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The UAV pursuit-evasion strategy based on Deep Deterministic Policy Gradient (DDPG) algorithm is a current research hotspot.
However, this algorithm has the defect of low efficiency in sample exploration. To solve this problem, this paper uses the imitation
learning (IL) to improve the DDPG exploration strategy. A kind of quasiproportional guidance control law is designed to generate
effective learning samples, which are used as the data of the initial experience pool of DDPG algorithm. The UAV pursuit-evasion
strategy based on DDPG and imitation learning (IL-DDPG) is proposed, and the algorithm obtains the data from the experience
pool for experience playback learning, which improves the exploration efficiency of the algorithm in the initial stage of training
and avoids the problem of too many useless exploration in the training process. The simulation results show that the trained
pursuit-UAV can flexibly adjust the flight speed and flight attitude to pursuit the evasion-UAV quickly. It also verifies that the
improved DDPG algorithm is more effective than the basic DDPG algorithm to improve the training efficiency.

1. Introduction

At present, UAVs are more and more widely used, such as
sensor networks [1], data security [2], smart network sys-
tems [3], intelligent transportation systems [4], automatic
identification systems [5], target encirclement control [6],
and pursuit-evasion confrontation [7]. The UAV pursuit-
evasion confrontation is the game between two drones with
conflicts of interest. The pursuit-UAV tries to capture the
evasion-UAV through the pursuit maneuver strategy, and
the evasion-UAV tries to escape by evasion maneuver
strategy.

The methods on the UAV pursuit-evasion strategy
include differential game method [8], expert system method
[9], and influence diagram decision method [10]. However,
the common problem of these methods is that it is more dif-
ficult to obtain analytical solutions. The DDPG algorithm is
a policy-based reinforcement learning (RL) method which
can use neural network (NN) for end-to-end learning.
Research on the pursuit-evasion strategy based on the
DDPG algorithm [11] is a current research hotspot.

Based on the DDPG algorithm, Zhang et al. [12] studied
the cooperative pursuit of incoming targets by UAV swarm
and designed a guided return function for specific pursuit
tasks. Song et al. [13] designed a reward function consider-
ing the tracking error and trajectory stability for the landing
trajectory tracking control problem of UAVs, then proposed
a trajectory tracking control method based on DDPG algo-
rithm. The trained result has higher accuracy than the tradi-
tional PID control method.

A problem of RL is that the efficiency of sample explora-
tion is low, which makes learning and training inefficient. In
the early training stage of reinforcement learning, a relatively
large random noise is set for the exploration strategy to
improve the exploration ability. But it will also produce a
lot of inefficient samples (that is, useless action exploration),
resulting in small rewards at the initial training stage. There-
fore, how to improve the exploration ability, obtain efficient
samples, and improve the utilization rate of samples is an
urgent problem to be solved for RL training.

Expert experience and the mixed decision-making tech-
nology have been used to accelerate the training process of

Hindawi
International Journal of Aerospace Engineering
Volume 2022, Article ID 3139610, 14 pages
https://doi.org/10.1155/2022/3139610

https://orcid.org/0000-0002-0495-0279
https://orcid.org/0000-0002-9549-8125
https://orcid.org/0000-0002-6373-2618
https://orcid.org/0000-0002-8580-8927
https://orcid.org/0000-0001-9418-9155
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3139610


reinforcement learning. Wang [14] used reinforcement learn-
ing algorithm based on expert knowledge to solve the UAV
path planning problem. The algorithm used multiple tasks
with known environmental parameters to train the UAV
and then transferred the trained result knowledge to the train-
ing of new tasks to accelerate the training process. Wu [15]
studied the UAV reactive obstacle avoidance algorithm based
on transfer learning and deep reinforcement learning, which
makes the UAV quickly and efficiently respond to unfamiliar
scenarios. In order to improve the motor skills of the manipu-
lator and the learning ability of unmanned driving, Lu [16]
and Zuo [17] integrated the experience of experts in their
respective fields into reinforcement learning algorithm and
designed the reinforcement learning algorithm under different
tasks. Mu [18] studied the UAV cooperative formation main-
tenance and collision avoidancemethod based on the fusion of
model knowledge and data training. The switching system
based on the consensus theory and the multiagent cooperative
collision avoidance method was learned in advance before
training, which improves the training efficiency of the UAV
formation control method.

Inspired by these works, the UAV pursuit-evasion strat-
egy based on DDPG and imitation learning (IL-DDPG) is
proposed, the algorithm can avoid excessive useless explora-
tion and converge more quickly. The main contributions of
this paper are as follows:

(1) A kind of quasiproportional guidance control law is
designed for the instructor to realize effective pur-
suit. The control law can be used to generate effective
learning samples for the pretraining of IL-DDPG
algorithm

(2) The exploration strategy of the DDPG algorithm is
improved. In the pretraining stage, the instructor
maneuver samples generated by the quasipropor-
tional guidance control law are used as the data of
the initial experience pool. The algorithm obtains
the data from the experience pool for experience
playback learning, which improves the exploration
efficiency of the algorithm in the initial stage of
training and avoids the problem of too many useless
exploration in the training process

The rest of this paper is organized as follows. In Section 2,
the system model and problem statement are presented.
UAV pursuit strategy based on DDPG is presented in Section
3. In Section 4, UAV pursuit strategy based on IL-DDPG is
proposed. Then, Section 5 provides the experimental results.
Conclusions are given in Section 6.

2. Problem Description and Modeling

2.1. The Pursuit-Evasion Problem of UAV. In the pursuit-
evasion problem, the pursuit-UAV must chase and capture
the evasion-UAV, and the evasion-UAV must escape and
stay away from the pursuit-UAV.

For this problem, a zero-sum differential game model
with control constraints is established. The geometric model
of pursuit-evasion is shown in Figure 1.

In Figure 1, P represents the pursuit-UAV, E represents
the evasion-UAV, vp is the speed of the pursuit-UAV, ve is
the speed of the evasion-UAV, ψp is the heading angle of
the pursuit-UAV, ψe is the heading angle of the evasion-
UAV, and δ is the angle of the Line of Sight (LOS); LOS
refers to the ray of the pursuit-UAV P pointing to the
evasion-UAV E. The goal of the pursuit-UAV is to capture
the target in the shortest time. The goal of the evasion-
UAV is to stay away from the pursuit-UAV and to avoid
being captured in the preset time or to maximize the delay
time of being captured. The standard differential game is
described as (1) and (2) [19].

min Tc = f vp, ψp, ve, ψe, L
� �

, ð1Þ

max Tc = g vp, ψp, ve, ψe, L
� �

, ð2Þ

where L is the distance between the two UAVs and Tc is the
moment when the pursuit-UAV P captures the evasion-
UAV E. Equation (1) is the objective function of the pur-
suit-UAV, and (2) is the objective function of the evasion-
UAV.

2.2. The Kinematic Model of UAV. The motion state equa-
tions of the UAVs are defined as

_xi = vi cos ψi

_yi = vi sin ψi

_vi = ai

_ψi = ωi

8>>>>><
>>>>>:

  i = p, eð Þ, ð3Þ

where ωi represents the angular velocity of the UAVs and ai
represents the acceleration of the UAVs.

The motion control variables of the UAVs are

−vp max ≤ vp ≤ vp max,
−ve max ≤ ve ≤ ve max,
−ωp max ≤ ωp ≤ ωp max,
−ωe max ≤ ωe ≤ ωe max,

8>>>>><
>>>>>:

ð4Þ
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Figure 1: Geometric model of two-dimensional plane pursuit-
evasion game.
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where vp max and ve max are the maximum speed of the UAVs
and ωp max and ωe max are the maximum angular velocity of
the UAVs.

ωi maxΔT = Δψi

ni maxg = v2i
ri min

ri sin Δψi ≈
viΔT
2

8>>>>><
>>>>>:

i = p, eð Þ, ð5Þ

where ΔT is the simulation time step, ri is the turning radius,
ri min is the minimum turning radius, Δψi is the maximum
turning angle within ΔT , and ni max is the maximum lateral
overload. Therefore, the maximum angular velocity can be
obtained.

ωi max =
arcsin ΔTni maxg/ 2við Þð Þ

ΔT
  i = p, eð Þ: ð6Þ

The initial state of the UAVs is defined as

xi t0ð Þ = xi0

yi t0ð Þ = yi0

vi t0ð Þ = vi0

ψi t0ð Þ = ψi0

8>>>>><
>>>>>:

i = p, eð Þ: ð7Þ

If the distance between the evasion-UAV and the
pursuit-UAV is within the capture range of the pursuit-
UAV and does not increase, the capture is successful, as
shown in (8), and the capture range can be the detection
range or the attack range of the UAV.

dtk k ≤ lc, ð8Þ

where lc is the capture range of the UAV and kdtk is the 2-
norm of the two-dimensional vector ðdxt , dytÞ and it can be
calculated by
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Figure 2: DDPG network structure.
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dxt = xpt − xet
�� ��

dyt = ypt − yet
��� ���

8<
: , ð9Þ

where dxt and dyt represent the instantaneous relative dis-
tances of the pursuit-UAV and the evasion-UAV in the x-
axis and the y-axis at time t, respectively.

3. UAV Pursuit Strategy Based on DDPG

3.1. MDP Model. The MDP model can be divided into MDP
state space model, MDP action space model, MDP state
transition function, and MDP reward function.

3.1.1. MDP State Space Model. The UAV is set to carry on-
board GPS equipment and gyroscopes to obtain its own
position and speed, namely, ξp = ½xp, yp, vp, ψp�. We also set
the UAV to carry the on-board airborne radar to obtain
detected target’s position and speed, namely, ξe = ½xe, ye, ve,
ψe�.

In order to increase the adaptability of the algorithm, the
relative position is used to establish the state space model.

S = αp, αe, αpe, dpe, vp, Δvpe
� �

, ð10Þ

where αp and αe are the angles between the speed direction
of the pursuit-UAV and evasion-UAV and the LOS, respec-
tively. αpe = αe − αp is the angle between the speed direction
of the two UAVs, dpe is the distance between the two UAVs,
vp is the speed of the pursuit-UAV, and Δvpe refers to the
speed difference between the two UAVs.

Δvpe = vp − ve: ð11Þ

3.1.2. MDP Action Space. The control input of the UAV is a
two-dimensional vector, namely, action space

A = ai, ωi½ � i = p, eð Þ, ð12Þ

where ai is the acceleration of pursuit-UAV and evasion-
UAV and ai = _vi, ωi is the angular velocity of pursuit-UAV
and evasion-UAV. Both vi and ωi satisfy the constraints (4).

(1) MDP state transition function

The state transition function is as shown in

xi
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ψi

0
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ΔT  i = p, eð Þ:

ð13Þ

3.1.3. MDP Reward Function. A combination of sparse
reward and guided reward function is designed:

Rt1 = dt−1 − dt ,
Rt = kRt1 + Rt2 + Rt3,

(
ð14Þ

where Rt represents the total reward of the UAV. Rt1 is a
guided reward, dt represents the distance between the
pursuit-UAV and the evasion-UAV at time t, and dt−1 rep-
resents the distance at time t − 1; k is proportionality; Rt2
represents the sparse reward of the pursuit-UAV being too
far away from the evasion-UAV; Rt3 represents the sparse
reward of the pursuit-UAV to complete the task.

Rt1 is the variation of the relative distance between the
pursuit-UAV and the evasion-UAV. When the relative dis-
tance becomes smaller, the pursuit-UAV gets a positive
reward; when the relative distance becomes larger, the
pursuit-UAV gets a negative reward.

Rt2 =
−Rfar, if dt >Dfar,
0, otherwise,

(
ð15Þ

where Dfar represents the relative distance threshold and Rfar
is a large positive constant, which punishes the algorithm
when the pursuit-UAV’s action strategy is incorrect and the
distance from the evasion-UAV is too far.

Rt3 =
Rfinish, if dt < lc,
0, otherwise,

(
ð16Þ

where Rfinish is a large positive constant, which rewards the
algorithm when the UAV completes the task.

3.2. DDPG Algorithm. The core of reinforcement learning is
that the agent obtains rewards by interacting with the envi-
ronment and adjusts the strategy according to the size of
the rewards to realize the optimization of decision-making.
Deep reinforcement learning (DRL) combines the approxi-
mate fitting of deep learning (DL) and the decision-making
optimization of reinforcement learning (RL). The most rep-
resentative DRL algorithm is the deep Q-learning (DQN)
algorithm.

DQN uses two networks with the same structure but
different parameters. One network generates the current
Q value, and the other network generates the target Q
value. Then, these two values are used to minimize the loss
function, and the parameters of the current network are cop-
ied to the target network after a period of time. DQN uses
experience replay to break the relevance of RL data and uses
random sampling to extract data from the experience pool
for training.

The Deep Deterministic Policy Gradient (DDPG) algo-
rithm which was developed based on the core idea of DQN
also uses the Actor-Critic dual network mechanism and
combines the advantages of the value function and the strat-
egy function method.
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The DDPG algorithm has four subnetworks, and the
network structure of the algorithm is shown in Figure 2.

Actor network and Critic network both have target net-
work (TargetNet) and evaluation network (EvalNet), so
DDPG has a total of 4 subnetworks.

The Actor selects action μðstÞ according to the action
probability provided by itself. The Critic_EvalNet evaluates
the current state and the value Qðst , μðstÞÞ of the action
selected by the Actor, and the Critic_TargetNet evaluates
the next state st+1 and the value Q′ðst+1, μðst+1ÞÞ of the action
μðst+1Þ selected by the Actor_TargetNet for st+1. Then, the
Actor will adjust the probability of the action according to

Critic’s evaluation of the action [20, 21]. ðθQ, θuÞ and ðθQ′,
θu′Þ are the EvalNet and TargetNet parameters of the Critic
and Actor, respectively. Actor and Critic use different func-
tions to train and update the parameters.

Critic uses the mean square error loss function to update
the parameters θQ of the Critic_EvalNet through the gradi-
ent of the neural network, as shown in

L θQ
� �

= 1
K
〠
i

Q si, ai θQ
���� �

− yi
� �2

, ð17Þ

where K is the sample size and is yi defined as

yi = r ri, aið Þ + γQ′ si+1, u′ si+1 θ
u′

���� �
θQ′
���� �

: ð18Þ

Actor uses the gradient of Equation (19) to update the
parameter θu of the Actor_EvalNet.

∇θu J =
1
K
〠
i

∇aQ s, a θQ
���� �

s=si ,a=u sið Þ∇θuQ s θujð Þ
��� ���

s=si

� �
:

ð19Þ

Like DQN, the EvalNet will train the network parame-
ters in real time to update ðθQ, θuÞ, and the TargetNet
parameters ðθQ′, θu′Þ will follow the EvalNet through soft
updates. The advantage of using soft update is to make algo-
rithm training more stable and easy to guarantee conver-
gence. The soft update is described as

θu′ ⟵ τθu + 1 − τð Þθu′,
θQ′ ⟵ τθQ + 1 − τð ÞθQ′,

8<
: ð20Þ

where τ is the inertial update rate.
A major innovation of DDPG is the use of motion noise.

Adding a random noise to the action generated by the Actor
turns the deterministic decision into a random process. It
enhances the exploration of the algorithm. Commonly used
random noises are Gaussian Noise and Ornstein-Uhlenbeck
(OU) Noise.

OU Noise is also called OU process, which is a random
process. It will explore a certain distance around the mean
value in the positive or negative direction. This is conducive
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Figure 3: The algorithm framework based on IL-DDPG.

Training algorithm for UAV strategy based on DDPG
initial experience pool D with memory size M
initial the Eval networks of Actor network and Critic network:μðs ; θuÞ and Qðs, ajθQÞ
forepisode=1 to MaxEpisodedo

initialize OU-Noise NðtÞ
initialize the state of pursuit-UAV and evasion-UAV in set range randomly,

obtain the initial state s0of simulation environment
fort=1 to MaxStepdo
select actionat = f clipðuðst jθuÞ +NtÞ of pursuit-UAV where f clipis the action constraint processing process st
select maneuver strategy for evasion-UAV
input the control signal into the UAV integrate to get the next state of UAV, and calculate the environment state st+1
obtain the immediate reward rt from the environment
store experience sample ½st , at , rt , st+1� in D
randomly sample form D to get a sample set of BatchSize f½st , at , rt , st+1�g
update the Eval network parameter θQ of the Critic
update the Eval network parameter θu of the Actor

update the Target network parameters θQ′ and θu′ of Critic network and Actor network by (20)
if the episode end condition is satisfied, break

end for
end for

Algorithm 1: The UAV pursuit strategy using DDPG.
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to exploring in one direction and can improve the efficiency
of exploration and training for inertial systems.

The agent obtains the sample set ðst , at , rt , st+1Þ of the
training network in the process of interacting with the envi-
ronment and stores these samples in the experience pool.
During training, the agent selects some minibatch samples
according to the random sampling strategy to train the neu-
ral network parameters through experience replay.

3.3. Training Process of DDPG Offline Algorithm. In our
experiment, the control period is set to the simulation step.
It should be noted that the subscript t of states st and at rep-

resents the time step rather than the actual flight time, and
the actual flight time is T = tΔT . Algorithm 1 shows the flow
of training algorithm for UAV pursuit strategy based on
DDPG.

4. UAV Pursuit Strategy Based on IL-DDPG

4.1. Imitation Learning. Model-free and model-based rein-
forcement learning methods both learn a strategy from
scratch that maximizes the cumulative return. For complex
tasks, the agent has a huge search space and cannot get
meaningful rewards frequently in the initial stage, which
leads to a slow convergence rate of reinforcement learning.

IL means that the agent uses the decision data provided
by experts to learn the best strategy [22]. It can be used to
solve problems that the reward cannot be given. We can
integrate IL with RL to accelerate the process of strategy
learning by providing effective samples through experts’
demonstrations.

At present, scholars have successfully verified the feasi-
bility of this method. A deep Q-learning from demonstra-
tions (DQfD) algorithm is proposed [23], which combines
the TD updates with the supervised classification of the
instructor’s actions, and the demonstrations are used to pre-
train the Q network in the DQN, and at the same time, the
demonstrations are put into the experience pool, and these
expert data are used to accelerate the learning process on a
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Table 1: Table of training hyperparameter.

Training hyperparameter Symbol Value

Discounting factor γ 0.9

Inertial update rate τ 0.01

Memory size M 30000

Size of batch experience Batch size 64

Simulation time step ΔT 0.1

Learning rate of Critic network αQ 0.002

Learning rate of Actor network αu 0.001

Number of episodes MaxEpisode 4000

Number of steps in one episode MaxStep 300

Confront strategy
of instructor

Eval
ActorNetwork

UAV

Environment

Noise

st rt
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st+1at ut

ut
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training

Iteration

Experience
pool

Training
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Figure 4: Offline training and exploration process of UAV.
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large scale. The DQfD is proved that it has better initial per-
formance than DQN.

On this basis, the DDPG algorithm is combined with the
demonstrations in a similar way to construct the DDPGfD
algorithm [24].

4.2. IL-DDPG Algorithm. DDPG based on imitation learning
algorithm (IL-DDPG) is designed to solve the maneuver
decision-making problem of the UAV pursuit-evasion. The
design of this algorithm mainly includes two aspects; one
is the algorithm framework, and the other is the maneuver
strategy of the instructor.

4.2.1. Framework of IL-DDPG Algorithm. Figure 3 shows the
algorithm framework of IL-DDPG. In this framework, the

instructor’s strategy is used to generate amounts of experi-
ence and store them in the experience pool in the initial stage.
And these experiences are used to train the network by RL.

Figure 4 shows the process of UAV offline training and
exploration. Before starting any interaction with the envi-
ronment, IL-DDPG initially only trains the demonstrations,
which is the pretraining process. A value function that sat-
isfies the Bellman equation is used to imitate the instructor
so that it can be updated with TD_error once the UAV starts
interacting. The subsequent learning and training of IL-
DDPG are consistent with the DDPG algorithm.

4.2.2. Instructor Confront Strategy. The main improvement
of our algorithm is the design of DDPG initial exploration

Table 2: Table of experiment parameters.

Experiment parameter Symbol Value

Space dimension — 2

Pursuit-UAV initial position xp, yp
� �

0, 50½ � × 0, 50½ �m
Pursuit-UAV initial velocity vp 10m/s

Pursuit-UAV initial heading ψp 0, 2π½ �
Pursuit-UAV velocity range vp min, vp max

� �
9, 13½ �m/s

Pursuit-UAV angular velocity range ωp max 3 rad/s

Evasion-UAV initial position xe, yeð Þ 0, 50½ � × 0, 50½ �m
Evasion-UAV initial velocity ve 10m/s

Evasion-UAV initial heading ψe 0, 2π½ �
Evasion-UAV velocity range ve min, ve max½ � 9, 13½ �m/s

Evasion-UAV angular velocity range ωe max 3 rad/s

Distance threshold Dfar 600m

Capture radius lc 20m
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Figure 7: The evasion-UAV with linear motion.
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strategy, that is, instructor confront strategy. Proportional
guidance is one of the missile guidance methods, and it is
also often used in the interception of maneuvering targets.
Therefore, the proportional guidance method can be used
as our instruction strategy.

The pure proportional navigation method [25, 26] is that
during the guidance process, the rotational angular velocity
of the controlled object’s velocity vector is proportional to
the rotational angular velocity of LOS, and the core equation
of the guidance is shown as

ε = dψ
dt

− K
dδ
dt

= 0, ð21Þ

where K is the scale factor and its range is ð1,∞Þ, and ε = 0
is the ideal control relation equation describing the guidance
method. Figure 5 shows the relative movement relationship
of pure proportional method.

The disadvantage of pure proportional guidance is that
the normal overload required to hit the target is directly
related to the target speed at the hit point and the UAV’s
attack mode, and it leads to difficulty in selecting the value
ofK . We can use the generalized proportional guidance
method to improve the characteristics of proportional
guidance.

The normal overload is selected according to the rota-
tion angular velocity of the LOS, namely, n = Kj _dj _δ. The
normal overload when the UAV hits the target is

nk =
1
g

_vp sin ηp − _ve sin ηe + ve _ψe cos ηe
� �

cos ηp − 2/Kgð Þ : ð22Þ

It can be seen that the required overload at the hit point
has nothing to do with the UAV speed and attack direction.

Considering the characteristics of the UAV’s capture
range, a quasiproportional guidance control law [27] is
designed as shown in Figure 6. Compared with pure propor-
tional guidance, it fully considers the difference between
UAV guidance and missile guidance.

In Figure 6, the red circle is the effective capture range of
the pursuit-UAV, and lc is the capture radius of the UAV. vr
is the relative speed of the pursuit-UAV and the evasion-
UAV, and vr

!= vp
!− ve

!. ψr is the angle of the vr . EA and E
B are the two guiding boundary lines; ε and φ are the angles
of these lines. δ is the angle of LOS, and γ is the angle
between LOS and the two boundary lines.

The quasiproportional guidance law guides the pursuit-
UAV P to make the evasion-UAV E fall into the capture
range of P. For this purpose, the relative velocity vector vr
and its angle φr are controlled. In the guidance process,
approaching the target along EA or EB depends on the dif-
ference between ψr and the boundary line. If jψr − φj is
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smaller, EA will be selected as the guiding boundary; if jψr
− εj is smaller, EB will be selected.

If EB is chosen as the guidance boundary line, the quasi-
proportional guidance instruction can be

n = Kvr _ε, ð23Þ

and we can get

_ε = −
vr sin ψr

d cos δ +
_d
d

tan δ + tan γð Þ + lc
d cos γ , ð24Þ

where d is the distance between pursuit-UAV P and evasion-
UAV E.

The state transition equation of maneuver decision con-
trol is shown as

xi

yi

vi

ψi

0
BBBBB@

1
CCCCCA

t+1

=

xi

yi

vi

ψi

0
BBBBB@

1
CCCCCA

t

+

vit cos ψit

vit sin ψit

−nit sin ψrt − ψitð Þ
−nit cos ψrt − ψitð Þ

0
BBBBB@

1
CCCCCAΔT  i = pð Þ:

ð25Þ

5. Simulation Experiments

5.1. Experimental Settings. The simulation system is con-
structed based on Python, using PyCharm Community
2020.2 and Anaconda3 platforms. The deep learning environ-
ment adopts TensorFlow 1.14.0. The computer is configured
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Figure 10: Flight trajectories and test results using DDPG.
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as Inter i7-9700F@3.00GHz CPU, GTX 1660Ti GPU, 16GB
RAM.

The training parameters of algorithms in the experiment
are shown in Table 1.

The experiment parameters of the UAV pursuit-evasion
game simulation environment are shown in Table 2.

The evasion-UAV adopts the classic escape strategy [28],
namely,

ae = 0,

ωe =
−we max, ξe<−we max,
ξe, −we max ≤ ξe ≤we max,
we max, ξe >we max,

8>><
>>:

8>>>>><
>>>>>:

ð26Þ

where calculation of ξe is shown in the following:

ξe =
arctan ye−yp

� �
/ xe − xp
	 
� �

− ψe

ΔT
: ð27Þ

All networks are multilayer feedforward neural network
with a single hidden layer. The number of neurons in each
layer of Target-Actor network and Eval-Actor network is
[6, 128, 2]. Their hidden layer uses Relu (x) as activation
function, and their output layer uses Tanh (x) as activation
function. The input of Critic network are the MDP state
and generated actions by the Actor network, so the number
of neurons in each layer of Target-Critic network and Eval-
Critic network is [8, 128, 1]. Their activation functions are
the same as those of Actor network. The training applies
ADAM Optimizer as optimizer.

5.2. Simulation Results

5.2.1. Instructor Confront Strategy. The pursuit-UAV only
uses the designed quasiproportional guidance strategy. The
evasion-UAV adopts two different strategies: uniform linear
motion and the classic escape strategy. The speed of the
evasion-UAV is set for 10m/s.

As shown in Figure 7, the evasion-UAV escapes in a
straight line simply, and the pursuit-UAV successfully
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captures the evasion-UAV after adjusting the speed direc-
tion. But in Figure 8, the evasion-UAV escapes successfully.
It is because the pursuit-UAV that uses the quasipropor-
tional guidance method as the pursuit guidance law needs
time to adjust its heading, which creates an opportunity for
the evasion-UAV to escape within the predetermined maxi-
mum time.

Although the quasiproportional guidance law cannot let
the pursuit-UAV capture the evasion-UAV when the
evasion-UAV uses the classic escape strategy, it can guide
the pursuit-UAV to explore good initial experience as an
instructor strategy.

5.2.2. Comparison. Average reward is used to verify the con-
vergence and effectiveness of the proposed algorithm, and it
is defined as the average value of reward in latest 100
episodes.

With the same training parameters and the same exper-
iment parameters, the average rewards of the trained results
obtained by the IL-DDPG and DDPG algorithms are shown
in Figure 9.

As shown as Figure 9, the IL-DDPG algorithm converges
faster than the DDPG algorithm, and it is more stable than
the DDPG algorithm.

In order to compare the trained results of the two algo-
rithms under the same initial conditions, the results are used
to simulate the UAVs pursuit-evasion process. The simula-
tion results are shown in Figures 10 and 11.

It can be seen from Figures 10 and 11 that the trained
results obtained by the IL-DDPG algorithm achieves a
shorter capture time.

Furthermore, as shown in Figures 12 and 13, the pursuit-
UAV using the IL-DDPG algorithm can adjust its speed and
heading in time to capture the evasion-UAV, no matter
whether the evasion-UAV adopts uniform linear motion
strategy or random motion strategy.

These experiments prove that the UAV pursuit strategy
based on the IL-DDPG algorithm has a good generalization,
and the trained UAV can successfully complete the pursuit
task in the pursuit-evasion game.

Figures 14 and 15 increase the velocity of evasion-UAV
to 11m/s and 12m/s, respectively. It can be seen that
pursuit-UAV can capture the evasion-UAV within a given
time, which verifies the Imitation of the IL-DDPG
algorithm.

6. Conclusion

The training algorithm of the UAV pursuit strategy based on
the IL-DDPG algorithm introduces a quasiproportional
guidance control law as the instructor strategy to improve
the exploration efficiency in the early stage of DDPG train-
ing and avoids the problems of excessive useless exploration.
Simulation results show the effectiveness and generalization
of this algorithm.

For the future work in this paper, we should study how
to effectively combine the imitation learning and the multi-
experience pool technology to accelerate the training of the
algorithm.
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