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Because of manufacturing errors, measuring errors, and unpredictable service environment, the cable net structure to be further
adjusted is in an uncertainty state. In this paper, the uncertain factors including elastic deformation, thermal deformation, and
measurement uncertainties are considered as fuzzy variables, which are equivalent into fuzzy tensions to simplify calculation. A
fuzzy force density method is developed for accuracy analysis of the cable net structures under multi-uncertainties, and an
optimization model is developed for surface adjustment. The above method is applied to numerical model adjustment of
circular truss cable net structure. The results show that the adjusted surface accuracy is significantly enhanced and its fuzziness
is concentrated compared with the initial surface accuracy, which verify the validity of the proposed method.

1. Introduction

Cable net structures have been widely applied to space
deployable reflector antennas such as the AstroMesh
antenna, the TerreStar antenna, the antenna of JAXA Engi-
neering Test Satellite, and the SkyTerra antenna [1–5].
High-accuracy surface is a prerequisite for ensuring the elec-
trical performance of the antennas. However, limited by
manufacturing and assembling technology, artificial surface
adjustment is an essential and tiresome step to improve the
surface accuracy, which has been revealed very sensitive to
manufacturing errors and environmental changes [6–8].

There have been many researchers that have done a lot
to improve the efficiency of adjustment strategies. Hiroaki
and Natori [9] proposed a shape control method based on
the concept of self-equilibrated stresses to improve the con-
trol efficient. Du et al. [10] presented a shape adjustment
procedure based on optimization and then converted the
procedure into a sequential quadratic programming prob-
lem to make it more easily. Niu et al. [11] established an
optimal adjustment model that an influence coefficient
matrix was treated as one target. The above adjustment
methods regarding the current configuration of the cable

net structure can be accurately obtained. Actually, because
of the limitation of measurement accuracy and changeable
environment, there must be some uncertain factors such as
nodal positions, cable pretensions, material parameters,
and environmental temperature [12, 13]. Under the influ-
ence of these uncertain factors, how does the surface accu-
racy of the cable net structure change and how to ensure
the surface accuracy in a reliable range becomes particularly
important.

Nowadays, the methods for dealing with uncertainty can
be divided into three categories including the probability
theory [14–16], the fuzzy algorithm [17], and the interval
method [18]. The probability theory is a helpful tool in
modeling situations where the primary source of uncertainty
is randomness [19, 20]. But sometimes, we argue that uncer-
tainty takes other forms; instead of asking whether some-
thing is true, we ask how much of it is true and how much
a certain property is exhibited in a particular instance. In
our previous work [21], an interval force density was pro-
posed and an optimization adjustment model was estab-
lished for the surface adjustment of cable net structures.
However, it is found that only mean and marginal cases
can be obtained by the interval method and probability
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distribution functions need to be further studied. Probabil-
ity method needs to study the probability distribution of
uncertain variables based on a large number of statistical
data, while fuzzy algorithm can study uncertainty model
by membership function which can be estimated by expe-
rience. In order to improve the efficiency of cable net
structure adjustment considering uncertainty in engineer-
ing, it is necessary to study how to apply fuzzy algorithm
to adjustment. Thus, this paper proposes a fuzzy force
density method to deal with the surface adjustment prob-
lem of the cable net structures under multi-uncertainties.
The paper has a guiding significance for the adjustment
of cable net structure considering uncertainty in the case
of few samples in engineering.

2. Brief Summary of the Fuzzy Set Theory

Define a fuzzy subset of U as function A: U ⟶ ½0, 1�, that is,
a characteristic function from U into interval ½0, 1�. The
value AðuÞ is called the membership of point u in the fuzzy
set U or the degree to which point u belongs to set A.

λA = ujA uð Þ ≥ λ, u ∈Uf g, ð1Þ

where λA is called the λ-cut of the fuzzy set A, λ ∈ ½0, 1�.
If the lower bound ulðλÞ and upper bound uuðλÞ are

given, the fuzzy number A can be obtained by summing all
λ-cut sets as

λA = ul λð Þ, uu λð Þ
h i

, λ ∈ 0, 1½ �
n o

: ð2Þ

Defining ~x as a fuzzy variable and its fuzzy number as
AðλÞ, ~x can be described by

~x = ~x λ, δð Þ = xc λð Þ + xr λð Þδ, ð3Þ

where xcðλÞ and xrðλÞ are the midvalue and the amplitude of
~x, respectively, and where

xc λð Þ = xu λð Þ + xl λð Þ
2

,

xr λð Þ = xu λð Þ − xl λð Þ
2

:

ð4Þ

Then, the fuzzy variable ~x can be described by the inter-
val variables λ and δ, where λ ∈ ½0, 1� and δ ∈ ½−1, 1�. When
the cut level λ is given, the fuzzy variable ~x becomes an inter-
val variable. Therefore, the operation of the fuzzy variable
~xðλ, δÞ can be discretized into the operation of interval
variables.

3. Mathematical Models for Fuzzy Cable
Net Structures

Cable net structures inevitably suffer from multiple sources
of uncertainty in the process of manufacture, assembly,
and on-orbit service. Limited by our ability to get informa-

tion, parameters of the structures like nodal positions, cable
pretensions, material parameters, and environmental tem-
peratures must be uncertain. Thus, we use some fuzzy vari-
ables to describe these uncertainties. In order to reveal the
influence of these uncertainties on the surface accuracy of
the cable net structures, the mathematic models are firstly
established based on the force density method and the fuzzy
theory in this section.

3.1. Equivalent Fuzzy Cable Tensions for a Cable Net
Structure under Multi-Uncertainties. For the cable net struc-
ture whose geometric forms are given, the sources of uncer-
tainty can be divided into three categories: elastic
deformation uncertainty, thermal deformation uncertainty,
and measurement uncertainty [21], among which the uncer-
tainties which would cause cable tension changes can be
equivalent into a total fuzzy tension to simplify calculation.

According to Hooke’s Law, elastic property of a cable
can be expressed by the following equation.

ε = F
EA

=
L − L0
L0

, ð5Þ

where ε is the cable strain, F is the cable tension, E is the
elastic modulus, A is the cross-sectional area, L is the
stretched length, and L0 is the unstretched length.

3.1.1. Uncertainty of Elastic Deformation. Because of multi-
uncertainties, the axial tension, the elastic modulus, and
the cross-sectional area are fuzzy variables. Thus, the above
equation can be rewritten as

~ε =
F + Δ~FE λ, δð Þ
~E λ, δð Þ~A λ, δð Þ

=
L − ~L0 λ, δð Þ
~L0 λ, δð Þ

, ð6Þ

where ~ε is the fuzzy strain; ~E is the fuzzy elastic modulus; ~A
is the fuzzy cross-sectional area; ~L0 is the fuzzy unstretched
length; Δ~FEðλ, δÞ is the fuzziness of the cable tension caused
by uncertainty of elastic deformation; see below.

Δ~FE λ, δð Þ = L − ~L0 λ, δð Þ
~L0 λ, δð Þ

~E λ, δð Þ~A λ, δð Þ − F: ð7Þ

According to the fuzzy set theory, the above equation
can be rewritten as

Δ~FE λ, δð Þ = L − lc0 λð Þ + lr0 λð Þδ½ �
lc0 λð Þ + lr0 λð Þδ Ec λð Þ + Er λð Þδ½ �

� Ac λð Þ + Ar λð Þδð Þ½ � − F,
ð8Þ

where lc0 and lr0 are the midvalue and the amplitude of the
unstretched length; Ec and Er are the midvalue and the
amplitude of the elastic modulus; Ac and Ar are the midvalue
and the amplitude of the cross-sectional area.

3.1.2. Uncertainty of Thermal Deformation. According to the
thermoelasticity theory, the thermal strain εT of a cable is

2 International Journal of Aerospace Engineering



directly proportional to the temperature difference ΔT , spe-
cifically as follows.

εT = αΔT , ð9Þ

where α is the coefficient of thermal expansion.
The tension uncertainty caused by thermal deformation

can be equivalent to

Δ~FT = EAαΔT: ð10Þ

Considering the uncertainties of the temperature differ-
ence, the coefficient of thermal expansion, the elastic modu-
lus, and the cross-sectional area, the uncertainty of the
tension caused by the thermal deformation can be obtained
as

Δ~FΔT λ, δð Þ = ~E λ, δð Þ~A λ, δð Þ~α λ, δð ÞΔ~T λ, δð Þ, ð11Þ

where Δ~FΔT is the fuzziness of the cable tension caused by
the uncertainty of the temperature difference; ~α is the fuzzy
coefficient of thermal expansion; Δ~T is the fuzzy tempera-
ture difference.

According to the fuzzy set theory, the above equation
can be rewritten as

Δ~FΔT λ, δð Þ = Ec λð Þ + Er λð Þδ½ � Ac λð Þ + Ar λð Þδ½ �
� αc λð Þ + αr λð Þδ½ � ΔTc λð Þ + ΔTr λð Þδ½ �,

ð12Þ

where αc and αr are the midvalue and the amplitude of the
coefficient of thermal expansion, respectively; ΔTc and ΔTr

are the midvalue and the amplitude of the temperature
difference.

3.1.3. Uncertainty of Tension Measurement. There will be
some uncertainties when applying and measuring cable ten-
sions. Defining the fuzzy tension caused by manufacture and
measure as Δ~FM , the following equation can be obtained.

Δ~FM λ, δð Þ = ΔFc
M λð Þ + ΔFr

M λð Þδ, ð13Þ

where ΔFc
M and ΔFr

M are the midvalue and the amplitude of
the fuzzy tension caused by manufacture and measure.

3.1.4. Equivalent Fuzzy Tension. Combining Equations (8),
(12), and (13), the equivalent fuzzy tension can be obtained
as

~Ftotal λ, δð Þ = F + Δ~FE λ, δð Þ + Δ~FT λ, δð Þ + Δ~FM λ, δð Þ, ð14Þ

where F~total is the equivalent fuzzy tension.

3.2. Surface Accuracy Analysis for a Fuzzy Cable Net
Structure. For an arbitrary node j connected by some cables,
the force balance equations can be obtained as

〠
Sj

j∈Sj

~Fij

~xj − ~xi
~Lij

= 0,

〠
Sj

j∈Sj

~Fij

~yj − ~yi
~Lij

= 0,

〠
Sj

j∈Sj

~Fij

~zj − ~zi
~Lij

= 0,

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð15Þ

where ~Fij denotes the fuzzy tension of the cable connected to
nodes i and j; ð~xi, ~yi, ~ziÞ is the fuzzy coordinates of node i; Sj

5

94
(258)

(a)

Front cable net

Tension ties

Back cable net

(b)

Figure 1: Circular truss cable net structure: (a) top view; (b) side view.

Table 1: Geometric parameters of the cable net structure.

Items Value

Diameter of aperture 7m

Focal lengths of front and back cable net 4m

Piecewise number 5

Cable radius 1mm

Elastic modulus of cables 20GPa

Coefficient of thermal expansion 2 × 10−7
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is the set of all cables connected to node j; ~Lij is the fuzzy
length of the cable connected to nodes i and j.

According to Section 3.1, the fuzzy tension ~Fij can be
obtained by Equation (14).

~Fij λ, δð Þ = Fij + Δ~Fij,E λ, δð Þ + Δ~Fij,T λ, δð Þ + Δ~Fij,M λ, δð Þ:
ð16Þ

In order to consider the effects of geometric and tension
uncertainties simultaneously, a fuzzy force density is intro-
duced as follows.

~qij λ, δð Þ =
~Fij λ, δð Þ
~Lij λ, δð Þ

: ð17Þ

Referring to the force density method [8], the static equi-
librium equations can be obtained as follows.

CT
s
~QCs~x λ, δð Þ = 0,

CT
s
~QCs~y λ, δð Þ = 0,

CT
s
~QCs~z λ, δð Þ = 0,

8>><
>>: ð18Þ

where ~Q is a diagonal matrix containing fuzzy force densities;
Cs is the incidencematrix of the cable net structure; ~xðλ, δÞ is a
column vector of x-coordinates; ~yðλ, δÞ is a column vector of y
-coordinates; ~zðλ, δÞ is a column vector of z-coordinates. If

some nodal coordinates are given, e.g., these nodes are
attached to a foundation, Cs can be partitioned as

Cs = Cu Cf

� �
, ð19Þ

where the restrained nodes have been put at the end of the
numbering sequence. Equation (18) can be rewritten as

~xu λxu , δ
� �

= − CT
u
~QCu

� �−1
CT
u
~QCf ~x f λ, δð Þ,

~yu λyu , δ
� �

= − CT
u
~QCu

� �−1
CT
u
~QCf ~y f λ, δð Þ,

~zu λzu , δ
� �

= − CT
u
~QCu

� �−1
CT
u
~QCf ~z f λ, δð Þ,

ð20Þ

where ~xu, ~yu, and ~zu are the column vectors of unknown x-, y-,
and z-coordinates; ~x f , ~y f , and ~z f are the column vectors of the
given x-, y-, and z-coordinates, respectively.

Taking the ideal coordinates fx0, y0, z0g as a reference, the
fuzzy root-mean-square error (RMS), which can be used to
evaluate the structure accuracy, can be obtained as follows.

~wrms λ, δð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~xu − x0k k22 + ~yu − y0k k22 + ~zu − z0k k22

� �
Nu

,

s
ð21Þ

where Nu is the number of the nodes with unknown
coordinates.

Table 2: Fuzzy parameters of the cable net structure.

Item
L0 mmð Þ T °Cð Þ E Pað Þ A mm2� �

F Nð Þ α 10−7/°C
� �

aL σL aT σT aE σE aA σA aF σF aα σα

Value L0 0.1% 0 10 2 × 1010 1% π 0.01 F 0.1 2 0.01
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Figure 2: The distribution of the membership functions for three equivalent fuzzy tensions.
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4. Optimization Model for Adjustment of a
Cable Net Structure under Multi-
Uncertainties

The force density of an adjustable cable connected to nodes i
and j can be modified as

~qij =
~Fij

~Lij − aij
, ð22Þ

where aij is the adjustment amount of the cable.
Substituting Equation (22) into Equation (20), the cable

net structure after adjustment can be obtained and the sur-
face accuracy can be then calculated by Equation (21). Base

on this, we establish the following optimization model,
which can be solved by the advance and retreat algorithm
[21], for the adjustment of the cable net structure under
multi-uncertainties:

Find  aij
	 


min  mean ~wrmsð Þ
s:t: Equation 20ð Þ
 gij1 = a0 − aij

�� �� ≤ 0

 gij
2 =

~Fij

~Lij − aij
> 0

ð23Þ
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Figure 3: The distribution of the membership functions for the total equivalent fuzzy tension.
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Figure 5: Continued.
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where faijg is the set of adjustment amount containing all
adjustable cables; meanð~wrmsÞ is the mean value of the
fuzzy RMS; a0 is the minimum adjustment length; gij

1
denotes an inequality constraint that the aij cannot be
smaller than the minimum adjustment amount a0 which
is dependent on the engineering practice; and gij2 denotes
an inequality constraint that the force density of the cables
must be positive due to the fact that the cable has no
compressive rigidity.

The adjustment progress of the cable net structure under
multi-uncertainties is as follows.

Step 1. Uniformly discrete the horizontal cut set λ into λi

(i = 1, 2, 3,⋯). When k = 0 and horizontal cut set is equal
to λi, solve initial node coordinates and initial cable tensions
by membership function of fuzzy variables.

Step 2. Calculate adjustment amount faijgðkÞ by Equation
(23).

Step 3. Update fuzzy force density matrix ~QðkÞ
by Equation

(22). Update node coordinates and cable tensions by Equa-
tion (20). Calculate ~wðkÞ

rms by Equation (21).

Step 4.When ~wðkÞ
rms ≤ εideal (εideal is a given ideal RMS), turn to

Step 5; else, let k = k + 1 and turn to Step 2.

Step 5. Record the optimal objective function value and
design variable value under level cut set λi. When λi = 1,
turn to Step 6; else, let i = i + 1; turn to Step 1.

Step 6. The distribution of membership function of the
adjusted RMS is obtained by curve fitting.

5. Numerical Example

Take a cable net structure which has been applied to the
hoop truss reflectors as an example to illustrate the proposed
method. As shown in Figure 1, the cable net structure is

composed of a front cable net, a back cable net, and tension
ties, among which the front cable net is usually used to sup-
port the wire mesh to reflect electromagnetic wave and ten-
sion ties are adjustable cables. The geometrical parameters
and the material parameters of the cable net structure are
shown in Table 1, and the uncertain parameters are shown
in Table 2. In this example, the membership functions of
the fuzzy variables obey a normal distribution of which the
function can be written as

μ xð Þ = exp −
x − a
σ

� �2
� 

σ > 0, x ∈ R, ð24Þ

where a and σ are the mean and the standard deviation of
the fuzzy variable, respectively.

5.1. Equivalent Fuzzy Cable Tensions. When the λ-level cut
value is specified as 0.01, 0.02 ... 0.99, and 1.0, respectively,
for the fuzzy variables, the interval value of the equivalent
fuzzy cable tension ~Fijðλ, δÞ corresponding to the λ-level
cut set can be obtained by Equation (16). Then, the discrete
intervals can be connected and fitted to obtain the member-
ship distribution curve of the equivalent fuzzy cable tension
~Fij. Taking cable 258 which is connected to nodes 49 and 5
as shown Figure 1 as an example, the cores of the cable
length and the cable tension are 0.6132m and 9.4495N,
respectively. The distributions of the membership functions
for the cable tensions caused by elastic deformation uncer-
tainty (k = 1), thermal deformation uncertainty (k = 2), and
tension measurement uncertainty (k = 3) can be obtained
by Equations (13), (18), and (19) and drawn in Figure 2.

It can be seen from the figure that the fuzziness of the

three equivalent tensions ~F
k
ij ∈ ½−0:01, 0:01�N (i = 49, j = 5,

k = 1, 2, 3) when the cut level λ > = 0:6, that is to say the
membership degrees of the equivalent fuzzy tensions are

greater than 0.6 when j~Fk
ijj < = 0:01 (i = 49, j = 5, k = 1, 2, 3).

By Equation (23), the distribution of the membership func-
tion for the total equivalent fuzzy tension can be obtained
and shown as Figure 3, from which it can be seen that ~Fij ∈
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Figure 5: RMS iterative process under different cut levels: (a) λ = 0:01; (b) λ = 0:60; (c) λ = 0:80; (d) λ = 1:00.
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½9:44, 9:46� when the cut level is greater than 0.6 and the
curve obeys the normal distribution with 9.4495N mean
and 0.0131N standard deviation.

5.2. Surface Accuracy Analysis.Due to the measurement error,
the nodal positions are also of uncertainty. It is assumed that
the membership function for the nodal coordinates obeys
the normal distribution with zero mean and 1mm standard
deviation. According to Equation (23), the membership func-
tion for RMS can be obtained as shown in Figure 4. The curve
is an addition of multiple Gauss curves but not a single normal
distribution curve. It can be seen from the figure that RMS
< 60:3079mm when the degree of the membership is greater
than 0.6 and RMS < 26:2857mm when the degree of the
membership is greater than 0.8. The fuzziness of the surface
accuracy is dispersed, and further adjustment should be car-
ried out to increase the surface accuracy.

5.3. Adjusting the Cable Net Structure. To calculate the
adjustment amount of the tension ties, the advance and
retreat algorithm is used to solve the optimization model
introduced in Section 4, and the RMS value changes in the
interactive process are drawn in Figure 5 with the level cut
set specified as 0.01, 0.6, 0.8, and 1.0, respectively, for exam-
ple. From the iterative curves, it can be seen that the conver-
gence speeds are fast in the first 10 steps and the RMS are
rapidly decreased, but after that the convergence speed slows
down; repetitive adjustment work is needed. What is more, it
can be seen from Figure 5, the closer the λ-level cut value is
to 1, the smaller the deviation of the RMS is. When λ = 1:00
with a small initial RMS, the coupling effect of front nodes is
significant. It may occur that adjusting the tension tie can
make the front nodes directly connected to it closer to the
ideal position, but the nodes around tensioning tie are
affected to deviate from the ideal position, thus making the
adjusted RMS larger. This phenomenon makes the adjust-
ment efficiency of advance and retreat algorithm reduced
when RMS is small.

The results after 20 iterations are chosen to be the adjust-
ment amount. After adjusting, the RMSs at different cut

levels are drawn in Figure 6. It can be seen that RMS <
3:8975mm when the degree of the membership is greater
than 0.6, and RMS < 2:9868mm when the degree of the
membership is greater than 0.8. Compared with the initial
surface accuracy, the fuzziness of the surface accuracy is
concentrated and the surface accuracy is increased.

6. Conclusion

We have developed a surface adjustment method for the
cable net structures under multi-uncertainties including
elastic deformation uncertainty, thermal deformation uncer-
tainty, and measurement uncertainty.

The main contributions of this paper are presented as
follows. (1) The uncertain variables are considered as the
fuzzy values, membership functions, and λ-level cut sets
are introduced to describe the fuzzy values. (2) The elastic
deformation uncertainty, thermal deformation uncertainty,
and tension measurement uncertainty are equivalent into a
total equivalent fuzzy tension to simplify calculation. (3)
The force density method is applied to modeling static equi-
librium equations for cable net structures with fuzzy param-
eters. (4) An optimization model for the adjustment of cable
net structures under multi-uncertainties is established.

According to the numerical example, the following con-
clusions can be summarized. (1) Using the advance and
retreat algorithm to solve the optimization model can
achieve fast convergence. (2) The adjustment efficiency of
advance and retreat algorithm will be reduced when the ini-
tial RMS is small. (3) This method can be used to obtain the
uncertainty distribution of the surface accuracy of cable net
structure without sample only by engineering experience.
(4) The fuzziness of the surface accuracy can be concen-
trated effectively by the proposed method.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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