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This paper presents a trajectory optimization algorithm for super-synchronous-transfer-orbit (SSTO) large launch systems by
convex optimization. The payload of SSTO launch systems is typically a geostationary equatorial orbit (GEO) satellite, and the
time and position of orbital injection are constrained, which is quite different from the case of general satellites. In this paper,
the optimal control problem of SSTO large launch systems is formulated considering the terminal constraints including orbital
elements and the time-position equation. To improve the computational performance of the algorithm, the terminal orbital
element constraints are expressed in the perifocal coordinate system with second-order equations. And then, several
convexification techniques and their modified strategies are applied to transform the original trajectory optimization problem
into a series of convex optimization problems, which can be solved iteratively with high accuracy and computational efficiency.
Considering the time-position constraint of the payload, the flight time updater design method is proposed to correct the error
of time during the flight, which lays solid foundation for the subsequent flight phase, guaranteeing that the GEO satellite
settles into the required position. Finally, simulation results indicate the high efficiency and accuracy and strong robustness of
the proposed algorithm in different special situations including engine failure and time delay. The algorithm proposed in this
paper has great development potential and application prospect in onboard trajectory optimization of SSTO launch missions
and similar situations.

1. Introduction

Geostationary equatorial orbit (GEO) is a special circular
earth orbit, in which satellites remain relatively stationary
with the earth, and the ground stations do not have to track
the satellites [1]. The GEO attitude is 35786 kilometers,
where the visible portion of the earth’s surface is very large.
Because of these meaningful properties, the satellites for
communication, global weather, radio, etc. are always placed
in GEO [1]. However, in order to avoid interference with
other satellites in GEO, and achieve predetermined func-
tions, the satellites should stay above the predetermined
point on the earth’s equator. In other words, the time and
position of orbital injection for GEO satellites are strictly
constrained, which is different from the case of general satel-

lites [2, 3]. Because of the high attitude of the GEO, the scale
of the launch system is always very large, and the special sit-
uations such as engine failure of large launch systems should
be considered.

In general, there are three flight phases from the satellite
launching to the satellite settling into the GEO. Firstly, the
launch system put the satellite and upper stage into a low
earth orbit (LEO), which is a circular orbit locating
200 km~400 km away from the surface of the earth. After
that, the launch system will park in the LEO for a few
minutes before turning on the engine of the upper stage
and sending the satellite into a geostationary transfer orbit
(GTO). GTO is a highly eccentric orbit, of which the perigee
is near the parking LEO, and the apogee is near the GEO.
Finally, the satellites transfer into the target GEO. In this
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paper, super-synchronous-transfer-orbit (SSTO) [4] is
adopted to transfer the satellites from LEO to GEO instead
of GTO. SSTO has a higher apogee and eccentricity, and
the speed increment required by transferring from SSTO to
GEO is greater than that required by transferring from
GTO to GEO, which is beneficial for saving the propellant
in the process of transferring orbit plane to GEO. The mis-
sion of launch systems for GEO satellites is to put the pay-
load into the predetermined SSTO accurately, during
which the guidance algorithm plays an important role.

As for the ascent phase of launch systems, the iterative
guidance method has been widely and successfully used in
the past few decades [5, 6]. However, for most rocket
engines, the thrust magnitude is uncontrollable, and the time
and position of orbital injection cannot be constrained based
on the iterative guidance method. When the deviation of the
flight time is large, the iterative guidance method cannot
correct the error, which will cause more propellant
consumption for orbit transfer, or even lead to the failure
of settling into the predetermined point of GEO.

In recent years, with the development of computational
technologies, the online trajectory optimization method
has been developed rapidly, which provides new ideas for
solving the optimal guidance and control problems in aero-
space applications [7]. Various optimization theories and
algorithms have been developed for online or onboard tra-
jectory optimization of different vehicles [8]. There are three
important performance indexes for online trajectory algo-
rithms: accuracy, computational efficiency, and robustness
[7]. For guidance algorithms, accuracy is certainly the most
important index. Considering the limited onboard comput-
ing resources, the computation amount and memory occu-
pation of the algorithm should be reduced. The algorithm
should also be robust enough to handle the deviation or
other situations when the real trajectory is quite different
from the nominal one.

Among the trajectory optimization algorithms developed
in recent years, including indirect methods and direct
methods [9–14], convex optimization algorithms have great
advantages in onboard aerospace applications because the
convex optimization problem can be solved in polynomial
time with no need for initial guesses supplied by the user
[15]. However, most of the original trajectory optimization
problems are infinite and nonconvex, which cannot be
solved by convex optimization methods directly [16]. Thus,
the convexification techniques for trajectory optimization
problems are widely studied. In general, lossless convexifica-
tion and successive convexification are two effective
methods to convexify the nonconvex term of the trajectory
optimization problem. Lossless convexification was pro-
posed to solve general optimal control problems [17–19].
For aerospace applications, lossless relaxation and convexifi-
cation are always applied to convexify the thrust magnitude
constraints [20]. Lossless convexification has been success-
fully applied to solve the optimization problem of landing
vehicles [21], launch vehicles [20], missiles [22], etc. Succes-
sive convexification has a broader range of applications.
With successive linearization, all the nonlinear and noncon-
vex terms can be converted into linear ones based on a

known solution, which is very simple and of practical signif-
icance [16]. On this basis, the original optimization problem
can be transformed into a series of convex optimization sub-
problems, which can be solved iteratively until the solution
converges. The convex optimization has been successfully
and widely applied to launch vehicles [23], unmanned aerial
vehicles [24], hypersonic glide vehicles [25], etc. [26–30].

To solve the trajectory optimization problem of SSTO
launch systems accurately and rapidly, a convex-optimization-
based algorithm is applied in this work. In general, the terminal
constraints of launch missions are expressed as six orbital ele-
ments [1], including the semimajor axis, eccentricity, inclina-
tion, longitude of the ascending node, argument perigee, and
true anomaly. However, the calculating formulas of these ele-
ments are very complex and strongly nonlinear, which nega-
tively affects the computational efficiency and convergence of
the algorithm during the iteration. To improve the computa-
tional performance, the trajectory optimization problem, the
terminal constraints are given in the perifocal coordinate sys-
tem. The perifocal coordinate system is defined in the target
orbital plane based on the geometric feature of the elliptical
orbit, and the terminal constraints of orbital elements can be
formulated simply as linear or second-order equations. After
that, several convexification techniques are applied to transform
the original trajectory optimization problem into a series of
second-order cone programming (SOCP) problems, which
can be solved by the primal-dual interior-point method
(IPM). IPM is a typical and widely used algorithm for SOCP.
For any given initial guess and accuracy, a globally optimal solu-
tion can be found by IPM within the predetermined upper
bound of iteration times on condition that the feasible solution
exists [10]. To ensure the problem can be solved by IPM, the
flip-Radau pseudospectral discretization method is adopted to
convert the continuous and infinite problem into a finite one,
and the thrust magnitude constraint is relaxed based on lossless
convexification. Other nonconvexity of the problem is handled
by successive convexification. The main procedure of succes-
sive convexification is described as follows: linearize the non-
linear part of the solution obtained by the initial guess or the
previous iteration and then solve the linearized (convexified)
problem iteratively. If the initial guess is not accurate, the solu-
tion cannot be found at the beginning of the iteration. To
avoid this, the relaxation method is applied [31], but the com-
putational efficiency declines seriously with the additional
relaxation variables. In this paper, the successive convexifica-
tion is modified to improve both the robustness and computa-
tional efficiency of the algorithm. Considering the accuracy of
linearization and equality constraints, the parameters of opti-
mization and relaxation variables are changed or removed
adaptively with the convergence of the solution during the
iteration. In this way, the trajectory optimization problem
can be solved based on convex optimization with satisfactory
computational performance.

Another research focus of this paper is the terminal time
and position constraints. As for the GEO satellites, the posi-
tion of the subastral point is stationary and strictly con-
strained. In general, the low-thrust stage is often applied to
transfer the satellite from SSTO to GTO [32], and the ability
of the stage to correct the deviation is weak. Therefore, the
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launch mission of SSTO must ensure that the satellite arrives
at the point of orbit transfer at a predetermined time, which
lays the foundation for orbit transfer and the subsequent on-
orbit missions. In other words, the trajectory optimization
algorithm should concentrate on the orbital elements and
the time/position of orbital injection. In this paper, the ter-
minal constraint of the orbital injection point is formulated
as a function of time and eccentric anomaly equivalently.
However, as the thrust magnitude of a rocket engine is
uncontrollable, it is difficult to constrain the time and posi-
tion of orbital injection during the flight from LEO to SSTO.
To this end, the flight time of parking in the LEO updater
design algorithm is studied in this paper. With the adjust-
ment of the time parking in LEO, the time-position of
orbital injection can meet the requirement. The algorithm
proposed in this paper has strong robustness and can solve
the online trajectory optimization problem even under par-
tial engine failure or launch time delay.

This paper is organized as follows. In Section 2, the tra-
jectory optimization problem of SSTO launch systems is for-
mulated. In Section 3, the original trajectory optimization
problem is transformed into SOCP subproblems by several
modified convexification techniques. In Section 4, the flight
time of parking in the LEO updater design algorithm is stud-
ied. In Section 5, simulation is carried out to compare the
proposed optimization method with the traditional optimi-
zation method under different conditions. In Section 6, some
conclusions are given.

2. Problem Formulation

Firstly, we formulate the dimensionless equations of motion
of SSTO launch systems in the Earth Center Inertial Coordi-
nate System [1] as follows:

_r = V ,

_V = −
1
rk k3 r +

1
mg0

u,

_m = −
uk k

g0Isp
⋅

ffiffiffiffiffiffiffi
R0
g0

,
s ð1Þ

where r and V∈R3 are the dimensionless inertial position
and velocity vectors, respectively; m is the mass of the sys-
tem. u is the thrust vector and also represents the attitude
angle of the system. g0 is the gravitational acceleration mag-
nitude on the surface of the Earth. Isp is the specific impulse
of the engine. The distance is normalized by the radius of the
Earth at the equator R0, the time by

ffiffiffiffiffiffiffiffiffiffiffi
R0/g0

p
, and the veloc-

ity by
ffiffiffiffiffiffiffiffiffiffi
R0g0

p
[33].

When the payload is boosted into an LEO, the rocket
engine turns off and the thrust magnitude T = 0. After a
few minutes of unpowered flight, the rocket engine of the
upper stage turns on, and the payload is boosted into an
SSTO. For SSTO launch systems, the thrust magnitude of a
rocket engine T is uncontrollable, and the magnitude of
the thrust vector is constrained:

uk k = T: ð2Þ

Considering the strict constraints of the terminal position
and velocity in the noninertial coordinate system for GEO
satellites, the terminal constraints for SSTO launch systems
are also important. Traditionally, the terminal constraints of
launch systems are expressed as orbital elements: the semima-
jor axis, eccentricity, inclination, longitude of the ascending
node, argument perigee, and true anomaly ½a, e, i,Ω, ω, f �
[1]. As for GEO satellite launch missions, the position of the
subastral point is strictly constrained; so, the time and position
of the SSTO injection also need to be considered. In other
words, the payload should settle into the nominal SSTO, and
the position as a function of time should be the same as the
nominal one.

For convenience, the terminal constraints of SSTO launch
systems can be expressed in the perifocal coordinate system
[34]. O is the center of the earth, the 4-axis Xp points towards
the perigee, and the Z-axis Zp is parallel to the normal of the
orbital plane (along the positive direction of the normal).
The Y-axis Yp completes the right-hand coordinate system.
And then the terminal constraints of SSTO launch systems
can be expressed in the perifocal coordinate system as follows:

Considering the accuracy of the semimajor axis, eccen-
tricity, inclination, longitude of the ascending node, and
argument perigee, the following five terminal equality
constraints must be satisfied:

rf x + c
� �2

a2
+
r2f y
b2

− 1 = 0,

r f x + c
� �

V f x

a2
+

rf yV f y

a2 1 − e2ð Þ = 0,

rf xV f y − r f yV f x − h = 0,
r f z = 0,
V f z = 0,

ð3Þ

where b is the semiminor axis and b2 = a2ð1 − e2Þ; c is the
distance from the center of earth to the center of ellipse orbit
and c = ae. h =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1 − e2Þp

is the required magnitude of
angular momentum. The subscript “f ” represents the final
value of the parameters.

In addition, the system must settle into SSTO at a certain
time and position. As an equivalent transformation, the time
and position of injection should satisfy the following condition:

As shown in Figure 1, t1 and r1 are the expected time
and position of injection, and t f and rf are the actual time
and position of injection. Δt is the unpowered flight time
from r1 to r f . ϕ is the eccentric anomaly. If Δt satisfies, then

Δt = t f − t1: ð4Þ

The payload can be considered to settle into SSTO at the
expected time and position equivalently. According to the

3International Journal of Aerospace Engineering



Kepler’s equation, Δt can be calculated by

Δt =Me ϕf r f
� �h i

−Me ϕ1 r1ð Þ½ �, ð5Þ

where Me is the flight time starting at the apogee, which can
be calculated as a function of eccentric anomaly ϕ [1]:

Me = ϕ − e sin ϕ: ð6Þ

And eccentric anomaly ϕ can be calculated simply in the
perifocal coordinate system as follows:

ϕ =
arccos

rxf + c

a
rxf ≥ 0,

2π − arccos
rxf + c

a
rxf < 0:

8>><
>>:

ð7Þ

Considering Eqs. (4) and (7), the error of time Et can be
defined as

Et = t1 − t f + ϕf − ϕ1 + e sin ϕ1 − e sin ϕf

� �
: ð8Þ

In conclusion, the terminal constraints of SSTO launch
systems are Eqs. (3)–(8). As for most launch systems,
because the thrust magnitude is uncontrollable, only five ter-
minal constraints can be guaranteed; so, the time and posi-
tion of the injection are uncontrollable. In Section 4, the
strategy to decrease the error of time Et is proposed in detail.

Considering the following mission of orbit transfer, the
trajectory optimization problem of SSTO launch systems is
defined as an optimal control problem to achieve the mini-

mum fuel consumption:

min J = −m tf
� �

, ð9Þ

subject to

Eq: 1ð Þ, Eq: 2ð Þ, Eq: 3ð Þ, Eq: 8ð Þ mf ≥mdry, ð10Þ

x t0ð Þ = x0, ð11Þ
where the variable x = ½r, V �, mdry, is the dry mass of the
launch system. Equation Eq. (11) is inertial constraints. It is
obvious that the original trajectory optimization problem
(Eqs. (9) and (11)) is nonconvex. In the next section, the tra-
jectory optimization problem is transformed into a series of
SOCP subproblems, which can be solved directly by the
primal-dual interior point method rapidly with good accuracy.

3. Convexification

In this section, the original trajectory optimization in Section 2
is transformed into a series of discrete SOCP subproblems by
pseudospectral discretization, lossless convexification, and
successive convexification. For better computational effi-
ciency, a second-order correction algorithm and an improved
relaxationmethod for successive convexification are proposed.

3.1. Pseudospectral Discretization and Lossless Convexification.
To meet the requirement of the convex optimization method,
the continuous infinite dynamical constraints are always
converted into a finite set of equality constraints by discretiza-
tion. Considering the accuracy of the terminal constraints in
different phases, the flip-Radau pseudospectral discretization
method, by which the collocation points discreted within the

Figure 1: Time-position constraint of SSTO.
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domain ð−1, 1�, is adopted in this paper:

〠
N

j=0
Dijx τj

� �
−
t f − t0
2 f x τj

� �� �
= 0, i = 1,⋯,Nð Þ, ð12Þ

where D is the flip-Radau pseudospectral differentiation
matrix [35], f is the right side of the differential dynamic equa-
tions Eq. (1), and τi, ði = 1,⋯,NÞ is the collocation points
within the domain ð−1, 1�. N is the number of collocation
points. x is state variables including r, V , and m.

On the other hand, the constraint of the thrust magni-
tude in Eq. (2) is a nonconvex equality constraint. For
launch systems, the most commonly used method to handle
the nonconvexity of the thrust magnitude constraint is feasi-
ble domain relaxation. The feasible domain can be relaxed
from a spherical-shell region to a solid sphere, and the
relaxed constraint of the thrust magnitude is

uk k ≤ T: ð13Þ

The relaxed optimization problem has the same optimal
solution as the original one, which means the transformation
is equivalent, and the convexification technique is called
lossless convexification [17–19]. The equivalence of the
transformation can be proved based on optimal control the-
ory. The detailed proof can be found in [20].

After discretization and lossless convexification, the
original trajectory optimization problem formulated in Sec-
tion 2 can be expressed as

min J = −m tf
� �

, ð14Þ

subject to

Eq: 3ð Þ, Eq: 8ð Þ, ð15Þ

x t0ð Þ = x0,
uk k ≤ T ,

〠
N

j=0
Dijx τj

� �
−
t f − t0
2 f x τj

� �� �
= 0, i = 1,⋯,Nð Þ:

ð16Þ

The equality constraints of terminal conditions and dis-
cretized dynamical equations are still nonlinear (nonaffine),
which is not suitable for the SCOP-based method. This
problem can be handled by successive convexification in
the next subsection.

3.2. Improved Successive Convexification. By linearization
and the successive solution procedure, successive convexifi-
cation has been successfully applied to converting the non-
linear equality constraints into affine ones. It is a popular
and simple technique to handle the residual nonconvexity
of the optimization problem in Section 4.1. In this paper,
the nonlinear equality constraints Eq. (12) and the terminal
constraints Eq. (3) are linearized repeatedly at the previous
iteration with a known solution. For convenience, all nonlin-
ear equality constraints are expressed as gð�xÞ, and they can
be linearized by first-order Taylor series expansion [16]:

g �xk
� �

+∇g �xk
� �

Δ�x = 0, ð17Þ

where �x = ½x, u, t f �.
Considering the accuracy of linearization, the update

variable Δx in Eq. (21) is added as a penalty term in the per-
formance index function. And the convex optimization
problem is formulated as COP1:

min J = −m tf
� �

+ αx Δ�xk k, ð18Þ

subject to

g �xk
� �

+∇g �xk
� �

Δ�x = 0, ð19Þ

x t0ð Þ = x0,
u + Δuk k ≤ T ,

ð20Þ

where αx is the penalty coefficient of kΔ�xk.
In this way, the trajectory optimization problem of the

SSTO launch system is converted into a series of SOCP sub-
problems, which can be solved by IPM iteratively. COP1 has
10N + 1 optimal variables, including r, V ,m, u at every dis-
crete point. It should be noted that the error of time Et is
ignored in this section because it is hard to control the posi-
tion and time of the injection when the thrust magnitude is

Figure 2: Trajectory optimization algorithm.
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uncontrollable. The terminal constraint Et is considered in
Section 4.

However, because of the error of the initial guess, the
feasible solution considering the strict constraint Eq. (17)
may not exist at the beginning of the iteration, even if the
solution to the original problem can be found. This phenom-
enon is called “artificial infeasibility,” and the detailed anal-
ysis can be found in [31]. This problem is solved by
relaxation and the penalty strategy. Firstly, the constraint
Eq. (17) is replaced by

g �xk
� �

+∇g �xk
� �

Δ�x = ξg, ð21Þ

where ξg is the relaxation variable for equality constraints.

The dimension of ξg is the same as the number of equality
constraints.

And the relaxation variable is added as a penalty term in
the performance index function. The relaxed convex optimi-
zation problem is called COP2:

min J = −m tf
� �

+ αg ξg
		 		 + αx Δ�xk k, ð22Þ

subject to

g �xk
� �

+∇g �xk
� �

Δ�x = 0, ð23Þ

x t0ð Þ = x0,
u + Δuk k ≤ T ,

ð24Þ

where αg is the penalty coefficient of kξgk.
In the performance index function of COP2, there are

two intercoupling penalty coefficients αg and αx. The accu-
racy of the equality constraints increases as αg increases
and αx decreases, and at the same time, the accuracy of lin-
earization decreases. However, if the error of linearization is
too large, the high accuracy of the equality constraints
becomes insignificance. The error of linearization Ex can
be defined as

Exj =
gj �x

k + Δ�xk
� �

− ξgj

			 			
gj �x

k + Δ�xk
� �			 			  j = 1, 2,⋯, p, ð25Þ

where p is the number of equality constraints, Exj ∈ ½0, 1�. If
kExk is larger than εE1, the accuracy of linearization is unac-
ceptable, the penalty coefficient αx needs to be increased ,and
the solution of this iteration should be given up. If kExk is
smaller than εE2, αg can be increased to improve the accu-
racy of equality constraints and the rate of convergence.

By comparing COP2 with COP1, it can be found that
considering the relaxation variable ξg, the number of opti-
mal variables increases to 17N + 6. It is well known that as
the number of optimal variables grows, the computational
time of the optimization problem grows exponentially. That
is, the computational efficiency of COP2 is much worse than
that of COP1. Actually, when the accuracy of equality con-
straints reaches a certain degree εg1, artificial infeasibility
will not happen, and the relaxation variable and penalty
terms in the performance index can be ignored.

Table 1: Parameters of the launch system.

Initial mass, t 35.38

Dry mass, t 16.00

Exhaust velocity, m/s 4340

Thrust magnitude, N 208320

Table 2: Parameters of the mission.

Initial condition

Vx0, m/s -4841.51

Vy0, m/s -5032.27

Vz0, m/s -3439.57

X0, m -4.994e+06

Y0, m 4.185e+06

Z0, m 9.065e+05

Flight time in LEO, s 1000

Orbital injection

Semimajor axis, m 40478140

Eccentricity 0.837489

Attitude of the perigee, km 200

Attitude of the apogee, km 68000

Inclination, deg 27.59

Longitude of ascending node, deg 335.41

Argument perigee, deg 226.49

True anomaly, deg 33.54

Nominal time of injection, s 1410

Initialization Calculate Et Calculate Et

Update tLEO

End

Et ≤ 𝜀t

Y

N

t1
LEO = t0

LEO + 10

Figure 3: Flight time in LEO updater design.
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In conclusion, considering both accuracy and computa-
tional efficiency of the algorithm, the trajectory optimization
problem can be solved iteratively by the following steps (as
shown in Figure 2):

(1) Initialization: input the initial variables including �x0

,αg,αx, εE1, εE2, and εg1, the permitted range of pen-
alty coefficients ½αg min, αg max� and ½αx min, αx max�,
and the accuracy requirement εg

(2) Set k = 0
(3) Solve the problem COP2 by IPM, obtain the optimal

solution Δ�x, and calculate Ex by Eq. (25)

(4) If kExk > εE1, set αx =max fαx × 2, αx maxg, αg =
min fαg ÷ 2, αg ming and give up the solution Δ�x.

Otherwise, update the optimal variable �xk+1 = �xk +
Δ�x and set k = k + 1

(5) If kExk < εE2, set αg =max fαg × 2, αg maxg and αx
=min fαx ÷ 2, αx ming. If kξgjk < εg1, j = 1, 2,⋯, p,
ignore the relaxation variable ξgj and the corre-
sponding penalty term

(6) If kξgjk < εg1, solve the problem COP1 iteratively.
Otherwise, return to step 3

(7) Check the convergence condition:

g �xk + Δ�x
� �			 			 < εg: ð26Þ

If Eq. (26) is satisfied, the trajectory optimization prob-
lem is solved, and the optimal solution is �xk + Δ�x.

In this way, the trajectory optimization problem is solved
without considering the error of time Et in Eq. (8). In the
next section, to ensure the injection accuracy of GEO satel-
lites, the flight time in LEO for launch systems is calculated
to meet the accuracy requirement of Et .

4. Flight Time Updater Design

As for the launch mission of GEO satellites, the systems
always settle into a circular LEO, and then, SSTO is used
to transfer satellites from LEO to GEO. Between these two
flight phases, the launch systems have a few minutes of
unpowered flight, and then the rocket engine turns on to set-
tle the payload into SSTO. In Section 3, the trajectory opti-
mization algorithm is proposed, but the error of time Et is
ignored. In this section, the strategy of LEO flight time upda-
ter design is proposed, and the terminal constraint Et in Eq.
(8) is considered.

By the analysis of the trajectory optimization problem of
SSTO launch systems in Section 3, when an initial condition
xðt0Þ is given, the error of time Et can be calculated by Eq.
(8) based on the optimal solution. In other words, the error
of time Et can be treated as a function of the initial condition
xðt0Þ. As for the unpowered flight phase in LEO, the initial
condition of the powered phase from LEO to SSTO xðt0Þ
can be easily calculated when the orbital elements of LEO
are given. When the LEO is circular and the radius of the
orbit is aLEO, the initial true anomaly is f0,the flight time in
LEO is tLEO, and the true anomaly at tLEO is
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f LEO = f0 + tLEO

ffiffiffiffiffiffiffiffiffi
μ

a3LEO

r
, ð27Þ

where μ is the gravitational parameter of the Earth.
And then the initial condition xðt0Þ can be easily calcu-

lated in the perifocal coordinate system as follows:

rx t0ð Þ = a3LEO cos f LEO,
ry t0ð Þ = a3LEO sin f LEO,

rz t0ð Þ = 0,

Vx t0ð Þ =
ffiffiffiffiffiffiffiffiffi
μ

aLEO

r
cos f LEO,

Vy t0ð Þ =
ffiffiffiffiffiffiffiffiffi
μ

aLEO

r
sin f LEO,

Vz t0ð Þ = 0:

ð28Þ

It should be noted that all variables in Eqs. (27) and (28)
are dimensional to facilitate understanding, which is differ-
ent from that in Section 3. When they are given as the initial
condition of the trajectory optimization problem, all vari-
ables must be nondimensional.

Based on Eqs. (27) and (28), and the trajectory optimiza-
tion algorithm in Section 3, the error of time Et can be cal-
culated when the flight time in LEO tLEO is given. And
tLEO can be calculated iteratively by the Newton method to
solve the equation:

Et tLEOð Þ = 0: ð29Þ

However, Et is calculated based on a complex optimiza-
tion procedure, and the partial derivative ∂Et/∂tLEO is hard
to calculate accurately by the numerical method when Δ
tLEO is too small. So, a modified Newton method is given,
and the detailed calculation procedure is as follows (as
shown in Figure 3):

(1) According to the nominal trajectory, initialize the
flight time in LEO t0LEO. Set k = 0

(2) Calculate the initial condition xðt0Þ by Eqs.(27) and
(28) and solve the trajectory optimization problem
by the algorithm proposed in Section 3, and then
the error of time E0

t can be calculated by Eq.(8) based
on the optimal solution

(3) Set t1LEO = t0LEO + 10, k = 1

(4) Calculate Ek
t in the same way as step 2

(5) If kEk
t k ≤ εt (εt is the accuracy requirement of Et), the

flight time in LEO is tLEO = tkLEO; else, go to step 6

(6) Update tLEO by

2.5
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0
0 500 1000 1500
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u 
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×105

Figure 9: Curve of thrust magnitude.

Table 3: Comparison of simulation results.

Convex optimization NLP

Flight time in LEO, s 942.2 942.3

Flight time from LEO to SSTO, s 527.8 527.6

CPU time, s 2.23 38.34
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tk+1LEO = tkLEO −
Ek
t tkLEO − tk−1LEO
� �
Ek
t − Ek−1

t

: ð30Þ

(7) Set k = k + 1, and go to step 4

5. Simulation and Analysis

In this section, simulation experiments are carried out by
taking the whole flight from LEO to SSTO. To verify the
robustness of the algorithm proposed in this paper, two
kinds of special conditions are considered:
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(1) One of the four engines breaks down and cannot
work, which means the thrust magnitude and the
rate of mass flow both decrease by 25%

(2) Flight time delay caused by a fault in the previous
flight phase, such as the launch delay, system fault,
and flight deviation

In this paper, the convex optimization problems are
solved by the MOSEK software [36], and the simulation
results are compared with the solutions obtained by a tradi-
tional optimization method, which employs the hp-adaptive
Radau pseudospectral method and the general NLP methods
[31]. All numerical simulations in this paper are performed
on a laptop with Intel Core i7 CPU 2.80GHz.

Parameters of the SSTO launch system are listed in
Table 1. Parameters of the initial condition and target orbit
(SSTO) are listed in Table 2. The variables contained in this
section’s figures and tables are with respect to the Earth Cen-
tered Inertial Coordinate System.

5.1. Engine Failure. In this subsection, we assume that the
thrust magnitude and the rate of mass flow both decrease
by 25% at the same time. The number of the collocation
points is N = 50, the penalty parameter is αg = αx = 1000,

and the permitted range of penalty coefficients is αg min =
αx min = 100, αg max = αx max = 10000. εE1 = 0:5, εE2 = 0:05,
εg1 = 10−3, and the accuracy requirements εg = 10−7, εt = 0:1.

As shown in Figures 4–9 and Table 3, the optimal solu-
tions to the trajectory optimization problem obtained by
both methods are very similar, and they are quite different
from the nominal trajectory because of the failure of the
engine. In other words, the algorithm proposed in this paper
can solve the trajectory optimization problem without good
initial guesses in case of engine failures. Moreover, the accu-
racy and optimality of the optimal solution are proved by
comparison with the traditional optimization method. In
Figure 9, the constraint of the thrust magnitude is active
during the whole flight, which demonstrates the validity of
the lossless convexification in Section 3.1. As shown in
Table 3, the average CPU time is 2.23 s for the algorithm
presented in Section 3.2, which is only 5.8% of the average
CPU time for the traditional method. It takes 7 iterations
and 15.61 s’ CPU time to calculate the flight time in LEO
by the algorithm in Section 4. Due to the long time parking
in the LEO, there is enough time to solve the trajectory opti-
mization problem.

5.2. Time Delay. In this subsection, we assume that the flight
time delays by 50 s because of the fault in the previous flight
phase. All the parameters of the optimization algorithm are
the same as those in Section 5.1. The simulation results are
as follows:

Compared with the work in Section 5.1, similar simula-
tion results (shown in Figures 10–15, Table 4) and research
conclusions can be obtained. Another significant research
result is that with the same optimization parameters, the tra-
jectory optimization problem can be solved in different situ-
ations, which further proves the robustness of the algorithm.
Similar experiment results can also be obtained based on dif-
ferent launch systems and missions. As for the time delay,
the average CPU time is 2.48 s for the algorithm presented
in Section 3.2, which is 5.7% of the average CPU time for
the traditional method. It takes 8 iterations and 19.84 s’
CPU time to calculate the flight time in LEO by the algo-
rithm in Section 4. The deviations of terminal orbital ele-
ments shown in Tables 5 and 6 verify the accuracy of the
equation of terminal constraints Eq. (3) and the flight time
updater design algorithm in Section 4.

The above simulation results demonstrate that the algo-
rithm proposed in this paper has good robustness, accuracy,
and computational efficiency, which indicates great develop-
ment potential and application prospect in onboard trajec-
tory optimization.

6. Conclusion

This paper presents a convex optimization algorithm for
SSTO launch systems considering the orbital elements and
time-position constraints. For convenience and better com-
putational performance, the optimal control problem
including the terminal constraints is given in the perifocal
coordinate system. And then the flip-Radau pseudospectral
method is adopted to convert the trajectory optimization

Table 4: Comparison of simulation results.

Convex optimization NLP

Flight time in LEO, s 874.4 874.2

Flight time from LEO to SSTO, s 355.6 355.4

CPU time, s 2.48 43.27

Table 5: Deviations of terminal orbital elements.

Parameters Deviations

Semimajor axis, m 1.56

Eccentricity 0.0000001

Inclination, deg 0.0001

Longitude of ascending node, deg -0.0002

Argument perigee, deg 0.0001

Et , s 0.07

Table 6: Deviations of terminal orbital elements.

Parameters Deviations

Semimajor axis, m 1.26

Eccentricity 0.0000001

Inclination, deg -0.0001

Longitude of ascending node, deg -0.0001

Argument perigee, deg -0.0002

Et , s 0.06
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problem into a finite problem. Lossless convexification is
also utilized to convexify the constraint of the thrust magni-
tude. To improve the robustness and computational effi-
ciency of the algorithm, successive convexification and its
modified method are proposed. In this way, the trajectory
optimization problem is transformed into a convex one,
which can be solved by IPM accurately and rapidly. To cor-
rect the flight time deviation of SSTO launch systems, the
LEO flight time updater design algorithm is proposed.
Finally, the algorithm proposed in this paper is tested under
two special conditions: engine failure and time delay. Com-
pared with the traditional optimization method, the
proposed algorithm demonstrates stronger robustness,
higher accuracy, and higher computational efficiency. The
improved convex approach and flight time design method
proposed in this paper have great application potential in
onboard trajectory optimization of SSTO launch systems
and other similar systems, especially under nonnominal
conditions. In our follow-up work, we will modify the pro-
posed algorithm for the flight from SSTO to GEO and con-
centrate on the improvement of injection accuracy and
robustness of the algorithm.
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