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A class of arbitrary time convergence controllers based on a special time-varying scaling function provide designers with a good
choice to realize prescribed time stable systems. However, these controllers have the problem of conservative control parameter
range and lack a uniform formula for systems of different order. Herein, the arbitrary time convergence controller is improved,
the unified formula for n-th order system is given, and a more accurate control parameter range is obtained. By constructing
an ingenious auxiliary function and a novel Lyapunov function, the arbitrary time convergence of the n-th order controller is
proved, and the reasonable parameter selection range is obtained using the integrator backstepping and the mathematical
induction method. The effectiveness and advantages of the proposed arbitrary time convergence controllers under saturated
input constraints are illustrated through numerical simulations by comparative studies in unmanned aerial vehicle (UAV)
formation control.

1. Introduction

During the design of controllers, under the premise of
asymptotic stability, the convergence rate is an important
factor that affects the application of the controllers. For
example, the multimissile cooperative attack [1] and forma-
tion of unmanned aerial vehicles (UAV) swarm [2] and
mobile robots [3] all require the controlled objects to reach
specific states at a prescribed time. To meet the demand
for the convergence rate, the studies of settling time have
gone through the stages of asymptotic stabilization, finite-
time stabilization, fixed time stabilization, and prescribed/
arbitrary time stabilization.

The controller design firstly addresses the problem of
asymptotic stabilization [4], where the state converges to
the equilibrium point as time t goes to +∞. Then, the
finite-time stabilization [5] requires the convergence over a
finite-time interval Tðx0, ϕ0Þ, where the settling time func-
tion T ðx0, ϕ0Þ is a function of the initial condition (x0)
and the controller parameters (ϕ0). Based on the Lyapunov
differential inequality [5–7], Polyakov and Poznyak [8] per-

formed a sign function-based controller, and Huang et al. [9]
realized global finite-time stabilization for strict feedback
systems. Based on the implicit Lyapunov function approach,
Wang et al. [10] presented a finite-time stability analysis for
a chain of integrators. However, the dependence of the set-
tling time on the initial states of the system restricts the
application of the finite-time convergence controllers. If
the terminal time can be bounded by a constant which is
irrespective of the initial conditions, the fixed time stabiliza-
tion system is built by [11, 12], while they did not give the
control parameter range. Dong et al. [13] designed fixed
time convergence cooperative guidance laws for multiple
missiles to simultaneously attack a maneuvering target at
desired terminal angles. Wang et al. [14] developed a fixed
time convergence error dynamic for a unified guidance law
design, where the ratio between the settling time upper
bound and the whole guidance time is a constant, which
makes it convenient to set the parameters for different guid-
ance scenarios. Although the existing approaches allow
attaining convergence within desired time by properly
choosing design parameters, the proper tuning of these
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parameters to attain arbitrary time convergence may not be
an easy task.

The fixed time convergence controllers just partially
solve the problem of desired settling time. If the upper
bound of the settling time can be arbitrarily picked indepen-
dent of initial conditions and any other design parameters,
the controllers are called prescribed time convergence or
arbitrary time convergence or having appoint time perfor-
mance. Zhang et al. [15] developed appoint time controllers
for quadrotors based on a new piecewise continuous funnel
function. The trajectory tracking errors reach a preassigned
steady state before a pregiven time, which is uncorrelated
with the initial quadrotor states. Bu et al. [16–18] proposed
a series of new classes of exponential decaying funnel func-
tions which adaptively regulate the performance constraint
boundary according to the sign of initial error and actuator
saturation to guarantee finite-time convergence, where the
convergence time can be set as needed. However, there are
many parameters needed to be tuned. In [19], a prescribed
time convergence controller has been proposed, but the
approach also lacks simplicity due to the deployment of
two different time-varying scaling functions. Pal et al. [20]
proposed a novel time-varying scaling function to develop
a simpler free-will arbitrary time convergence controller
and applied it to the multiagent consensus control [21]. A
free-will arbitrary time convergence terminal sliding mode
controller [22] and prescribed time convergence controller
for polytopic systems [21] were subsequently brought up.
However, we find that these controllers have the problem
of conservative control parameter range and lack of uniform
control law forms for the system of different order, and their
performance under the saturated input constraint is not
clear. Based on the above analyses, the main contributions
of this paper are as follows.

(1) The addressed controller eliminates the dependence
of the convergence time on the initial states com-
pared with the finite-time controllers [10]. The con-
vergence time can be set as needed compared with
the fixed time convergence controllers [13, 14].

Compared with the prescribed time/performance
controllers [15–19], the addressed controller reduces
the number of parameters, which is equal to the
order of the system and the parameter tuning is
much easier

(2) The proposed arbitrary time convergence controller
has a general/consistent formula for n-th order sys-
tems, which is a deep modification of the one given
in [20], where the general formula for n-th order sys-
tem is not given and even the given control laws for
the first- and second-order systems lack consistency

(3) A less conservative control parameter selection range
is deduced by introducing an ingenious auxiliary
function and a novel Lyapunov function, which
extends the existing arbitrary time convergence con-
trollers [20–23] where the Lyapunov inequalities are
overly scaled during the proof of the arbitrary time
stability, while such overscaling is avoided in this
paper by ingeniously introducing the auxiliary
function

The remainder of this paper is organized as follows. Sec-
tion 2 gives the relevant definitions and theorems. In Section
3, the uniform formula and parameter range of the n-th
order arbitrary time convergence controller are proposed
and proved. Section 4 provides a design example for UAV
formation control under the saturated input constraint,
and the effectiveness and advantages are illustrated by com-
parative studies. Section 5 summarizes the full text.

2. Preliminaries

Consider the nonautonomous nonlinear system

_x = f t, x ; ϕð Þ, x t0ð Þ = x0, ð1Þ

where x is the system state, ϕ represents the constant param-
eters of the system, f : ℝ≥0 ×ℝn ⟶ℝn is nonlinear

n-th order system State transformation Transformed n-th order system

Prescribed time:

un

Control law: Control parameter

Zi, 𝜓i

Figure 1: Control structure diagram of the proposed n-th order arbitrary time convergence controller.
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function, x = 0 is one equilibrium point, and t0 ∈ℝ≥0 is the
initial time.

Definition 1 (global finite-time stability [5]). The origin of
system (1) is said to be globally finite-time stable if

(1) it is globally asymptotically stable

(2) any solution xðt ; t0, x0Þ of (1) converges to the origin
at some finite time, i.e., ∀t ≥ t0 + Tðt0, x0Þ, s.t. xðt ;
t0, x0Þ = 0, where T : ℝ≥0 ×ℝn ⟶ℝ≥0 is the set-
tling time function

Definition 2 (fixed time stability [11]). The origin of system
(1) is called fixed time stable if

(1) it is globally finite-time stable

(2) the settling time function is bounded, i.e., ∃Tmax > 0,
s.t. ∀x0 ∈ℝn and ∀t0 ∈ℝ≥0, Tðt0, x0Þ ≤ Tmax

Definition 3 (free-will arbitrary time stability [20]). The ori-
gin of system (1) is called free-will arbitrary time stable if

(1) it is fixed time stable
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Figure 2: The states curve of the second-order system with parameters (a) η1 = η2 = 2:12 and (b) η1 = η2 = 1:88.
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(2) ∃Ta > 0 can be arbitrarily chosen in advance, ∀x0 ∈
ℝn and ∀t0 ∈ℝ≥0, the settling time function Tðt0,
x0Þ ≤ Ta

Remark 4. Theoretically, in free-will arbitrary time stable
system, the settling time Ta can be arbitrarily chosen. How-
ever, it should be properly selected according to the specific
application scenario because fast convergence usually
requires large control input. Nevertheless, the arbitrary time
stable system is irrelevant to other system parameters com-
pared with the fixed time stable system.

Theorem 5 (Lyapunov stability criterion for free-will arbi-
trary time stability [20]). Considering system (1), let D ∈ℝn

be a domain containing the equilibrium point x = 0 and let
α1ðxÞ and α2ðxÞ be two continuous positive definite functions
onD. Assume that there exists a real-valued continuously dif-

ferentiable function V : ½ t0, t f � ×D⟶ℝ≥0 and real num-
ber η ≥ 1, s.t. ∀t ∈ ½t0, t f �; if

α1 xð Þ ≤V t, xð Þ ≤ α2 xð Þ,∀x ∈D \ 0f g,
V t, 0ð Þ = 0,

_V ≤
−η eV − 1
� �

eV t f − t
� � ,∀V ≠ 0,

ð2Þ

then the equilibrium point x = 0 is free-will arbitrary time
stable; i.e., the convergence time of system (1) is T ≤ t f − t0.

3. Main Results

Before giving the uniform formula of the n-th order arbi-
trary time convergence controller, we construct an auxiliary
function and analyse its properties as a lemma and two
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Figure 3: The trajectories in the (a) relative and (b) ground coordinates system of UAVs during rendezvous in Case 2. The arrows illustrate
the initial velocities error _eij,0 in (a) and illustrate initial velocities v j,0 in (b). The green and blue cubes depict the expected formation at the
prescribed time and the terminal time, respectively. Note: the arrows in (a) are lengthened three times for clear visualization and the length
of arrows in (b) equals to the speed.
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corollaries, which are indispensable for the stability proof
and parameter range deduction of our control law.

3.1. Constructing the Auxiliary Function

Lemma 6. Consider the function

f xð Þ = x 1 − e−xð Þ ð3Þ

in the real domain. The following inequality always holds.

F x1, x2ð Þ = f x1ð Þ + f x2ð Þ − f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 + x22

q� �
> 0,∀x1, x2 > 0:

ð4Þ

Proof. Because

f ′ xð Þ = 1 − e−xð Þ + xe−x > 0,∀x > 0, ð5Þ

and f ð0Þ = 0, and f ′ð0Þ = 0, f ðxÞ > 0 is strictly monotoni-
cally increasing in x ∈ ð0,+∞Þ. Let r =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 + x22

p
and

θ = tan−1ðx2/x1Þ; then, x1 = r cos θ and x2 = r sin θ, r ∈ ð0,+
∞Þ, θ ∈ ð0, π/2Þ. Substituting x1, x2 by r, θ, the function
Fðx1, x2Þ becomes

G r, θð Þ = f r cos θð Þ + f r sin θð Þ − f rð Þ
= r cos θ 1 − e−r cos θ

� �
+ sin θ 1 − e−r sin θ

� �
− 1 − e−rð Þ

h i
:

ð6Þ

Let w = e−r so that w ∈ ð0, 1Þ. Define the function

H w, θð Þ ≜ G r, θð Þ
r

= cos θ 1 −wcos θ
� �

+ sin θ 1 −wsin θ
� �

− 1 −wð Þ = cos θ + sin θ − 1ð Þ
+ w − cos θwcos θ − sin θwsin θ
� �

:

ð7Þ

Hence, the partial derivative of function H with respect
to w is

∂H
∂w

= 1 − cos2θw cos θ−1ð Þ − sin2θw sin θ−1ð Þ: ð8Þ

Noticing that ∀w ∈ ð0, 1Þ, θ ∈ ð0, π/2Þ⇒ cos θ − 1 ∈ ð−1,
0Þ, sin θ − 1 ∈ ð−1, 0Þ, it is easy to get wcos θ−1 > 1 and
wsin θ−1 > 1. Thus,

∂H
∂w

< 1 − cos2θ + sin2θ
� �

= 0, ð9Þ

which means the function H strictly monotonically
decreases with respect to variable w in the domain ðw, θÞ ∈
ð0, 1Þ × ð0, π/2Þ. Then, the minimum value of function H is

H w, θð Þju=1 = cos θ + sin θ − 1ð Þ + 1 − cos θ − sin θð Þ = 0,
ð10Þ

so that Hðw, θÞj0<w<1 >Hðw, θÞjw=1 = 0, ∀θ ∈ ð0, π/2Þ.
According to (7),

G r, θð Þ = rH w, θð Þj0<w<1 > 0,∀w ∈ 0, 1ð Þ, θ ∈ 0, π2
� �

, ð11Þ

which means inequality (4) constantly holds.
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Figure 4: The diagram of the proposed arbitrary time convergence formation controller.
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Corollary 7. Consider function (3) in the real domain. The
following inequality always holds.

η1 f x1ð Þ + η2 f x2ð Þ ≥ ηf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 + x22

q� �
> 0,∀x1, x2 > 0,∀η1, η2 > 0,

ð12Þ

where η =min fη1, η2g.

Proof. According to Lemma 6, f ðx1Þ + f ðx2Þ > f ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 + x22

p
Þ.

As mentioned in (5), f ðxÞ > 0, ∀x > 0; therefore,

η1 f x1ð Þ + η2 f x2ð Þ ≥ η f x1ð Þ + f x2ð Þ½ � > ηf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 + x22

q� �
> 0:

ð13Þ

Corollary 8. Consider function (3) in the real domain. ∀n
∈ℕ and n ≥ 2, the following inequalities always hold.

F x1,⋯,xnð Þ = 〠
n

i=1
f xið Þ − f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
n

i=1
f x2i
� �s !

> 0,∀xi > 0, i = 1,⋯, n,

ð14Þ

〠
n

i=1
ηi f xið Þ ≥ η〠

n

i=1
f xið Þ ≥ ηf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
n

i=1
f x2i
� �s !

> 0,∀xi > 0, i = 1,⋯, n,

ð15Þ

where η =min fη1,⋯,ηng.

Proof. The proof of (14) can be established by mathematical
induction. Obviously, when n = 2, inequality (14) is correct,
i.e., Lemma 6. Suppose Fðx1,⋯,xn−1Þ > 0, ∀xi > 0, i = 1,⋯,
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n − 1, which means

f x1ð Þ+⋯+f xn−1ð Þ > f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21+⋯+x2n−1

q� �
: ð16Þ

Adding f ðxnÞ to both sides of the above equation and let
yn−1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21+⋯+x2n−1

p
> 0, it comes

f x1ð Þ+⋯+f xn−1ð Þ + f xnð Þ > f yn−1ð Þ + f xnð Þ: ð17Þ

According to Lemma 6, f ðyn−1Þ+ f ðxnÞ> f ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2n−1 + x2n−1

p Þ
= f ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21+⋯+x2n−1
p Þ.
Therefore, equation (14) is proved. Then, the process of

proving (15) is the same as that of Corollary 7.

3.2. n-th Order Arbitrary Time Convergence Controller. Con-
sider the n-th order system

_x1 = x2, _x2 = x3,⋯, _xn−1 = xn, _xn = un, ð18Þ

where xi ∈ℝ, un is the control input, and ∀i = 1,⋯, n, xi = 0
is one equilibrium point.

The block diagram of the proposed n-th order arbitrary
time convergence controller is depicted in Figure 1. By taking
the prescribed time t f as variable of time-varying scaling func-
tion ψi, the original n-th order system with states xi, i = 1,⋯,
n, can be transformed into a new n-th order system with states
zi. Then, the control law (Theorem 9) with parameters ηi is
designed to ensure the transformed states zi converge to zeros
before the prescribed time t f and thus the original states xi also
converge to zeros in the same manner, which will be rigorously
proved by backsteppingmethod, Lyapunov differential inequal-
ity, and mathematical induction.
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Theorem 9. With the controller

un =
−〠

n−1

i=1

d n−i−1ð Þzi
dt n − i − 1ð Þ − 〠

n−1

i=1

d n−ið Þψi

dt n − ið Þ − ψn, if t0 ≤ t < t f

0, otherwise,

8><
>: ,

ð19Þ

where z1 = x1, zi = xi − ui − 1, and

ψi =
ηi e

zi − 1ð Þ
ezi t f − t
� � : ð20Þ

If min fη1,⋯,ηng ≥ 1, system (18) is free-will arbitrary time
stable.

Proof. The convergence within arbitrary time will be
proved using mathematical induction and backstepping
as chosen by [20]. First, the free-will arbitrary time stable
of the control law in the first- and second-order system is
proved. Then, we will prove that if the n-th ðn ≥ 2Þ order
system is free-will arbitrary time stable, the (n + 1)-th sys-
tem also satisfies free-will arbitrary time stability.

Step 1 (first-order system). For the first-order system _x1 = u1,
the controller according to (19) is

u1 =
−
η ex1 − 1ð Þ
ex1 t f − t
� � , if t0 ≤ t < t f ,

0, otherwise:

8><
>: ð21Þ
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Figure 7: The x-axis (a) position error, (b) velocity error, and (c) control input curves of the proposed controller with the prescribed time
t f = 20 s.
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Select the Lyapunov function different from [20] as fol-
lows.

V1 =
ffiffiffiffiffi
x21

q
= x1j j ≥ 0: ð22Þ

The time derivative of the Lyapunov function is

_V1 =
x1 _x1ffiffiffiffiffi
x21

p = x1 _x1
V1

= −
1
V1

η1x1 ex1 − 1ð Þ
ex1 t f − t
� �

≤ −
1
V1

η1 x1j j e x1j j − 1
� �

e x1j j t f − t
� � = −

η1 eV1 − 1
� �

eV1 t f − t
� � : ð23Þ

According to the condition of Theorem 5, as long as
η1 ≥ 1, controller (23) makes the first-order system be free-
will arbitrary time stable.

Step 2 (second-order system). For the second-order system
_x1 = x2, _x2 = u2, the controller according to (19) is

u2 =
−x1 − _ψ1 −

η ez2 − 1ð Þ
ez2 t f − t
� � , if t0 ≤ t < t f ,

0, otherwise,

8><
>: ð24Þ

where z2 = x2 − u1. Similar to [20], according to the integra-
tor backstepping [24], when z2 closes to zero, the rate of x1
closes to (21).

The transformed system is

_z1 = z2 − ψ1,
_z2 = u2 + _ψ1:

ð25Þ
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Figure 8: The x-axis (a) position error, (b) velocity error, and (c) control input curves of the proposed controller with the prescribed time
t f = 10 s.
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Select the Lyapunov function as

V2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 + z22

q
≥ 0, ð26Þ

and its time derivative is

_V2 =
x1 _x1 + z2 _z2ffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 + z22
p = 1ffiffiffiffiffiffi

V2
p x1 _x1 + z2 _z2ð Þ

= 1
V2

x1 z2 − ψ1ð Þ + z2 u2 + _ψ1ð Þ½ �

= 1
V2

−x1ψ1 + z2 x1 + u2 + _ψ1ð Þ½ �:

ð27Þ

The term −x1 − _ψ1 in (24) compensates the extra parts in
(27) and the term −ηðez2 − 1Þ/ez2ðt f − tÞ will make z2 con-
verge to zero. Substituting the control u2 into the derivative
(27), one can get

_V2 =
1
V2

−x1
η1 ex1 − 1ð Þ
ex1 t f − t
� � − z2

η2 ez2 − 1ð Þ
ez2 t f − t
� �

" #

= −
1

V2 t f − t
� � η1x1 1 − e−x1ð Þ + η2z2 1 − e−z2ð Þ½ �

≤ −
1

V2 t f − t
� � η1 x1j j 1 − e− x1j j

� �
+ η2 z2j j 1 − e− z2j j

� �h i
:

ð28Þ

Referring to Corollary 7,

_V2 ≤ −
1

V2 t f − t
� � η1 f x1j jð Þ + η2 f z2j jð Þ½ �

≤ −
ηf V2ð Þ

V2 t f − t
� � = −

η eV2 − 1
� �
eV2 t f −tð Þ ,

ð29Þ

where η =min fη1, η2g. Therefore, according to Theorem 5,
as long as η1, η2 ≥ 1, controller (24) makes the second-order
system be free-will arbitrary time stable.

Step 3 (n-th order to (n + 1)-th order system). Supposed that
the control law (19) for the n-th order system (18) satisfies
free-will arbitrary time stability; in the (n + 1)-th order sys-
tem, let the desired state of xn+1,d be the controller un of
the n-th order system according to the integrator backstep-
ping. Define another new variable

zn+1 = xn+1 − xn+1,d = xn+1 + 〠
n−1

i=1

d n−i−1ð Þzi
dt n−i−1ð Þ + 〠

n−1

i=1

d n−ið Þψi

dt n−ið Þ + ψn:

ð30Þ

Therefore, for k = 2,⋯, n, the time derivatives of all
newly defined state variables zk are

_zk =
dzk
dt

= d
dt

xk + 〠
k−2

i=1

d k−i−2ð Þzi
dt k−i−2ð Þ + 〠

k−2

i=1

d k−i−1ð Þψi

dt k−i−1ð Þ + ψk−1

" #

= _xk + 〠
k−2

i=1

d k−i−1ð Þzi
dt k−i−1ð Þ + 〠

k−2

i=1

d k−ið Þψi

dt k−ið Þ + _ψk−1

= xk+1 + 〠
k−1

i=1

d k−ið Þψi

dt k−ið Þ + 〠
k−1

i=1

d k−i−1ð Þzi
dt k−i−1ð Þ − zk−1

= zk+1 − ψk − zk−1:

ð31Þ

The transformed (n + 1)-th order system becomes

_z1 = z2 − ψ1,
_z2 = z3 − ψ2 − z1,
_z3 = z4 − ψ3 − z2,

⋮

_zn = zn+1 − ψn − zn−1,

_zn+1 = un+1 + 〠
n−1

i=1

d n−ið Þzi
dt n−ið Þ + 〠

n−1

i=1

d n−i+1ð Þψi

dt n−i+1ð Þ + _ψn:

ð32Þ

Select the Lyapunov function

Vn+1 =
ffiffiffiffiffiffiffiffiffiffiffi
〠
n+1

i=1
z2i

s
≥ 0, ð33Þ

and its time derivative is

_Vn+1 =
1

Vn+1
〠
n

i=1
xi _xi

= 1
Vn+1

x1 z2 − ψ1ð Þ + 〠
n

i=2
zi zi+1 − ψi − zi−1ð Þ

"

+ zn+1 un+1 + 〠
n−1

i=1

d n−ið Þzi
dt n−ið Þ + 〠

n−1

i=1

d n−i+1ð Þψi

dt n−i+1ð Þ + _ψn

 !#

= 1
Vn+1

−〠
n

i=1
ziψi + zn+1 zn + un+1 + 〠

n−1

i=1

d n−ið Þzi
dt n−ið Þ

 "

+ 〠
n−1

i=1

d n−i+1ð Þψi

dt n−i+1ð Þ + _ψn

!#
= 1
Vn+1

〠
n+1

i=1
ziψi

= −
1

Vn+1 t f − t
� �〠n

i=1
ηizi 1 − e−zið Þ

≤ −
1

Vn+1 t f − t
� �〠n

i=1
ηi zij j 1 − e− zij j

� �
:

ð34Þ
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According to Corollary 8,

_Vn+1 = −
1

Vn+1 t f − t
� �〠n

i=1
ηi f zij jð Þ ≤ −

ηf Vn+1ð Þ
Vn+1 t f − t

� � = −
η eVn+1 − 1
� �

eVn+1 t f − t
� � ,

ð35Þ

where η =min fη1,⋯,ηn+1g. Therefore, according to Theo-
rem 5, if η1,⋯, ηn+1 ≥ 1, the (n + 1)-th order system is free-
will arbitrary time stable.

To sum up, Theorem 9 is established.

Remark 10. The number of the parameters is equal to the
order of the system. For example, our method only needs
two parameters η1 and η2 for the second-order system which
is less than some existing methods [25]. The simplicity is
exactly one of the advantages of the proposed method.

Remark 11. When n = 1, 2, 3, the controllers degrade into
those of [20] which requires a more conservative parameter
range that η1 ≥ 1, η2 ≥ 2 for the second-order system and η1
≥ 1, η2 ≥ 2, η3 ≥ 3 for third-order system. In contrast, our
controllers indicate a less conservative parameter range that
min fη1,⋯,ηng ≥ 1. Taking the second-order controller as
example, using the same simulation as [20] that the initial
state is x0 = ½5, 2�⊤, t0 = 0 and t f = 5. Figures 2(a) and 2(b)
illustrate the state curves under η1 = η2 = 2:12 and η1 = η2
= 1:88, respectively. When η1 = η2 = 2:12, the requirements
of [20] are satisfied and the system converges to the equilib-
rium point before the prescribed time. However, although
the η1 = η2 = 1:88 does not meet the convergence condition
of [20], it also allows prescribed time convergence according
to our less conservative parameter range. The mathematical
explanation is that [20] overly scales the Lyapunov inequal-
ity during the proof of arbitrary time stability while we avoid
such overscaling by ingeniously introducing the auxiliary
function.

4. Design Example for UAV Formation Control

In the rendezvous of UAV formation control, due to the dif-
ficulty to accomplish synchronous take-off, the UAVs usu-
ally have unaligned initial velocities and irregular initial
position distribution. Thus, during the design of formation
controller, the initial states should be carefully handled with-
out the prescribed time convergence controller, which
undoubtedly increases the complexity of the design as the
number of UAVs increases. Thus, the arbitrary time conver-
gence controller is very applicable. In this section, three for-
mation control cases will be given to illustrate the
effectiveness and advantages of the proposed arbitrary time
convergence controller.

Assume that there are N UAVs with directed graph
topology. In the ground coordinate system, the kinematics
of each UAV is

_xi = vi,
_vi = ai,

(
ð36Þ

where xi, vi, ai are the position, velocity, and acceleration of
UAV i, i = 1, 2,⋯,N . Without loss of generality, taking
UAV i and UAV j as the leader and the follower, the relative
error kinematics is established as follows.

_eij = _x j − _xi = v j − vi,
€eij = _v j − _vi = aj − ai ≜ uj,

(
ð37Þ

where eijðtÞ = x jðtÞ − xiðtÞ − rij is the relative position error
and rij is the expected relative position. Assume that the rel-
ative position and their change rates can be observed by
wireless communication or vision-based method. The ren-
dezvous of nine UAVs is simulated, where the initial posi-
tions and velocities are randomly generated as shown in
Figure 3. The initial error states of UAV j is eij = eij,0 and
_eij = _eij,0. The expected formation is a cube with a side length
L = 20m, where UAV 1 is in the center and the remaining
UAVs are located in the vertices. The UAV1 flies in constant
velocity ½0, 20, 0�⊤, and the remaining UAVs use the same
controllers. The initial time is t0 and the prescribed rendez-
vous time is t f .

The structure of the formation controller is shown in
Figure 4. Given the formation topology, the controllers take
the state errors eij, _eij as input and generate acceleration
command uij, where the parameters for all UAVs can be
simply set the same thanks to the arbitrary time convergence
controller’s irrelevance to the initial state or the control
parameters. To show the advantages of the arbitrary time
convergence controller over the finite-time convergence
controller and prove that the convergence time can be set
arbitrarily, three cases of simulation are provided with the
following three controllers.

Case 1. A second-order finite-time convergence formation
controller with input saturation is assumed [25]. We rewrite
controller of [25] in error dynamics

uij = −sat Q,Mð Þ k1 sgn eij
� �

eij
		 		γ1 + k2 sgn _eij

� �
_eij
		 		γ2
 �

, ð38Þ

where

satQ,M xð Þ =
x, xj j ≤Q,
− M −Qð Þe− x−Qð Þ/ M−Qð Þ +M, x >Q,

M −Qð Þe x+Qð Þ/ M−Qð Þ −M, x<−Q,

8>><
>>:

ð39Þ

and 0 <Q <M < σ, k1 > 0, k2 > 0, 0 < γ1 < 1, γ2 = 2γ1/1 + γ1.
The upper bound of the control input is M. For the sake of
fairness, we choose the parameters same as the authors
[25], i.e., Q = 1:5,M = 2, k1 = 2, k2 = 2, γ1 = 0:8, γ2 = 8/9,
which means the saturated control input is umax = 2m/s2.

Case 2. The proposed controller with convergence time t f
= 20 s is given. According to (18), during t ∈ ½t0, t f Þ, the for-
mation controller of UAV j can be designed as
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uij = satM sgn eij,0
� �

−yij −
η1
t2go

1 − e−yi jð Þ − η1
tgo

_yije−yi j
" 

−
η2
tgo

1 − exp − _yij −
η1
tgo

1 − e−yi jð Þ
 ! ##!

,

ð40Þ

where yij = sgn ðeij,0Þe is the transformed error state to
ensure symmetrical performance, tgo = t f − t is the residual
settling time, and satMðxÞ = sgn ðxÞ min fjxj,Mg imposes
input constraint. When the saturated input constraints are
considered, there should be a minimum convergence time
for any controllers as well as the arbitrary time convergence
controller. As shown in Figure 5, the proposed method is not
sensitive to parameters thanks to the adaptive manner of the
time-varying scaling function. In general, larger parameters
mean quicker convergence but larger control output. The
parameters are set to η1 = η2 = 3.

Case 3. The proposed controller with convergence time t f
= 10 s is given. Benefiting from the property that the conver-
gence time of the arbitrary time convergence controller is
not dependent on the initial state or the control parameters,
the only changes of Case 3 to Case 2 are the convergence
time, i.e., t f = 10 s. The parameters are still η1 = η2 = 3.

Due to space limitations, only the x-axis position errors,
velocity errors and control input curves in the three cases are
shown in Figures 6–8, respectively. In Case 1, although the
state errors of finite-time convergence controller can con-
verge to zeros before 20 s, the control inputs change rapidly
from their lower bound to upper bound which means more
control efforts are needed. On the contrary, in Case 2, the
proposed controller makes the formation stable before 20 s
with more moderate control input. The convergence time
of the finite-time convergence controller [25] cannot be
readjusted without retuning the control parameters. On the
contrary, in Case 3 (Figure 8), the convergence time of the
proposed controller can be easily reset to 10 s without any
parameter retuning, and the formation becomes stable
before the 10 s by saturated input at the beginning of the
control.

5. Conclusions

In this paper, a general formula of n-th order arbitrary time
convergence controller is proposed. By introducing an auxil-
iary function and proving its properties, the arbitrary time
stability and a less conservative parameter range are proved.
Considering the saturated control input, a symmetrical arbi-
trary time convergence formation controller is designed and
verified by simulation. This paper improves the theory and
practicability of the arbitrary time convergence controllers,
which provides a valuable reference to solving control prob-
lems where the convergence time is important. The future
work includes theoretical analyses of the lower bound of
the convergence time under the saturated control input
and consideration on perturbation and time delay.
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