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Flutter design is important for the design of new aircraft types, for which flutter tests are an important verification measure.
Atmospheric turbulence excitation is a common form of excitation in flutter flight tests. The modal parameter estimation of the
turbulence response is a key aspect to ensure accurate data processing of flutter test results. Atmospheric turbulence excitation acts
on the structural system, and the turbulence response thus simultaneously contains both the randomness of the excitation signal
and the determinism of the structure system. In view of the turbulence response characteristics, this paper addresses the
incoherence of atmospheric turbulence excitation and the orthogonality of the frequency domain from a multichannel response.
The turbulence response is used to perform modal parameter identification in the frequency domain. The power spectral density
matrix can be calculated from the multichannel turbulence response using the periodogram method. Singular value decomposition
is then performed on the power spectral density matrix at each spectral pin based on the orthogonality of the frequency domain.
The maximum singular value of each spectral pin forms a curve over the entire frequency band, which is the autopower spectral
density function of the system, the system is directly identified at the frequency domain using the polynomial fitting in the
frequency domain, and the modal parameters (frequency, damping ratio) are calculated according to the fitted transfer function.
This paper verifies the theoretical feasibility of the proposed method using simulation data. The engineering applicability is verified
based on the turbulence response from the flutter flight test of a certain aircraft type.

1. Introduction

Flutter design is an important requirement in the overall
design of new aircraft types. A sufficient flutter envelope pre-
diction guarantees the safe flight of the aircraft. Flutter flight
tests are thus a key link to probe the flutter design to verify
unstable aeroelastic phenomena. The test signals collected in
flight tests are an important basis for calculating the natural
frequency and damping ratio of the dynamic aeroelastic struc-
ture at different velocities. However, factors such as experi-
mental measurement noise, lack of excitation signal and
excitation noise, and a limited number of data acquisition sen-
sors can produce noise-contaminated data, which can lead to
spurious mode problems in the modal parameter estimation.

Flutter flight tests and a variety of excitation methods
have been developed alongside advances in aircraft test tech-
nology. According to the principle of system identification,
the excitation for a structural system includes the pulse exci-

tation, sweep frequency signal excitation, and atmospheric
turbulence excitation in the flutter flight tests.

The impulse response caused by the pulse excitation is
the most ideal signal for structural system identification. A
small rocket excitation and rudder vibration are often used
in flutter flight test to approximate the impulse excitation
signals. The modal parameters can be determined by col-
lecting the structure response. Thehabey [1] used the matrix
pencil (MP) method to the dynamic instability analysis of
aeroelastic systems. Kiviaho et al. [2] performed a study
based on the complex exponential method and MP method
to identify the modal parameters of the flutter test signal to
predict the flutter boundary.

Sweep frequency excitations are a way to produce narrow-
band excitation signal excitations near the natural frequency of
the structure. This method is conducive to obtaining a high-
quality structural response, and the excitation signal can be
measured because the sweep frequency excitation is generated
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by the excitation source installed on the aircraft. Richardson
and Formenti [3] used the rational fraction polynomial for fre-
quency response function (FRF) identification from the per-
spective of system identification and applied the FRF to
calculate the structural system modal parameters. In terms of
the swept frequency excitation in flutter tests, the frequency
polynomial fittingmethod can be directly used for system iden-
tification and modal parameter calculations because the excita-
tion and response signals can be simultaneously measured [4].

The pulse excitation in flutter tests is often realized by a
small rocket excitation or rudder operation. The risk of the
flutter test itself is thus an important challenge for producing
excitation action in terms of test safety. Sweep frequency exci-
tations are a kind of narrow-band excitation signal, but the
high-frequency response of the aircraft structure is often diffi-
cult to obtain due to the bandwidth of the excitation source.
Atmospheric turbulence is a kind of random excitation. The
frequency domain band of the excitation signal is sufficiently
wide, while the energy of each frequency domain of the excita-
tion signal is dispersed due to the bandwidth. This feature is
mainly manifested in the turbulence response, in which the
response signal contains both the information of the structural
system and the randomness due to the random excitation.

Because turbulence excitation is not measurable, the sys-
tem identification problem for the turbulence response is
referred to as output-only modal parameter estimation.
The modal parameter estimation of flutter response signals
mainly includes the free decay response calculation method
based on the random decrement technique (RDT), the sto-
chastic subspace identification (SSI) method based on state
space modeling, and the transfer function modeling method
of the frequency domain decomposition (FDD). Wen et al.
[5] used the RDT for modal identification of structures with
close modes. Oymak and Ozay [6] revisited the Ho-Kalman-
based system identification method and analyzed the robust-
ness and performance of the finite sample. Scionti et al. [7]
introduced the output-only response modal parameter iden-
tification method of SSI balanced realization and introduced
the stochastic model based on the state space model.

Modal parameter estimation methods of the turbulence
response signals based on transfer function modeling mainly
include two types. (1) Frequency-time domain estimation
methods are mainly based on FDD, which mostly considers
the multichannel turbulence response to obtain the power
spectral density (PSD) matrix. The auto power spectrum of
a single degree-of-freedom (SDOF) system can be calculated
using the FDD method to obtain the autocorrelation func-
tion of the SDOF system using the inverse FFT. The model
parameters are then calculated in the time domain [8, 9].
(2) The least-square complex frequency-domain (LSCF)
method is used to model the parameter estimation of the air-
craft [10] and to study the online monitoring of aircraft
modal parameter analysis using only known outputs [11].

According to the transfer functionmodeling analysis of the
turbulence response, the FDD method must perform an
inverse FFT for the auto PSD function of a SDOF system to
identify the modal parameters. The LSCF method focuses on
the turbulence of multichannels, and the turbulence response
is based on the LSCF estimator to model the common-

denominator transfer function. Themodal parameters are thus
calculated using the identified transfer function, and a stability
diagram is used to estimate the stable modal parameters.

This paper proposes to calculate the PSD function of the
multichannel turbulence response based on the FDD
method. The singular value decomposition (SVD) for the
PSD function matrix is performed at each spectral pin. The
maximum singular value curve is mathematically given as
the product of the system transfer function and its conjugate
transpose. The maximum singular value curve can therefore
be fitted in the frequency domain using the rational fraction
polynomial and calculated the modal parameters. The con-
tributions of the method can be summarized as follows.

(1) The influence of random noise on the spectrum esti-
mation is reduced using multichannel power spec-
trum analysis and SVD based on the randomness
of the turbulence response signal in the flutter test

(2) The system identification and modal parameter esti-
mation are performed by frequency domain curve fit-
ting based on the relationship between the maximum
singular value curve and the system transfer function

(3) The FRF is fitted using the rational fraction polynomial
method at the analysis frequency band to improve the
performance of the modal parameter estimation

(4) The method is verified based on the turbulence
response signal of the flutter flight test, which verifies
the feasibility and engineering applicability of multi-
modal frequency domain fitting

2. Related Methods

2.1. Singular Value and Transfer Function. Under ideal con-
ditions, the following relationship exists between the output yð
tÞ, input xðtÞ, and the impulse response hðtÞ of the system [12]:

y tð Þ =
ð∞
0
h τð Þx t − τð Þdτ, ð1Þ

where if τ < 0, hðτÞ = 0 is a physically realizable system, and
then yðtÞyðt + τÞ can be written as follows:

y tð Þy t + τð Þ =
ð∞
0

ð∞
0
h αð Þh βð Þx t − βð Þx t + τ − αð Þdαdβ:

ð2Þ

Eq. (2) can be written in the form of an input and output
autocorrelation:

Ryy τð Þ =
ð∞
0

ð∞
0
h αð Þh βð ÞRxx τ + β − αð Þdαdβ: ð3Þ

Similarly, xðtÞyðt + τÞ also can be written as follows:

x tð Þy t + τð Þ =
ð∞
0
h αð Þx tð Þx t + τ − αð Þdα: ð4Þ
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Furthermore, Eq. (4) can be expressed as follows:

Rxy τð Þ =
ð∞
0
h αð ÞRxx τ − αð Þdα: ð5Þ

Eqs. (3) and (5) are a convolution form, as in Eq. (1), and
the double-sideband spectral densify functions SxxðjωÞ, Syyðj
ωÞ, and SxyðjωÞ can be calculated by Fourier transform:

Syy jωð Þ = H jωð Þj j2Sxx jωð Þ, ð6Þ

Sxy jωð Þ =H jωð ÞSxx jωð Þ: ð7Þ
Because Eqs. (6) and (7) are double-sideband spectral den-

sity functions, the frequency ranges from positive to negative.
Eq. (6) is a real-valued relation that contains only the gain fac-
tor jHðjωÞj of the system. In Eq. (7), HðjωÞ contains both the
amplitude spectrum jHðjωÞj and phase spectrum ϕðjωÞ.
Equation (7) thus becomes the correlation between the input
and output cross-spectrum. The input-output relationship of
a system in an ideal state has been proved, and the system is
a linear time-invariant system. The relationship between the
input/output autocorrelation function and transfer function
can be more intuitively understood by means of the frequency
domain conversion. The relationship between the double-
sideband autocorrelation and transfer function can therefore
be determined using the one-sideband spectral density func-
tion as follows:

Gyy jωð Þ = H jωð Þj j2Gxx jωð Þ, ð8Þ

Gxy jωð Þ =H jωð ÞGxx jωð Þ: ð9Þ
Compared with Eq. (1),

Y jωð Þ =H jωð ÞX jωð Þ, ð10Þ

where XðjωÞ and YðjωÞ are the Fourier transform of xðtÞ and
yðtÞ, respectively. The complex frequency domain of Eq. (10)
exists as follows:

Y∗ jωð Þ =H∗ jωð ÞX∗ jωð Þ,
Y jωð Þj j2 = H jωð Þj j2 X jωð Þj j2,

X∗ jωð ÞY jωð Þ =H jωð Þ X jωð Þj j2:
ð11Þ

The complex conjugate of Eq. (9) is thus as follows:

G∗
xy jωð Þ =Gyx jωð Þ =H∗ jωð ÞGxx jωð Þ, ð12Þ

where

Gyx jωð Þ = Gyx jωð Þ�� ��ejθxy jωð Þ, ð13Þ

H∗ jωð Þ = H jωð Þj jejϕ jωð Þ: ð14Þ

For the system FRF in the complex domain, Eqs. (8) and
(13) can be further written as

Gyy jωð Þ =H jωð Þ H∗ jωð ÞGxx jωð Þ½ �: ð15Þ

According to the relationship between the input and out-
put spectral density functions and the FRF of the system, the
following can be written:

Gyy jωð Þ =H jωð ÞGxx jωð ÞH jωð ÞH , ð16Þ

where GxxðjωÞ is a r × r PSD function matrix of the input sig-
nal, r is the channel number of the input signal, GyyðjωÞ is an
m ×m PSD function matrix of the output signal, m is the
channel number of the output signal, and HðjωÞ is an m × r
FRF matrix. After decomposing HðjωÞ using the residue
method, it can be expressed as follows:

H jωð Þ = 〠
n

k=1

Rk

jω − λk
+

�Rk

jω − �λk
, ð17Þ

where n is the model number, λk is the pole, and Rk is the
residual:

Rk = ϕkγ
T
k , ð18Þ

where ϕk is the model shape vector, and γk is the model partic-
ipation vector according the irrelevance of the multichannel
input excitation signal. The PSD matrix of the excitation is a
constant matrix, GxxðjωÞ = C. Equation (16) can therefore be
written as follows:

Gyy jωð Þ = 〠
n

k=1
〠
n

s=1

Rk

jω − λk
+

�Rk

jω − �λk

� �
C

Rs

jω − λs
+

�Rs

jω − �λs

� �H
,

ð19Þ

where Eq. (19) can be obtained by the Heaviside partial frac-
tion expansion theory:

Gyy jωð Þ = 〠
n

k=1

Ak

jω − λk
+ Ak

jω − �λk
+ Bk

−jω − λk
+ Bk

−jω − �λk
,

ð20Þ

where Ak represents the residual matrix of the k -th mode of
the response signal correlation PSDmatrix, andAk is a Hermi-
tian matrix with dimensions of m ×m.

Ak = RkC 〠
n

k=1

Rs
T

−λk − �λs
+ RT

s

−λk − λs

" #
: ð21Þ

The residual can be written as follows:

Ak =
RkCRk

T

2σk
, ð22Þ
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where σk is the opposite of the real part of the pole, where
λk = −σk + jμk. When the damping is a small value in the k
-th mode, the residual part of the mode vector can be expressed
as follows:

Ak ∝ RkCRk = ϕkγ
T
k Cγkϕ

T
k = dkϕkϕ

T
k , ð23Þ

where dk is a constant. In the frequency domain, only a part of
the key mode frequency domain has an important influence
on the FRF of the system, such as a typical first- or second-
order mode. The frequency is marked as subðωÞ. Therefore,
in the case of small damping, the response spectral density
function of the system can be expressed as follows:

Gyy jωð Þ = 〠
k∈sub ωð Þ

dkϕkϕ
T
k

jω − λk
+
�dkϕkϕ

T
k

jω − �λk
ð24Þ

where dk is a constant, ϕk is the mode shape, and λk represents
the pole. For the response signal of multiple measurement
points, the PSD function ĜyyðjωÞ of the response signal is sub-
jected to SVD at a discrete spectral pin in the following form:

Ĝyy jωð Þ =UiSiU
T
i , ð25Þ

where Ui = ½ui1, ui2,⋯,uim� is a unitary matrix of singular
value vector uij, and Si is a diagonal matrix of singular values
sij for the k -th mode. The corresponding frequency domain
amplitude is reflected in the singular value. Compared with
Eqs. (24) and (25), the first singular value vector ui1 represents
the mode shape, namely,

bϕ = ui1: ð26Þ

This indicates that for a randomly excited system, the
power spectrum of the multichannel excited signal is a flat
spectrum, and the correlation power spectrum density func-
tion matrix is a diagonal matrix. A comparison of Eqs. (24)
and (25) shows that the maximum singular value of the PSD
function matrix ĜyyðjωÞ of the response at each spectral pin
can be expressed as the auto PSD function of the correspond-
ing system.

2.2. Rational Fraction Polynomial. The rational fraction
polynomial is an orthogonal polynomial method used to
perform a frequency polynomial fitting of the maximum sin-
gular value curve. The model parameters can be calculated
from the estimated FRF based on the rational fractional
polynomial.

The FRF for a linear time-invariant system can be
expressed as follows:

H sð Þ = ams
m+⋯+a2s2 + a1s + a0

bnsn+⋯+b2s2 + b1s + b0
, ð27Þ

where m < n. Dividing the numerator and denominator of
Eq. (27) by bn gives

pm sð Þ = sm,⋯, p1 sð Þ = s, p0 sð Þ = 1,
qn sð Þ = sn,⋯, q1 sð Þ = s, q0 sð Þ = 1:

ð28Þ

This leads to the following:

H sð Þ = ∑m
k=0ckpk sð Þ

∑n
k=0dkqk sð Þ , where dn = 1: ð29Þ

In practical engineering, it is often impossible to measure
the FRF over the entire S-plane; thus, only the data that
cover the entire frequency axis are considered. These data
are generally known as the FRF, i.e., s = jω. In this case,
Eq. (29) can be further expressed as follows:

H jωð Þ = ∑m
k=0ckpk jωð Þ

∑n
k=0dkqk jωð Þ , ð30Þ

where the coefficients ck and dk are the quantities that need
to be calculated. To use the orthogonal polynomial to fit the
FRF, it is necessary to simplify the calculation using the
characteristics of the orthogonal polynomial and the FRF.
In general, only the FRF calculation in the positive frequency
range is considered; however, the FRF in the negative fre-
quency range also exists, which implies that the FRF is a
conjugate symmetric function about the origin of the fre-
quency axis. The concept of negative frequency is therefore
introduced in the calculation process, in which ω = ½ω−L ⋯
ω−1ω1 ⋯ ωL� over a total of 2 L points. If we let ω−i = −ωi,
then Hðjω−iÞ =Hð‐jωiÞ =H∗ðjωiÞ, where i = 1, 2,⋯, L, and
the measured value of the FRF ĤðjωiÞ exists according to
the following:

Ĥ jω−ið Þ = Ĥ −jωið Þ = cH∗ jωið Þ i = 1, 2,⋯,Lð Þ: ð31Þ

The error between the theoretical model of the FRF (i.e.,
a rational fraction of Eq. (30)) and the actual measurement
result can be expressed as follows:

ℓi =H jωið Þ − Ĥ jωið Þ = ∑m
k=0ckpk jωið Þ

∑n
k=0dkqk jωið Þ − Ĥ jωið Þ: ð32Þ

To linearize the coefficients ck and dk, Eq. (32) can be
rewritten as follows:

ei = ℓi 〠
n

k=0
dkqk jωið Þ = 〠

m

k=0
ckpk jωð Þ − Ĥ jωið Þ 〠

n−1

k=0
dkqk jωið Þ + qn jωið Þ

" #
:

ð33Þ

The error is defined by Eq. (34):

J = 〠
L

i=−L
e∗i ei = EHE, ð34Þ
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where E = ðe−L,⋯,e−1, e1,⋯,eLÞT , and EH is a conjugate
transpose of E. Considering Eqs. (33) and (34), the vector
of the error is defined as follows:

E = PC −QD −W, ð35Þ

where

To determine the minimum error value J , the partial
derivative of J with respect to the vectors C and D can be
set to zero, as shown here:

∂J
∂C

= 0, ∂J
∂D

= 0: ð37Þ

According to Eqs. (35) and (37), the matrix relationship
in Eq. (38) can be defined as follows:

Y X

XT Z

" #
C

D

" #
=

G

F

" #
, ð38Þ

where

Y = 1
2 PHP + PTP∗� �

,

Z = 1
2 QHQ +QTQ∗� �

,

Table 1: Parameters of the simulation signal.

Simulation signal Amplitude Frequency Damping Phase

Signal #1 (two-order)
0.8 5.65 0.0214 0.68π

1 13.75 0.01505 0.33π

Signal #2 (two-order)
0.9 7 0.01514 0.51π

1.5 11 0.00805 0.69π

Signal #3 (three-order)

0.8 3.75 0.03205 0.23π

1.1 7.5 0.00305 0.51π

0.5 11.25 0.02514 0.9π

P =
P−

P+

" #
=

p0 jω−Lð Þ p1 jω−Lð Þ ⋯ pm jω−Lð Þ
⋮ ⋮ ⋯ ⋮

p0 jω−1ð Þ p1 jω−1ð Þ ⋯ pm jω−1ð Þ
p0 jω1ð Þ p1 jω1ð Þ ⋯ pm jω1ð Þ

⋮ ⋮ ⋱ ⋮

p0 jωLð Þ p1 jωLð Þ ⋯ pm jωLð Þ

2666666666664

3777777777775
,

Q =
Q−

Q+

" #
=

Ĥ jω−Lð Þq0 jω−Lð Þ Ĥ jω−Lð Þq1 jω−Lð Þ ⋯ Ĥ jω−Lð Þqn−1 jω−Lð Þ
⋮ ⋮ ⋯ ⋮

Ĥ jω−1ð Þq0 jω−1ð Þ Ĥ jω−1ð Þq1 jω−1ð Þ ⋯ Ĥ jω−1ð Þqn−1 jω−1ð Þ
Ĥ jω1ð Þq0 jω1ð Þ Ĥ jω1ð Þq1 jω1ð Þ ⋯ Ĥ jω1ð Þqn−1 jω1ð Þ

⋮ ⋮ ⋱ ⋮

Ĥ jωLð Þq0 jωLð Þ Ĥ jωLð Þq1 jωLð Þ ⋯ Ĥ jωLð Þqn−1 jωLð Þ

2666666666664

3777777777775
,

C = c0, c1,⋯,cmð ÞT ,
D = d0, d1,⋯,dn−1ð ÞT ,

W =
W−

W+

" #
= Ĥ jω−Lð Þqn jω−Lð Þ,⋯,Ĥ jω−1ð Þqn jω−1ð Þ, Ĥ jω1ð Þqn jω1ð Þ, Ĥ jωLð Þqn jωLð Þ� �T

:

ð36Þ
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Figure 3: Maximum singular value curve.
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Figure 6: PSD of the two-mode turbulence response.
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G = Re PHW
� �

,F = Re QHW
� �

: ð39Þ

In Eq. (38), if pðjωÞ and qðjωÞ meet the following condi-
tions,

〠
L

i=−L
p∗s jωið Þpt jωið Þ = 〠

L

i=−L
ps jωið Þp∗t jωið Þ

=
1 s = t

0 s ≠ t

(
s, t = 0, 1,⋯,mð Þ,

〠
L

i=−L
Ĥ jωið Þ�� ��2q∗s jωið Þqt jωið Þ

= 〠
L

i=−L
Ĥ jωið Þ�� ��2qs jωið Þq∗t jωið Þ

=
1 s = t

0 s ≠ t

(
s, t = 0, 1,⋯,n − 1ð Þ:

ð40Þ

Then, the Y and Z matrices in Eq. (38) create the unit
matrix, the final form of which is given as follows:
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Figure 8: System identification result.
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Figure 10: PSD of the three-mode turbulence response.
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Table 2: Model parameter identification results of the simulation signal.

True value Our method
Frequency (Hz) Damping Frequency (Hz) Damping

Signal #1
5.65 0.0214 5.6367 0.0185

13.75 0.01505 13.736 0.0147

Signal #2
7.5 0.01514 7.4385 0.0135

11.25 0.00805 11.2504 0.0089

Signal #3

3.75 0.03205 3.754 0.0371

7.5 0.00305 7.4975 0.0036

11.25 0.02514 11.2143 0.0260
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Figure 13: Time series and PSD of the horizontal tail in CH1.
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Figure 12: System identification result.
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I1 X

XT I2

" #
C

D

" #
=

G

F

" #
: ð41Þ

The C and D matrices can be obtained by expanding Eq.
(41) to the following:

I − XTX
� �

D = F − XTG,
C =G − XD:

ð42Þ

Satisfying the condition of Eq. (40) makes pkðjωÞ and
qkðjωÞ an orthogonal polynomial, which in turn makes the
diagonal of the coefficient matrix in Eq. (38) an identity
matrix. Equation (42) can then be used to separately solve
the coefficients C and D. Considering the derivation

described, the Forsythe complex orthogonal polynomial
can be used to reconstruct pkðjωÞ and qkðjωÞ [13].

3. Simulation Signal Verification

The simulation signal was used for the model parameter
identification to verify the proposed method. The impulse
response of the structural system is described as follows:

h tð Þ = 〠
N

i=1
Aie

−ξiωit sin ωit + φið Þ, ð43Þ

where N is the number of modes in the system, Ai represents
the amplitude of the i -th model, ξi represents the damping of
the i -th mode, ωi represents the frequency of the i -

th mode,
and φi represents the phase corresponding to the i -th mode,
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Figure 15: Time series and PSD of the horizontal tail in CH3.
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Figure 14: Time series and PSD of the horizontal tail in CH2.
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which is used to simulate the measured signal from a differ-
ent sensor on the same structural component. The turbu-
lence response of the system is then determined according
to the following:

y tð Þ = h tð Þ ∗ x tð Þ, ð44Þ

where yðtÞ represents the turbulence response, hðtÞ is the
impulse response of the structural system, and xðtÞ is the
Gaussian white noise in the simulation.

Based on the simulation signal calculation method, the
simulation signal parameter setting is carried out according
to the principle of the second-order modal coupling, which
is the cause of the flutter generation, and the modal param-
eter identification is carried out using the proposed method.
The specific parameters of the three simulation signal set-
tings are shown in Table 1.

The two-order modal frequencies in the simulation signal
(signal #1) are 5.65Hz and 13.75Hz with respective amplitudes
of 0.8 and 1, corresponding damping of 0.0214 and 0.01505, and
phases of 0.68π and 0.33π. The turbulence response of the dif-
ferent measurement points is shown in Figures 1 and 2 that
show the function of the corresponding turbulence response.

According to the theoretical analysis in Section 2, the
PSD of the simulated signal of each channel can be calcu-
lated, and the maximum singular value curve of the entire
frequency band is obtained (Figure 3). The model parame-
ters can be estimated based on the rational fraction polyno-
mials based on the maximum singular value curve. Figure 4
(top) shows the waveform of the PSD function of the turbu-
lence response signal from a certain channel in the analysis
frequency band, and Figure 4 (bottom) compares the maxi-
mum singular value curve and results of the system
identification.
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Figure 17: Maximum singular value of the horizontal tail.

0 5 10 15 20 25 30
Time/s

–1

–0.5

0

0.5

1

A
m

pl
itu

de

Time series 

0 50 100 150 200 250 300
Frequency/Hz

–500

–400

–300

–200

–100
A

m
pl

itu
de

/d
B

Single side band power spectral density 

Figure 16: Time series and PSD of the horizontal tail in CH4.
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On the basis of the two-order modal simulation signals
(signal #1) of 5Hz and 13Hz, the two-order models are fur-
ther set to 7.5Hz and 11.25Hz to verify the two-order modal
coupling in the flutter process.

Figure 5 shows the turbulence response signal of the
two-order mode (signal #2), including the 7Hz and 11Hz
frequency model, which, respectively, have amplitudes of
0.9 and 1.5, damping of 0.01514 and 0.00805, and phases
of 0.51π and 0.69π. Figure 6 shows the PSD function of
the time domain turbulence response. Figure 7 is the maxi-
mum singular value curve of the three-channel turbulence
response. Figure 8 (top) shows the PSD of the turbulence
response signal, and Figure 8 (bottom) compares the maxi-
mum singular value curve and the identification result of
the rational fraction polynomial. A comparison of the top
and bottom graphs in Figure 8 further illustrates the rela-
tionship between the maximum singular value curve and

PSD of the turbulence response signal. The system identifi-
cation of the turbulence response with the maximum singu-
lar value curve can thus be realized.

The two settings of the simulation signals verify the sys-
tem identification method proposed in this paper from the
perspective of the flutter generation principle. However,
the test speed is often far from the true flutter speed consid-
ering test safety concerns. In actual engineering, there is a
real need for the modal parameter identification of the tur-
bulence response using coexisting multimodels and dis-
persed energy in each modal.

The method is therefore further verified using three
models (signal #3). Figure 9 shows the turbulence response
of the three channels including the three-mode frequencies
of 3.75Hz, 7.5Hz, and 11.25Hz, which, respectively, have
amplitudes of 0.8, 1.1, and 0.5, damping of 0.03205,
0.00305, and 0.02514, and phases of 0.23π, 0.51π, and
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Figure 18: System parameters identification result.
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Figure 19: Time series and PSD of the wing in CH1.
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0.9π. Figure 10 is the PSD corresponding to the turbulence
response signal of the three channels, and Figure 11 is the
maximum singular value curve of the PSD matrix calculated
from the three-channel turbulence response. Figure 12 (top)
shows one of the PSD of the three-mode turbulence
responses, and Figure 12 (bottom) compares the maximum
singular value curve of the three-mode turbulence response
signal and the system identification result of the rational
fraction polynomial. The final curve fitting results demon-
strate that the proposed method can also identify the modal
parameters for the turbulence response signals containing
multimodes.

The system identification based on the rational fraction
polynomial method is carried out on the basis of the signal
waveform and system identification curve, and the modal
parameter calculation is performed based on the identified

system transfer function. Table 2 shows the parameter iden-
tification results of the three sets of simulation signals. The
findings indicate that the error between the identification
results and true values is relatively small.

4. Physical Test Verification

4.1. Model Parameter Estimation. The response signal
excited by the atmosphere turbulence of the flutter flight test
of a certain type of aircraft is used as the physical test signal
to verify the proposed method. The acceleration response
and corresponding PSD (Figures 13–16) locate the front
and rear edges of the horizontal tail, as well as the front
and rear edges of its wing tip.

The maximum singular value curve of the corresponding
signal is calculated using the proposed method based on the
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Figure 20: Time series and PSD of the wing in CH2.
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Figure 21: Time series and PSD of the wing in CH3.
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Figure 22: Time series and PSD of the wing in CH4.
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turbulence response of the multiple measurement channels.
The system identification is performed based on the rational
fraction polynomial according to the maximum singular
value curve, and the modal parameters are calculated.
Figure 17 shows the maximum singular value curve of the
four-channel response signals of the horizontal tail. The sin-
gular value curve clearly contains two modes at 11Hz and
25Hz. The system is identified using the rational fraction
polynomial method based on the maximum singular value
curve. The blue curve in Figure 18 is the maximum singular
value curve, and the red curve is the system identification
result. Due to the noise problem of the maximum singular
value, it is not possible to consider only the two modes of
interest in the order setting of the system identification. It
is thus often necessary in engineering applications to

increase the order to achieve better system identification
and fit the modes of interest.

The turbulence response of the front and rear edges of
the wing and front and rear edges of the wing tip is used
to verify the proposed method. Figures 19–22 show a time
series and the PSD function of the turbulence signal from
the four different test channels of the wing.

The maximum singular value curve (Figure 23) of the
corresponding signal is calculated from the atmosphere tur-
bulence response of the four-channel. Figures 24–26 show
the system identification results of the different analysis fre-
quency bands, mainly including those at 3.3Hz, 7Hz, 17Hz,
and 32Hz.

The system identification results illustrate the proposed
method from the perspective of frequency domain data
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Figure 24: System identification result including the 3.3Hz and 6.7Hz.
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fitting. Table 3 analyzes the modal parameter calculation
results of the frequency-spatial domain decomposition
(FSDD) [14], SSI [15], and the proposed method.

The FSDD method is an improved frequency domain
decomposition that estimates the modal parameters of ran-
dom excitation signals through the frequency domain iden-
tification of the SDOF system. This approach is applied to
analyze vibration responses in civil engineering [16] and sys-
tem identification and modal extraction from response data
[17]. The FSDD method estimates parameters in the fre-
quency domain for a SDOF system and must decompose
the maximum singular value by taking the frequency of
interest as a parameter to separate the SDOF system. The
SSI technique is a modal parameter estimation method
based on state space modeling. For the output-only system
identification problem, modal parameter estimation is per-

formed based on the relationship between the system matrix
and the Hankle matrix of the response signal. In studies
involving the SSI method, it is usually necessary to estimate
the modal parameters of multiple orders and further extract
the stable modal through the steady-state diagram method.
Because the modal parameter estimation of multiple orders
is required, the algorithm execution time of the SSI is too
long.

The modal parameters of the flutter test have no true
values and are thus analyzed using FSDD, SSI, and the pro-
posed method. The analysis indicates that the estimated
results of the frequency of interest are essentially the same.
Because the damping parameter is relatively small, there
are cases where the error of individual estimated parameters
is large. Table 4 compares the results of the three different
methods based on the modal (17Hz and 33Hz) of the left
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Figure 26: Frequency versus velocity diagram.
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Figure 25: System identification result including the 17.9Hz and 32.6Hz.
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and right symmetrical positions of the wing using the pro-
posed method. The results show that the frequency estimates
of the left and right symmetrical positions are generally con-
sistent in terms of the data acquisition error. For the damp-
ing parameters, there are errors in the estimation results of
the response signals at different locations.

The results show that the model parameters estimated
using the proposed method are similar with those
obtained using FSDD and SSI. The modal parameter esti-
mation method for the symmetrical position of the wing
also demonstrates the reliability of the proposed method.
The maximum singular value curve based on the rational
fraction polynomial can be directly used in the analysis
frequency interval. The system identification is performed
at the frequency band, and the efficiency of the modal
parameter estimation is further improved. The frequency
domain fitting error caused by the spectral pin density of

the autocorrelation PSD function of the SDOF system is
further avoided.

4.2. Flutter Boundary Prediction. The 3.3Hz mode of the
wing acceleration signal is taken as an example to illustrate
the engineering applicability of the proposed method for
flutter boundary prediction. The estimation of the modal
parameters (frequency, damping ratio) in the boundary pre-
diction is based on the turbulence response of the aircraft at
a stable level flight under multiple speed steps. The modal
parameter estimation of the response signal of each speed
step is carried out using the proposed method, and the final
frequency varies with the velocity shown in Figure 26. The
modal parameter identification of the damping ratio result
is carried out under the condition that the frequency identi-
fication is accurate. The boundary prediction result of the
final damping ratio is shown in Figure 27, in which the

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Velocity (Ma)

0

5

10

15

20

25

D
am

p 
ra

tio
 (%

)

Damping of the structural components versus the velocity

X: 0.9734
Y: 0.4987

Figure 27: Damping ratio versus velocity diagram.

Table 3: System identification results of the physical test.

FSDD SSI Proposed method
Frequency (Hz) Damping ratio Frequency (Hz) Damping ratio Frequency (Hz) Damping ratio

Horizontal tail signal
10.351 4.461 10.573 6.871 11.396 9.973

25.186 4.947 25.836 4.458 25.820 6.594

Wing signal

3.228 7.674 3.424 10.485 3.337 17.92

6.521 3.861 6.832 6.083 6.774 4.754

17.973 4.482 17.356 6.832 17.972 13.881

32.217 4.634 32.638 5.489 32.622 5.764

Table 4: Modal parameter estimation results of the wing symmetrical position.

All wing signal Left wing signal Right wing signal
Frequency (Hz) Damping ratio Frequency (Hz) Damping ratio Frequency (Hz) Damping ratio

17.972 13.881 17.374 10.581 18.918 12.114

32.622 5.764 33.098 5.340 33.269 5.226
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flutter boundary velocity is close to 0.9734Ma and thus con-
sistent with the flutter phenomenon.

5. Conclusion

This paper analyzes the turbulence response characteristics
of multichannels based on the randomness of atmosphere
turbulence excitation and frequency domain orthogonality
of the signal. The power spectral density function matrix of
the turbulence response of multichannels is calculated, and
singular value decomposition is performed for the power
spectrum density function matrix at each spectral pin using
the orthogonality of the frequency domain. The maximum
singular value curve of the entire frequency band of the
system can thus be calculated, which represents the auto
power spectral density function of the system. The system
identification for the maximum singular value curve using
rational fractional polynomials can determine the frequency
response function of the system. Further analysis can be per-
formed to obtain the modal parameters of the system. A the-
oretical verification of the method is carried out using the
simulation signal, and the flutter test data of a certain flight
type are used for engineering verification, which verify the
theoretical correctness and engineering applicability of the
proposed method.
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