheless, the influence of fluid
damping on test results cannot be negligible [11]; [12–15]
emulate the process of capturing the space target by the
free-floating robot mounted on satellites, using two indus-
trial robots. However, the purpose is not to create the micro-
gravity environment for the space robot but to generate the
trajectory of the satellite; [16–19] design the suspension sys-
tem to provide the zero gravity of the space robot for main-
taining tension. However, it is difficult to remove the
influences of the test results caused by the coupled vibration
of the serial multijoint space robot and suspension system.
Unfortunately, building a simulated weightless test system
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for a large and heavy serial multijoint space station robot
while choosing the most practical control algorithm from
potential candidates is not a simple task and consumes a
large amount of time, manpower, auxiliary facilities, and
material resources [6–21].

The central difference between the controller designed
for a space robot and that for an industrial robot on the
ground is determined by considering gravity compensation
or not. The gravity compensation included in the dynamic
control algorithm of industrial robots can be regarded as a
replacement for simulated weightless system functions. As
a result, preliminary comparisons between various potential
dynamic control algorithms on a 6-DOF industrial robot can
be made to save cost and improve the efficiency of the test.
This allows contrasting effects to be obvious and easily
acquired, which provides prior knowledge and makes pre-
liminary judgment regarding controllers designed for the
space robot.

To achieve high precision and efficiency of robot track-
ing performance, it is necessary to introduce the robotic
dynamics into the controller to reduce the effect of robotic
nonlinear dynamic characteristics. The dynamics of serial-
link robots have been well covered by almost all standard
robotic textbooks [22–27]. Two main approaches are feed-
forward control and computed torque control [28], and both
are based on robotic dynamics combined with one diagonal
PD controller. Compared with computed torque control, the
feedforward control is computationally less expensive at
operating time and more easily realizes a high servo rate.
This is all possible because the model-based dynamic com-
pensation is “outside” the servo loop, and then, a fast inner
servo loop is achieved. Furthermore, PD plus dynamic feed-
forward compensation in [22] is one of the simplest and
most appealing dynamic controllers for robots [29]. It con-
sists of one linear PD feedback and a nominal robot dynamic
model computed as a function along the desired path only.
Therefore, the advantage of the simple and efficient structure
of this type of algorithm provides a reference to the control-
ler design of the space robot.

Generally, the motion control of robots is not an easy
task due to nonlinearity, strong coupling, uncertain model-
ing structure, or parameters. These factors may cause inac-
curate joint motion and lead to poor robot performance.
To solve these problems, various dynamic feedforward
compensation plus PID-like or plus other single-loop feed-
back control algorithms and computed torque control-
based methods have been proposed, including sliding-
mode control (SMC) [30–36] or some other variable struc-
ture controllers [37–40], neural networks [41–46], fuzzy
control [47, 48], and adaptive control [49, 50]. However,
many of them are only tested in simulations or double-
jointed robotic systems and may have more difficulties
achieving the expected performance in the multijoint serial
robotic system. One reason is that the current advanced
control algorithms, such as neural networks, fuzzy control,
and adaptive control, are characterized by complex struc-
tures and are time-consuming, and their computational
time is possibly several times larger than the commercial
robot servo period which is generally less than 10ms. This

may lead to poor real-time performance, let alone the cur-
rent situation that most of those advanced control algo-
rithms are mainly based on the computed torque control
structure. Furthermore, reliable and practical controllers
are always those simple ones in experience. At present,
there is a lack of confidence to launch space robots con-
trolled by those complex advanced control algorithms into
space on account of the risk and price of failure. By com-
parison, a kind of variable structure controller is proposed
in this paper to enhance the tracking performance of the
robot under modeling uncertainty. It shows higher effi-
ciency and a better control performance than [22] in the
experiment because it combines the PD plus dynamic
feedforward compensation and the Bang-Bang control to
achieve compensation for the tracking error caused by
the modeling uncertainty. One noticeable merit of the pro-
posed method lies in the easier design and application in
real robot systems than the controllers designed in
[30–48] because of its simplicity in structure.

The main contributions of this paper are summarized as
follows: (i) Since testing the different controllers and com-
paring them in a serial multijoint space station robot on
the ground are difficult, this paper initially develops a strat-
egy for controllers to be preliminarily tested in an industrial
robot. The key idea is the gravity compensation included in
the dynamic control algorithm of the robot to act in the
function of a microgravity environment. It will be more effi-
cient to obtain the superior controller from others; (ii) [22]
points out that the dynamic model is always known to be
inaccurate, and one reason is that it is severely challenging
to acquire the structure of the friction model, let alone the
corresponding parameters. To improve the control perfor-
mance of the system, we propose the simplest variable struc-
ture control through the combination of the PD plus
dynamic feedforward compensation and the Bang-Bang
control together to compensate for tracking error caused
by the modeling uncertainty, and the stability of the system
is analyzed by Lyapunov theory. Then, we experiment to
provide preliminary comparisons among several potential
algorithms for the space robot in a low-cost and highly effi-
cient way.

The rest of the paper is organized as follows. In Section
2, the dynamic parameters of the robot are identified by
the least square method. In Section 3, to guarantee the stabil-
ity of the system under the modeling uncertainty, a variable
structure controller is designed based on the Lyapunov
direct method. Then, we design the PD plus and the cas-
caded PD plus dynamic feedforward compensation to make
an experimental comparison in Section 4. As a result, the
cascaded PD plus dynamic feedforward compensation con-
trol more easily achieves the high-precision tracking perfor-
mance than the proposed VS control or the PD plus, under
the roughly built robotic dynamics. Finally, we present the
conclusions in Section 5.

2. Identification of Dynamic Parameters

A typical 6-DOF serial industrial robot is shown in Figure 1.
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The dynamic equation of the 6-link robot is written as

τ =M qð Þ€q + C q, _qð Þ _q +G qð Þ + f c sign _qð Þ + f v _q, ð1Þ

where q ∈ R6×1 is the vector of joint displacements, τ ∈ R6×1 is
the vector of applied torque, MðqÞ ∈ R6×6 is the mass matrix
of the manipulator, Cðq, _qÞ ∈ R6×6 is the centrifugal/Coriolis
force matrix, GðqÞ ∈ R6×1 is the vector of gravity terms, and
f v ∈ R

6×6 and f c ∈ R
6×6 are diagonal matrices that consist of

the viscous and Coulomb friction parameters, respectively.
Then, in accordance with [51], (1) can be rewritten into

the following linear form with n ×Ns = 6 × 13 identifiable
base parameters:

τ = Y q, _q, €qð Þp, ð2Þ

where

p78×1 = p1,⋯,p6½ �T ,
pi = mi,mxi,myi,mzi, Iai, Ixxi, Ixyi, Ixzi, Iyyi, Iyzi, Izzi, f ci, f vi

� �T
:

ð3Þ

Obviously, 6 × 13 unknown parameters constitute the
dynamic parameters (3) of the robot. We generally reformu-
late (2) on account that not all parameters in p are indepen-
dent. In this paper, the independent parameters are collected
through QR decomposition.

We perform the robot under a random trajectory to
obtain the multiple matrices Yð·Þ which form the matrix

W½ �6M×78 =
Y q t1ð Þ, _q t1ð Þ, €q t1ð Þð Þ

⋮

Y q tMð Þ, _q tMð Þ, €q tMð Þð Þ

2
664

3
775: ð4Þ

The number of matrices Yð·Þ or the sample number is
M = 10000. The sample period is 0.1 s. We apply QR decom-

position (5) to find the independent base dynamic parame-
ters, with the orthonormal matrix Q ∈ℝMn×nNs and upper
triangular matrix R:

W =QR: ð5Þ

Supposing that the main diagonal elements rll in the lth
column of R are zero, the corresponding columns of R are
collected in R2, while the rest constitute R1:

R = R1 R2½ �: ð6Þ

Similarly, the corresponding columns of W are collected
consistent with R. According to (2), we have

Wπ = W1½ �6M×52 W2½ �6M×26
� � π1

π2

" #
= T =

τ 1ð Þ
⋮

τ Mð Þ

2
664

3
775,

ð7Þ

with independent π1 and dependent π2 which are collected
from p in the same way as W.

According to (6) and (7), we have

T =W1π
∗ ≜W1 π1 + kπ2ð Þ, ð8Þ

where k = R2R
−1
1 .

Then, the unknown dynamic parameters are estimated
by

π∗½ �52×1 = W1
TW1

� �−1
W1

TT: ð9Þ

The excitation reference trajectories for every joint are
applied with the finite sum of 5 harmonic sine and cosine
functions. The joint position, velocity, and acceleration of
the ith joint are

qi tð Þ = 〠
5

l=1

al
wf l

sin wf lt
� �

−
bl
wf l

cos wf lt
� �

+ qi0

" #
,

_qi tð Þ = 〠
5

l=1
al cos wf lt

� �
+ bl sin wf lt

� �� �
,

€qi tð Þ =wf 〠
5

l=1
all cos wf lt

� �
+ bll sin wf lt

� �� �
,

ð10Þ

where the fundamental frequency is wf = 0:05 and qi0 is the
offset of the joint position of the trajectory. The parameters
al and bl are determined by trial and error or the following
optimization process. The excitation trajectory q∗ðtÞ is
determined by the optimization issue of (11) which is
directly equivalent to optimizing the condition number for
less estimation error while having less complexity and

Figure 1: 6-DOF serial robot.
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calculation time:

q∗ tð Þ = arg min W1ð Þ ð11Þ

subject to

−qmax i ≤ qi tð Þ = 〠
5

l=1

al
wf l

sin wf lt
� �

−
bl
wf l

cos wf lt
� �

≤ qmax i,

ð12Þ

−vmax i ≤ _qi tð Þ = 〠
5

l=1
al cos wf lt

� �
+ bl sin wf lt

� �
≤ vmax i,

ð13Þ

−amax i ≤ €qi tð Þ =wf 〠
5

l=1
all cos wf lt

� �
+ bll sin wf lt

� �
≤ amax i,

ð14Þ

qi t0ð Þ = qi 0ð Þ = 〠
5

i=1

bl
wf l

+ qi0 = 0, ð15Þ

_qi t0ð Þ = _qi 0ð Þ = 〠
5

i=1
al = 0, ð16Þ

€qi t0ð Þ = €qi 0ð Þ = 〠
5

i=1
wf lbl = 0, ð17Þ

where qmax = ½qmax 1,⋯,qmax 6�T = ½153, 24, 40, 153, 90, 180�T
/180π, vmax = ½vmax 1,⋯,vmax 6�T = ½296, 240, 310, 355, 267,
500�T /180π, and amax = ½amax 1,⋯,amax 6�T = ½1800, 1500,
1800, 1800, 1300, 3000�T /180π are the constraint vectors for
position, velocity, and acceleration, respectively.

It is possible to use any optimization method to solve the
above optimization problem. In this paper, the parameters al
and bl are solved by the interior-point method. The maxi-
mum number of iterations is 20000. The initial values of al
and bl are chosen as random numbers within ½−0:5, 0:5�.

The dynamic model is often not known accurately. For
example, the structure of the friction model is generally dif-
ficult to know, let alone the parameter values. Furthermore,
it is unrealistic to have precise parameter values in the model
at all times through applying the least square method [51,
52] in one time since the dynamic parameters always change
as the robot moves. Therefore, the following controller is
inevitably designed in accordance with the inaccurate
dynamic parameters.

3. Controller Design

The robotic dynamic model has the following properties [23,
27]:

(P1)The matrix MðqÞ is positive definite symmetric and
satisfies Mkxk2 ≤ xTMðqÞx ≤ �Mkxk2 for positive constants
�M, M > 0

(P2) _MðqÞ − 2Cðq, _qÞ is skew-symmetric
(P3)The matrix Cðq, _qÞ satisfies kCðq, _qÞk ≤ μc for posi-

tive constant μc > 0
(P4) The vector GðqÞ satisfies kGðqÞk ≤ μg for positive

constant μg > 0
From (9), we can obtain M̂ðqÞ, Ĉðq, _qÞ, ĜðqÞ, f̂ c, and f̂ v

which represent the estimation of MðqÞ, Cðq, _qÞ, GðqÞ, f c,
and f v , respectively. Define ~MðqÞ = M̂ðqdÞ −MðqÞ, ~Cðq, _qÞ
= Ĉðqd , _qdÞ − Cðq, _qÞ, ~GðqÞ =GðqdÞ −GðqÞ, and the nonneg-
ative definite diagonal gain matrices KP, KD, and ϒ = diag
ðr1,⋯,r6Þ; qd = ½q∗1 ,⋯,q∗6 �T represents the desired trajectory
for the robot joints.

KP KD

s

� (qd) qd + Ĉ (qd, qd)qd
+ Ĝ (qd) + fvqd
+ fcsign (qd)qd

qd
qd +

+ +

++
+ –

–

–

+

+

q

q
Robot

.. .. .
.

.

.

.
.

K⁎

DK⁎

P

Figure 2: Control scheme of the robot.

Table 1: Controller parameters of each joint.

Joint KP ; KD ri
1 962260; 80000 1000

2 886260; 209500 100

3 209500; 69000 100

4 1852500; 42000 1000

5 489500; 26700 1000

6 87000; 7500 7000
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Define e = qd − q. We choose the Lyapunov function

V = 1
2 _e

TM qð Þ_e + 1
2 e

TKPe, ð18Þ

which is continuous and nonnegative. According to the
properties of the robotic dynamic model, we can obtain

(19) by differentiating (18) as follows:

_V = _eTM qð Þ€e + 1
2 _e

T _M qð Þ_e + _eTKPe

= _eT M qð Þ€e + C q, _qð Þ_e + KPeð Þ
= _eT M qð Þ€qd + C q, _qð Þ _qd + KPeð

+G qð Þ + f c sign _qð Þ + f v _q − τÞ:

ð19Þ

Table 2: Estimated dynamic parameters of the robot.

Parameters Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

mi (kg) 10 10 10 10 10 10

mxi (kg·m) 0.000000 1467.621893 120.973665 0.877570 -5.497015 -3.474394

myi (kg·m) 0.000000 -485.168899 512.922191 -4.105343 49.201786 9.947225

mzi (kg·m) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Ixxi (kg·m2) 0.000000 -3105.984543 -429.633816 139.535980 -35.190459 -5.898670

Ixyi (kg·m2) 0.000000 -2279.068182 175.632270 -37.783294 -5.612843 4.712513

Ixzi (kg·m2) 0.000000 -168.579890 137.144088 1.357674 -25.300536 -3.631684

Iyyi (kg·m2) 0.000000 -2153.914022 -14.634628 -0.000770 -0.030217 -0.012071

Iyzi (kg·m2) 0.000000 -467.555176 158.191065 -34.563860 -15.506560 -19.074189

Izzi (kg·m2) 1355.845148 -4625.319065 315.581754 123.918230 39.386756 -10.111644

Iai (kg·m2) 0.000000 0.000000 -1198.010476 81.708986 -14.478101 -27.911115

f ci (Nm·s/rad) 5469.258178 4450.476442 8730.326694 2888.554652 1857.202169 -2029.910574

f vi (Nm·s/rad) 7102.364470 31212.701099 16441.785926 3909.460084 1322.947888 1322.947888
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Figure 3: Tracking performance of each robotic joint controlled by variable structure control.
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Then, we design the controller

τ = τdynamic + τPD, ð20Þ

τdynamic = M̂ qdð Þ€qd + Ĉ qd , _qdð Þ _qd + Ĝ qdð Þ
+ f̂ c sign _qdð Þ + f̂ v _qd ,

ð21Þ

τPD = KPe + KD _e +ϒ sign _eð Þ ð22Þ

to have

_V = −_eT KD _e + �σ +ϒ sign _eð Þð Þ
= −_eTKD _e − _eT�σ − _eTϒ sign _eð Þ,

ð23Þ

where

�σ = ~M qð Þ€qd + ~C q, _qð Þ _qd + ~G qð Þ + ~Ff ,
~Ff = f̂ c sign _qdð Þ − f c sign _qð Þ + f̂ v _qd − f v _q:

ð24Þ

Herein, we choose

ri > �σk kmax, ð25Þ

to have

_V < 0: ð26Þ

For the case n = 6, the iterative Newton-Euler scheme is
approximately 100 times more efficient than the Lagrangian
approach. Consequently, we normally realize (21) by the
iterative Newton-Euler dynamics shown as follows.

(a) Outward Iterations i : 0⟶ 5

The joint i + 1 rotational velocity is

wi+1 = Ri+1
i wi + _q∗i+1Ẑi+1, ð27Þ

where Ẑi+1 represents the axis pointing along the i + 1th
joint axis and Ri+1

i is the rotation matrix.
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Figure 6: Tracking performance of the 3rd joint and the 6th joint of the robot controlled by variable structure control and PD plus.

Table 3: Controller parameters of each joint.

Joint KP ; KD K∗
P ; K

∗
D

1 800; 0.1 800; 70

2 650; 0.1 6000; 15

3 1000; 0.1 2500; 60

4 650; 0.1 250; 40

5 800; 0 600; 15

6 650; 0.1 600; 15
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The angular acceleration from one link to the next is
described by

_wi+1 = Ri+1
i _wi + Ri+1

i wi × _qi+1Ẑi+1 + €q∗i+1Ẑi+1: ð28Þ

Noticeably, (27) and (28) are different from the itera-
tions in the textbook [22], since the velocity in (27) and
acceleration in (28) of each joint are the desired velocity
and acceleration, respectively.

Then, we obtain the linear acceleration of each link-
frame origin through

_vi+1 = Ri+1
i _wi × Pi+1

i +wi × wi × Pi+1
i

� �
+ _vi

� � ð29Þ

and obtain the linear acceleration of the center of mass
of each link

_vi+1Ci+1
= _wi+1 × Pi+1

Ci+1
+wi+1 × wi+1 × Pi+1

Ci+1

� �
+ _vi+1, ð30Þ

where fCig represents a frame attached to each link and has
its origin located at the center of mass of the link with the
same orientation as the link frame fig; Pi+1

Ci+1
locates the posi-

tion of fCi+1g relative to the i + 1th joint.
Then, we can obtain the inertial force and torque acting

at the center of the mass of each link (31) and (32) through
Newton-Euler equations as follows:

Fi+1 =mi+1 _v
Ci+1
i+1 , ð31Þ

Ni+1 = ICi+1
i+1 _wi+1 +wi+1 × ICi+1

i+1 wi+1, ð32Þ

where ICi+1
i+1 determines the mass moments of inertia relative

to the center of mass in the i + 1th link.

(b) Inward Iterations i : 6⟶ 1

The force exerted on link i by link i − 1 is

f i = Ri
i+1 f i+1 + Fi: ð33Þ

12The torque exerted on link i by link i − 1 is

ni =Ni + Ri
i+1ni+1 + Pi

Ci
× Fi + Pi

i+1 × Ri
i+1 f i+1: ð34Þ

Finally, we obtain the required joint torques

τi = nTi Ẑi, ð35Þ

which constitute τdynamic = ½τ1,⋯,τ6�T in (21).
Controller (20) guarantees the stability of the system in

theory. Furthermore, if we let ri = 0, i = 1,⋯, 6, the control-
ler is the feedforward nonlinear control shown in Figure
10.6 in [22]. Furthermore, if we correct τPD (22) into the fol-
lowing cascaded PD controller

τPD = K∗
P KPe + KD _eð Þ − _q½ � + K∗

D
d
dt

KPe + KD _eð Þ − _q½ �, ð36Þ

which uses PD in both the outer loop and inner loop, and
then, the cascaded PD plus dynamic feedforward control is
shown in Figure 2.

The position control loop (outer loop) is to maintain the
positional trajectory tracking. The error in the position con-
trol loop provides the desired velocity for the velocity loop
(inner loop). We apply a PD controller ðKPe + KD _eÞ on the
basis of the error between the desired and actual positions
to generate the desired speed of the motor so that the actual
position tracks the desired position closely. The velocity loop
uses the PD controller plus dynamic feedforward compensa-
tion to generate the desired torque for the robot joint
(motor) so that the actual velocity tracks the desired velocity
closely. We normally adjust the gains of the joint controller:
KP, KD, K

∗
P , and K∗

D to change the behaviors of the robot
subject to variation in the dynamic model caused by various
poses and payloads, variation in friction with temperature
and time, and some disturbance torques owing to compli-
cated velocity and acceleration coupling.

By removing the gravity compensation item of the con-
troller (20), we can obtain the practical controller for the
on-orbit space robot:

τ = M̂ qdð Þ€qd + Ĉ qd , _qdð Þ _qd + f̂ c sign _qdð Þ + f̂ v _qd + τPD:

ð37Þ

4. Experiment

The proposed variable structure method is applied to the
robot, and the controller parameters of each joint are listed
in Table 1. The estimated dynamic parameters of the robot
are shown in Table 2. The tracking performance of each
robotic joint is shown in Figure 3.

When we let ri = 0 ði = 0,⋯,6Þ, the proposed variable
structure controller degenerates into the PD plus. The track-
ing performance of each robotic joint controlled by PD plus
is shown in Figure 4. The tracking error comparison
between VS control and PD plus is shown in Figure 5.

Figures 3 and 4 show that both outputs of the robot con-
trolled by the proposed VS control and PD plus are able to
track the desired trajectories. Figure 5 shows that the track-
ing error curves of the robot controlled by the proposed VS
method and PD plus are close. Hence, the drawing of partial
enlargement of the output of the 3rd joint and the output of
the 6th joint of the robot controlled by variable structure
control and PD plus are shown in Figure 6 to make a further
comparison.

Figure 6 shows that the tracking performance of the 3rd
joint of the robot controlled by the proposed VS control is
better than that controlled by PD plus for less tracking error
from 27200ms to 27800ms and from 24500ms to 25500ms,
while there is no obvious difference between the two
methods acting at the 6th joint. These findings are possibly
because the proposed VS control combines the PD plus
dynamic feedforward compensation and the Bang-Bang
control together, and the Bang-Bang control item ϒ sign ð_e
Þ can be used to suppress all matching uncertainties and
unpredictable system dynamics. In this experiment, the
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Bang-Bang control item can provide timely compensation
for more tracking errors caused by the modeling uncertainty
and consequently improves both the tracking accuracy and
tracking speed of the robot.

Then, we apply cascaded PD plus dynamic feedforward
compensation control to the robotic manipulator for com-
parison with the aforementioned two methods. The cas-
caded PD controller parameters of each joint are listed in
Table 3.

The tracking performance of each robotic joint is shown
in Figure 7. The tracking error of each joint controlled by
cascaded PD plus is shown in Figure 8.

With less effort spent on the adjustment of controller
parameters in the experiment, the cascaded PD plus easily
guarantees the tracking error of each joint of the robot
within ±8 × 10−3 rad which is shown in Figure 8. The reason
is summarized as follows: As demanded by the outer loop,
the inner loop is adopted to generate the desired torque for
the robot joint so that the actual velocity tracks the desired
velocity closely. The outer loop is used to determine the
velocity of the joint that minimizes position error. By com-
parison, we have tested the proposed VS control and PD
plus by trial and error in our experiment to guarantee the
tracking error of each joint of the robot within ±2 × 10−2
rad which is shown in Figure 5. By comparing Figures 8
and 5, we find that the cascaded PD plus dynamic feedfor-
ward compensation control more easily guarantees the
high-precision tracking performance than the proposed VS
control or the PD plus in the experiment, under the roughly
built robotic dynamics. Actually, the PD plus typically repre-
sents a class of single-loop feedback control. Furthermore,
this also implies that many SMC or other variable structure
controls based on a single-loop feedback strategy may not
more easily achieve better performance than the cascaded
PD method. Based on this, we recommend the cascaded
PID plus feedforward dynamic model for the calculation of
the desired torque in the 6-DOF serial robot rather than
the single-loop feedback strategy. The controller structure
may be more important than the adjustment of the control-
ler parameters in the robotic system.

The controller design or the choice of the controller
from different candidates for the space robot remains pru-
dent work. One purpose of the above analyses and experi-
mental results is to provide a source of prior knowledge
and practice experience for the controller design and the test
of the space robot. Furthermore, by removing gravity com-
pensation, we can design the controller of the space station
robot in the same way as the above controllers of the indus-
trial robot.

5. Conclusions

To suggest simple yet effective controllers for the large and
heavy serial multijoint space station robot, we made com-
parisons among our proposed variable structure method,
PD plus and the cascaded PD plus on the industrial robot
in this paper. First, the dynamic parameters of the robot
are identified by the least square method. Second, to guaran-
tee the stability of the system under modeling uncertainty in

theory, a variable structure controller is designed based on
the Lyapunov direct method. It can be separated into two
parts: the PD plus and the sign function. Third, experiments
show that the cascaded PD plus dynamic feedforward com-
pensation control more easily guarantees the high-precision
tracking performance than the proposed variable structure
control or the PD plus, under the roughly built robotic
dynamics.
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