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To reasonably allocate mobile conventional missile battle positions and improve the survivability and combat effectiveness of the
missile weapon system, a missile position deployment optimization design model based on Mixed-Integer Nonlinear
Programming (MINLP) is established. First, for the multilevel position network, an optimization model with the goal of
maximizing the viability is established, and a two-stage solution method is proposed. Second, the whale optimization algorithm
(WOA) is improved, and the convergence factor which changes nonlinearly with the number of evolution is introduced to
coordinate the local development and global search ability of the algorithm. The diversity mutation operation is carried out on
the optimal individual to reduce the probability of premature convergence of the algorithm, and the improved whale algorithm
is used to solve the optimization model. Finally, the performance of the improved algorithm is verified by example analysis
and simulation experiments, which provides a reference for the deployment mode of mobile missile positions.

1. Introduction

Missile position is an important basis for the missile
weapons to carry out combat missions. The reasonable
deployment and scientific configuration of positions are
not only conducive to the full play of the operational effec-
tiveness of missile weapons but also can effectively improve
the command ability and survivability of the weapon system,
which is of the significance to the firepower utilization of
missile weapons. Therefore, it is necessary to further opti-
mize the position deployment, explore the rational alloca-
tion scheme, and promote the combat effectiveness of
missile forces.

To solve the problem of position configuration optimiza-
tion of mobile missile, Wang and Gao [1] first proposed a
polygon position configuration mode and solved the model
with an enumeration method and linear programming
method. At the same time, Wang and Wei [2] aimed at
improving the launch stability of missiles and discussing
the influence of mutual interference between guidance sys-
tems on the position configuration mode when multiple
missiles were fired at the same time. On this basis, Hao [3]

applied the polygonal position configuration mode to land-
based conventional missiles and achieved considerable
results. However, the model constructed in the above
research is relatively simple, and the position configuration
is also weakened in the model. In response to this problem,
Xie et al. [4] conducted an in-depth study on the position
configuration of mobile missiles, proposed a fan-shaped
position configuration model, and constructed a model solv-
ing algorithm based on the enumeration method and Monte
Carlo method, which provided a reference for the decision-
making of conventional missile position configuration. Zeng
et al. [5] applied graph theory and neural network theory to
the deployment and selection of air defense missile positions
and put forward the indicators affecting position selection.
On the basis of Zeng, Wang et al. [6] established the config-
uration model of air defense missile position from the per-
spective of improving operational efficiency and solved it
by genetic algorithm, but the established model is relatively
simple. Liu et al. [7] discussed configuration of the naval
air defense position, which provided ideas for the establish-
ment of the naval air defense position model. Subsequently,
Gao et al. [8] took into account the number of missile shots
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into the problem of position deployment and established the
deployment model of naval air defense weapon position
based on the number of shots. However, due to the complex-
ity of the position deployment problem, the optimization
model has quite a few constraints, and it is difficult to solve.
In the following period of time, the research on the position
deployment of maneuvering conventional missiles has
entered a stagnation period.

In recent years, with the continuous development of the
bionic swarm intelligent optimization algorithm, which sim-
ulates the behavior of animals in nature, it provides a new
and powerful tool for solving complex optimization prob-
lems [9]. Some traditional swarm intelligence optimization
algorithms include ant colony optimization (ACO) [10],
fruit fly optimization algorithm (FOA) [11], and grey wolf
optimization (GWO) [12]. With the continuous develop-
ment of intelligent bionic algorithm, more and more new
algorithms are proposed, mainly including monarch butter-
fly optimization (MBO) [13], moth swarm algorithm (MSA)
[14], and slime mold algorithm (SMA) [15]. In 2016, Mirja-
lili and Lewis [16] proposed a new intelligent optimization
algorithm for bionic humpback whale behavior: whale opti-
mization algorithm (WOA). Compared with other intelli-
gent algorithms, this algorithm has simple principle, less
parameter settings, and strong optimization performance.
At present, it has been successfully applied to complex opti-
mization problems [17]. However, at the same time, the
algorithm also has some shortcomings, such as local devel-
opment and global search ability is difficult to coordinate
and prone to premature convergence in the late iteration
[18]. Based on the shortcomings of WOA, many scholars
have also improved it in recent years. For example, Ning
and Cao [19] improved WOA from three aspects: initial
population, convergence factor, and mutation operation,
and verified the performance of the improved algorithm. Li
et al. [20] proposed a mathematical model considering linear
and nonlinear failure criteria for locating the critical sliding
surface of soil slope and improved the WOA. The experi-
mental results show that the improved algorithm has better
performance. Donyaii et al. [21] improved WOA for water
resource management and reservoir operation and analyzed
water resource management problems using WOA. Bozorgi
and Yazdani [22] improved WOA by combining WOA with
differential evolution (DE) to solve the premature conver-
gence problem of WOA and verified the performance of
the improved algorithm through experiments. However, in
the context of military applications, there is no relevant
research on using this algorithm to solve the optimization
problem of missile position deployment.

Therefore, this paper attempts to apply WOA to the
position deployment optimization problem of conventional
mobile missiles, improve the shortcomings of the algorithm,
and overcome the disadvantages that the position deploy-
ment optimization model is difficult to solve. Aiming at this
goal, this paper optimizes the position deployment with the
goal of maximizing the survivability of the weapon system
and proposes a two-stage solution method combined with
the actual problem. The WOA is improved: the convergence
factor is introduced to coordinate the global search and local

development ability of the algorithm, and diversity mutation
is performed on the optimal individual to reduce the proba-
bility of premature convergence of the algorithm. It provides
a new solution method and configuration mode reference
for the position deployment optimization problem and ver-
ifies the superiority and effectiveness of the improved
WOA through examples.

The main contributions and innovations of this paper
are as follows:

(1) WOA is applied to the position deployment optimi-
zation of mobile conventional missiles. It overcomes
the disadvantages of many constraints and difficult
to solve the position deployment optimization prob-
lem and provides a new method for solving the
problem

(2) A three-level sector position deployment model and
a position optimization model based on MINLP [23]
are established. The deployment mode is more com-
plex, and the constraint conditions of the model are
more complete, which is more in line with the actual
combat of conventional missile weapons

(3) A two-stage method for solving the model is pro-
posed. By this method, the MINLP problem is trans-
formed into a nonlinear programming problem,
which effectively reduces the difficulty of solving
the original problem

(4) An improved WOA is proposed. The convergence
factor of nonlinear variation is introduced to balance
the global search and local development ability of the
algorithm. The diversity mutation of the optimal
whale individuals reduces the probability of prema-
ture convergence of the algorithm

(5) The optimizationmethod in this paper is applied to an
example, which can provide a reference for the config-
uration and deployment of missile positions and is
beneficial to the performance of missile weapons

The organizational structure of this paper is as follows:
Section 2 describes the operational scenario of maneuvering
conventional missiles, puts forward the position deployment
mode, and gives the background of the position optimiza-
tion problem. Section 3 establishes the optimization model
of the position deployment problem. Section 4 proposes a
two-stage solution method for the optimization model. Sec-
tion 5 introduces the WOA, improves the algorithm, and
proposes an Improved WOA. Section 6 verifies the model
and method of this paper through examples and analyzes
the advantages of the improved WOA by comparing it with
other algorithms. Finally, the conclusions of this paper and
the direction for future efforts are expounded.

2. Operational Scenario of Conventional
Mobile Missile

When maneuvering conventional missile weapons perform
operational tasks, their ability to move quickly and damage
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targets mainly depends on the missile weapon system, oper-
ators, and missile position system. Therefore, this paper
defines the conventional mobile missile weapons system as
a weapon-personnel-position system.

2.1. Position Deployment Pattern Scenario. Deployment and
configuration of positions refer to the layout optimization of
positions at all levels to meet the operational requirements of
mobile conventional missile weapons, namely, the configu-
ration and layout of the main position, forward positions,
and launching positions in the combat zone, and other sup-
porting facilities. Without considering the topography of the
positions at all levels and the road traffic conditions among
the positions, the position deployment mode of the mobile
conventional missile system is proposed as follows: with
the main position as the radiation center, forward positions
and launching positions in the combat zone are fan-shaped
radiation distribution, as shown in Figure 1.

In the figure, x is the deployment number of forward
positions in the operation area, and y is the deployment
number of launch positions in the operation area. θ is the
angle of sector deployment of forward positions and launch
positions, and its size can be determined by the number of
forward positions and launch positions. To facilitate the
rapid movement of missile weapons, there is a road between
the main position, forward positions, and launch positions.
Assuming that the road lengths between the main position
and forward positions are equal, both L1. Road lengths
between forward positions and launch positions are, also
equal, both L2. At the same time, Figure 1 shows that the
number of mobile roads between positions depends on the
number of positions, that is, the number of roads between
the main position and forward positions is x, and the num-
ber of roads between forward positions and launch positions
is y.

2.2. Missile Weapon Maneuver Mode Scenario. It is assumed
that the missile weapon system adopts the scheme of forma-
tion maneuver and batch maneuver. Missile weapon systems
are maneuvered from the main missile position to the for-
ward position in the area of operations to wait for mission
assignment or directly to launch positions. In addition, the
number of formations of mobile missile weapons mainly
depends on the combat task level. The number of formations
of missile weapons is also different with different task levels.

2.3. Enemy Attack Mode Scenario. Combat tasks are inevita-
bly accompanied by confrontation between the two sides.
While one side carries out combat operations, the other side
must take corresponding measures. In the future war, it is
assumed that the enemy’s attack mode is as follows: first,
the first round of accurate strikes is carried out on missile
positions at all levels, trying to destroy the missile positions.
After the first round of attack, the remaining missile weapon
maneuver from the main position and forward positions to
launch positions. During the maneuver, the enemy used
reconnaissance satellites and high precision weapons to
strike the maneuvering missile weapons twice, making the
opponent completely incapacitated.

3. Establishment of Position Deployment
Optimization Model

Based on the position deployment pattern shown in
Figure 1, a planning model is established to optimize the
position deployment and configuration.

3.1. Determination of Decision Variables. According to the
scenario of position deployment mode, four decision vari-
ables are determined, which are

x: number of forward positions in the operational area.
y: number of launch positions in the operational area.
L1: road distance from main position to forward

position.
L2: road distance from forward position to launch

position.

3.2. Construction of Objective Function. Survivability is the
premise that missile weapons can perform combat tasks
and cause damage to the target [24]. The deployment opti-
mization of missile positions is aimed at improving the via-
bility of missile weapon systems. Therefore, this paper takes
the survival probability of maneuvering conventional missile
system as the objective function to model.

There are two main aspects to measure the survivability
of the missile weapon systems [25]. First, the missile weapon
system still has the ability to fight after being attacked by the
enemy. The second is the protective ability of the weapon
system to prevent from being attacked by the enemy.
According to the meaning of survivability and the scheme
of Section 2, several random events that may occur in the
process of the missile weapons performing combat tasks
are as follows:

Random event A: the enemy carried out the first round
of attacks to strike the main missile position accurately.
Assuming that the probability of the main position being
discovered by the enemy is PMf , and the probability of being
destroyed after discovery is PMd , the survival probability of
the missile weapon system under this random event is

P Að Þ = 1 − PMf ⋅ PMd: ð1Þ

Random event B: the enemy carried out the first round
of attacks to accurately strike the forward positions in the
operational area. Assuming that the probability of any for-
ward position being found by the enemy in the operational
area is PFf , and the probability of being destroyed after dis-
covery is PFd , the survival probability of the missile weapon
system under this random event is

P Bð Þ = 1 − PFf
x ⋅ PFd

x: ð2Þ

Random event C: the enemy carried out the first round
of attacks to accurately strike the launch positions in our
operational area. Assuming that the probability of any
launch position being found by the enemy in the combat
zone is PLf , and the probability of being destroyed after dis-
covery is PLd , the survival probability of the missile weapon
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system under this random event is

P Cð Þ = 1 − PLf
y ⋅ PLd

y: ð3Þ

Random event D: after the first round of attack, missile
weapon moved from the main position to the forward posi-
tion, and the enemy attacked our mobile missile weapons.
Assuming that the maneuvering speed of the missile weapon
is a constant v, and the maneuvering time is t, the probabil-
ity of being found in the maneuvering process is a propor-
tional function of time t, and the proportional coefficient is
λ. If the probability of the missile weapon being found by
the enemy during the maneuver is PZf 1, then:

PZf 1 = λ ⋅ t = λ ⋅
L1
v
: ð4Þ

Assuming that the number of mobile missile weapons at
this time is m and the probability of destruction after being
found by the enemy during the maneuver is PZd , the survival
probability of the missile weapon system under this random
event is

P Dð Þ = 1 − λ
L1
v

� �m

⋅ PZd
m ,m > 0,

1 ,m = 0:

8><
>: ð5Þ

Random event E: after the first round of attack, our mis-
sile weapons moved from the forward position to the launch
position, and the enemy attacked our mobile missile
weapons. If the probability of the missile weapon being
found by the enemy during the maneuver is PZf 2, then:

PZf 2 = λ ⋅ t = λ ⋅
L2
v
: ð6Þ

Assuming that the number of mobile missile weapons at
this time is n, the survival probability of the missile weapon

system under this random event is

P Eð Þ = 1 − λ
L2
v

� �n

⋅ PZd
n , n > 0,

1 , n = 0:

8><
>: ð7Þ

The above five random events are independent of each
other. If the survival probability of the maneuvering conven-
tional missile weapon system is PS, then:

PS = P Að Þ ⋅ P Bð Þ ⋅ P Cð Þ ⋅ P Dð Þ ⋅ P Eð Þ: ð8Þ

Corresponding to different mission levels, the values of
m and n of the number of mobile missile weapons are differ-
ent. Assuming that the probability coefficient [26] of maneu-
vering missile weapon system to perform tasks at all levels is
α1, α2,⋯, respectively, and ∑αi = 1, then, the objective func-
tion is

max PS =max
Y

PSi
αi : ð9Þ

3.3. Selection of Constraint Conditions. Constraint 1: the
maneuvering time t of the missile weapon cannot be greater
than a certain value T . If the maneuver time is greater than
T , the probability that the missile weapon is destroyed by the
enemy during the maneuver is 1. Then, constraint 1 is

L1
v

≤ T , L2
v

≤ T: ð10Þ

Thus, the proportional coefficient is

λ = 1
T
: ð11Þ

Constraint 2: the construction cost of the position sys-
tem cannot exceed the budget C. Assuming the construction
cost of the main position is CM , the construction cost of the
forward position is CF , the construction cost of the launch
position is CL, and the road construction cost per unit length
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Figure 1: Position deployment pattern scenario.
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is CR. Then, constraint 2 is

CM + xCF + yCL + xL1 + yL2ð ÞCR ≤ C: ð12Þ

Constraint 3: to meet the communication requirements
between positions, the mobile road distance between the
main position and the forward position and between the for-
ward position and the launch position cannot exceed a cer-
tain value LC . Then, constraint 2 is

L1 ≤ LC , L2 ≤ LC: ð13Þ

Constraint 4: to ensure that one enemy missile cannot
destroy two forward positions at the same time, the distance
between each forward position cannot be less than a certain
value LD. The distance between adjacent forward positions
can be calculated from Figure 1:

l = 2L1 ⋅ sin
θ

2 x − 1ð Þ : ð14Þ

Then, constraint 4 is

2L1 ⋅ sin
θ

2 x − 1ð Þ ≥ LD: ð15Þ

Constraint 5: similarly, the distance between launch
positions cannot be less than a certain value LD. Assuming
that the distance between each launching position and the
main position is ðL1 + L2Þ, then, constraint 5 is

2 L1 + L2ð Þ ⋅ sin θ

2 y − 1ð Þ ≥ LD: ð16Þ

Constraint 6: to meet the requirements of the combat
area and damage capacity, the distance between the main
position and the launch position should not be less than a
certain value LA, the number of forward positions and
launch positions should not be less than M and N , and the
number is integer. Then constraint 6 is

L1 + L2 > LA,
x ≥M, y ≥N , x, y ∈ Z:

(
ð17Þ

4. Model Solving Algorithm Construction

In summary, the position deployment optimization model
has been established, and the constraint conditions are

sorted out to obtain the model expression as follows:

max PS =max
Y

PSi
αi

L1 ≤min vT , LCð Þ, L2 ≤min vT , LCð Þ,
CM + xCF + yCL + xL1 + yL2ð ÞCR ≤ C,

2L1 ⋅ sin
θ

2 x − 1ð Þ ≥ LD,

2 L1 + L2ð Þ ⋅ sin θ

2 y − 1ð Þ ≥ LD,

L1 + L2 ≥ LA,
x ≥M, y ≥N , x, y ∈ Z:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð18Þ

Clearly, the above model is a Mixed-Integer Nonlinear
Programming (MINLP) model. The objective function of
the model is complex, the constraint condition is nonlinear
and contains integer constraints, so it is difficult to solve
[27]. To facilitate the solution of the model, according to
the practical problem of position deployment optimization,
a two-stage solution method is proposed in this paper. The
basic idea is since the decision variables x and y are integers,
the value range of x and y can be determined through the
constraint conditions of the model, and all possible value
sequences can be obtained. Then, the obtained value
sequence is substituted into the optimization model, and
the MINLP model is transformed into the nonlinear pro-
gramming model of variables L1 and L2. Finally, the
improved WOA is used to solve the obtained nonlinear pro-
gramming model. This method avoids integer constraints
and reduces the original four decision variables to two,
which effectively reduces the difficulty of solving the original
model.

4.1. Model Stage One Solution. According to the constraint
conditions of the model, the value sequence of the forward
position and launch position is solved first.

By transforming constraints condition 2, condition 4,
and condition 5, we can get

xL1 + yL2 ≤
C − CM + xCF + yCL

CR
, ð19Þ

L1 ≥
LD
2 csc θ

2 x − 1ð Þ , ð20Þ

L1 + L2 ≥
LD
2 csc θ

2 y − 1ð Þ : ð21Þ

Set the deployment angle θ as the maximum, that is:

θ = 2π: ð22Þ

The plane rectangular coordinate system is established
with L1 as abscissa axis, L2 as ordinate axis, and O point as
origin, as shown in Figure 2. Line l1 represents constraint
condition 2, l2 represents constraint condition 4, and l3 rep-
resents constraint condition 5.
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In the coordinate system, the shadow part is the feasible
region of the model. Point A and point B are the intersection
points of l1 and coordinate axis, the coordinates are ðC −
CM + xCF + yCL/xCR, 0Þ and ð0, C − CM + xCF + yCL/yCRÞ,
respectively. Point C is the intersection of l2 and the trans-
verse axis, and the coordinate is ðLD/2 csc π/x − 1, 0Þ. Point
D and point E are the intersection of l3 and coordinate axis,
and the coordinates are ðLD/2 csc π/y − 1, 0Þ and ð0, LD/2
csc π/y − 1Þ, respectively. Point P is the intersection of l1
and l3, and the abscissa is y/y − xðLD/2 csc π/y − 1 − C −
CM − xCF − yCL/yCRÞ.

Therefore, to exist a feasible domain, the following con-
ditions are required.

Condition 1: when point D is to the left of point A, and
point E is above point B, that is

C − CM − xCF − yCL

yCR
< LD

2 csc π

y − 1ð Þ ,

C − CM − xCF − yCL

xCR
> LD

2 csc π

y − 1ð Þ :

8>>><
>>>:

ð23Þ

At this time, if the feasible region exists, it needs to sat-
isfy

y
y − x

LD
2 csc π

y − 1 −
C − CM − xCF − yCL

yCR

� �
< vT: ð24Þ

Condition 2: when point D is on the right side of point A
, and point E is above point B, the feasible region does not
exist. Therefore, needs to be met:

LD
2 csc π

y − 1 < C − CM − xCF − yCL

xCR
: ð25Þ

Condition 3: when point D is on the left side of point A,
point E is below point B, namely,

LD
2 csc π

y − 1ð Þ < C − CM − xCF − yCL

yCR
,

LD
2 csc π

y − 1ð Þ < C − CM − xCF − yCL

xCR
:

8>>><
>>>:

ð26Þ

At this time, if the feasible region exists, it needs to sat-
isfy

LD
2 csc π

y − 1 < vT: ð27Þ

Condition 4: to make the feasible region exist, line l2
needs to be on the left side of point A and line L1 = vT ,
which satisfies

LD
2 csc π

x − 1 < vT ,

LD
2 csc π

x − 1 < C − CM − xCF − yCL

xCR
:

8>><
>>: ð28Þ

By combining Equations (24), (25), (27), and (28), all
value sequences of the forward position and launch position
can be obtained.

4.2. Model Stage Two Solution. By substituting all value
sequences of x and y into the position deployment optimiza-
tion model, the original model can be transformed into the
nonlinear programming model of variables L1 and L2, and
then, the improved WOA is used to solve the optimal value.

5. Improved Whale Optimization Algorithm

5.1. Original Whale Optimization Algorithm. Whale preda-
tion method is relatively special, that is, bubble net predation
[28], as shown in Figure 3. A detailed description of bubble-
net predatory behavior can be seen in reference [28]. Based
on the characteristics of bubble-net predatory behavior, Mir-
jalili and Lewis abstracted a new bionic intelligent optimiza-
tion algorithm, namely, whale optimization algorithm. The
mathematical model was used to simulate the process of
whale encirclement, bubble-net attack, and random search
for prey.

5.1.1. Surrounding Prey. Assuming that the number of
whales is N , each whale is an individual, the search space
is d-dimensional, the position of each individual in d
-dimensional space is a solution, and the position of prey
is the optimal solution of the problem. Whales identify and
surround prey positions by echo. The update formula of
whale position is as follows:

X k + 1ð Þ = Xp kð Þ − A ⋅ C ⋅ Xp kð Þ − X kð Þ�� ��, ð29Þ

where k is the current iteration number, and XðkÞ is the
current whale position vector.

Xp = ðX1
p, X2

p,⋯XD
p Þ is the position of prey, namely, the

current optimal position vector, and D is the vector dimen-
sion. A ⋅ jC ⋅ XpðkÞ − XðkÞj is the surrounding step, and A
and C are defined as follows:

A = 2δ ⋅ rand1 − δ,
C = 2 ⋅ rand2,

(
ð30Þ

L2

E

PB

O AC D

l2 l3

l1

L1

L1=vT

Figure 2: Coordinate diagram.
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where rand1 and rand2 represent random numbers in
the range of [0,1], and δ is the convergence factor, which
decreases linearly from 2 to 0 with the increase of iteration
number k, that is:

δ = 2 − 2k
kmax

: ð31Þ

kmax is the maximum number of iterations.

5.1.2. Bubble-Net Attacks. WOA designs two methods,
namely, spiral update position and contraction surrounding
mechanism. In the spiral update position method, the whale
spiral motion approaches the prey, and the mathematical
model is

X k + 1ð Þ = Xp kð Þ +Dk ⋅ ebl ⋅ cos 2π lð Þ: ð32Þ

In the formula, Dk = jXpðkÞ − XðkÞj denotes the distance
between the whale and prey, b denotes the constant of the
limiting logarithmic spiral shape, and l is the random num-
ber in the range of [-1,1].

The contraction bounding mechanism is realized with
the decrease of convergence factor. When the convergence
factor decreases linearly from 2 to 0, the fluctuation range
of A is ½−δ, δ�. When A is a random value in the range of
[-1,1], Xðk + 1Þ can be any position between XðkÞ and Xpð
kÞ.

In the process of optimization, it is considered that the
probability of choosing spiral position update and contrac-
tion bounding mechanism is equal to 0.5 [16]. Therefore,
the mathematical model is

X k + 1ð Þ =
Xp kð Þ − A ⋅ C ⋅ Xp kð Þ − X kð Þ�� ��, p < 0:5,

Xp kð Þ +Dk ⋅ ebl ⋅ cos 2π lð Þ, p ≥ 0:5:

(

ð33Þ

5.1.3. Random Search for Prey. When jAj > 1, the whale
swims outside the prey contraction circle. At this time, the
whale individuals search for prey randomly according to
their positions. The mathematical model is

X k + 1ð Þ = Xrand kð Þ − A ⋅ C ⋅ Xrand kð Þ − X kð Þj j, ð34Þ

where Xrand is the randomly selected whale individual
position vector.

5.2. Nonlinear Variation Strategy of Convergence Factor. As
a swarm intelligence optimization algorithm, the coordina-
tion of global search and local development ability of
WOA is essential [29]. The analysis of Section 5.1 shows that
the main parameters of WOA are A and C. When jAj > 1,
the search area of whale population is more extensive, which
is reflected in the global search ability of the algorithm.
When jAj ≤ 1, the whale population performs a local fine
search, which is reflected in the local development ability
of the algorithm. The value of A depends largely on the con-
vergence factor δ. When δ is large, the algorithm has better
global search ability and avoids falling into the local opti-
mum. When δ is small, the algorithm has strong local devel-
opment ability and accelerates the convergence speed. It can
be seen from Section 5.1.1 that in the original WOA, the
convergence factor δ decreases linearly from 2 to 0 with
the increase of iteration number k. However, under the lin-
ear decreasing strategy, the global search ability of the algo-
rithm is strong in the early stage, but the convergence speed
is slow. The convergence speed is accelerated in the later

Figure 3: Bubble-net predation behavior.
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stage, but it is easy to fall into the local optimal solution.
Therefore, the strategy of linear decreasing convergence fac-
tor cannot fully reflect the actual optimization search pro-
cess [30].

In fact, we expect the algorithm to have strong global
search ability and fast convergence speed in the early stage.
In the later stage, the convergence speed is fast while avoid-
ing falling into local optimization. Based on the above con-
siderations, the convergence factor should first increase
slightly with the increase in the number of iterations and
then decrease rapidly when it increases to a certain extent,
and finally increase slowly, showing a nonlinear change with
the increase in the number of iterations. Therefore, the con-
vergence factor update formula is as follows:

δ = 1 − k/kmax
1 − μ ⋅ k/kmax

+ δinitial − δfinalð Þ, ð35Þ

where μ is the nonlinear regulation coefficient, μ > 0.

δinitial is the initial value of the convergence factor, and
δfinal is the final value of the convergence factor.

5.3. Optimal Individual Diversity Variation Strategy. In the
late iteration of WOA, all whale individuals in the popula-
tion are close to the current optimal individuals, resulting
in insufficient diversity of the population [31]. If the current
optimal individual is not the global optimal solution, but the
local optimal solution, the algorithm will converge prema-
turely and fall into the local optimal solution, that is, the
algorithm has premature convergence.

To reduce the probability of this phenomenon in the
algorithm, the diversity mutation of the current optimal
individual is carried out. Assuming that an element xjðj = 1
, 2,⋯,dÞ is randomly selected from the individual Xi = ðxi1,
xi2,⋯xidÞ with the probability of 1/d, and then a real number
is randomly generated in ½li, ui� to replace an element xj in

Xi, thus, a new individual Xi′= ðxi1′ , xi2′ ,⋯, xid′ Þ is generated.
The mathematical formula is

Xi′=
ε ⋅ ui − lið Þ + li, i = j,
Xi, i ≠ j:

(
ð36Þ

ε is the random number in [0,1], ui is the upper bound of
the variable xi, and li is the lower bound.

5.4. Steps to Improve WOA. In summary, the steps of
improved WOA are shown in Figure 4.

5.5. Algorithm Time Complexity Analysis. Time complexity
can measure the computing speed and execution efficiency
of the algorithm, which is one of the key indicators to mea-
sure the performance of the algorithm. Suppose that the
population number of the algorithm is n, the maximum
number of iterations is T , the search latitude is d, the average
time of a single inspection beyond the boundary is t1, and
the average time of a single update of the location is t2.

The WOA uses a linear convergence factor, assuming
that the calculation time is t3. Then, the time complexity
of the algorithm is OðT ∗ n ∗ d ∗ t2 + T ∗ n ∗ t1 + T ∗ t3Þ,
and the simplified complexity is OðT ∗ n ∗ dÞ. The nonlinear
convergence factor is used in the IWOA, and the calculation
time is assumed to be t4. The diversity variation is added,
and the calculation time is assumed to be t5. Then, the time
complexity of the algorithm is OðT ∗ n ∗ d ∗ t2 + T ∗ n ∗ t1
+ T ∗ ðt4 + t5ÞÞ, and the simplified complexity is OðT ∗ n
∗ dÞ.

It can be seen that the time complexity of IWOA and
WOA remains the same order of magnitude, and the time
complexity of the improved algorithm does not increase.

Table 1: Model parameter values.

Parameter α1 α2 α3 C CM CF CL CR PMf PMd PFf

Value 0.5 0.3 0.2 3000 500 180 60 1 0.65 0.55 0.60

Parameter PFd PLf PLd PZd LC LD LA v T M N

Value 0.50 0.75 0.60 0.55 45 2 20 28 2 5 20

Table 2: Values of m and n under different task levels.

Task level m n

Level 1 5 0

Level 2 5 5

Level 3 0 10

Table 3: Value sequence of x and y.

x 5 5 5 5 5

y 20 21 22 23 24

x 5 5 6 6 6

y 25 26 20 21 22

Table 4: Model simulation results.

x y L∗1 L∗2 P∗
S

5 20 9.31076 10.6892 0.6409329

5 21 8.88211 11.1179 0.6409331

5 22 9.55878 10.4412 0.6409328

5 23 13.6141 6.38594 0.6409166

5 24 16.9736 3.02639 0.6408727

5 25 17.0312 2.96875 0.6408716

5 26 17.2723 2.72770 0.6408667

6 20 13.1647 6.83533 0.6420127

6 21 17.4328 2.56721 0.6419560

6 22 17.4937 2.50627 0.6419547
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6. Results and Discussion

6.1. Case Analysis of Position Optimization. Assuming that
the task level is three, the possibility coefficients under each
task level and other parameters in the optimization model
are taken as shown in Table 1.

In addition, the values of m and n under different task
levels are shown in Table 2.

Using the constructed two-stage model solving algo-
rithm, Equations (24), (25), (27), and (28) are solved to
obtain the value sequence of x and y, as shown in Table 3.

Then, the improved WOA is used to solve the problem.
The parameters of the algorithm are as follows: population
number is 200, maximum iteration number is 300, constant
b = 1, initial convergence factor δinitial = 2, final value δfinal
= 1, and nonlinear adjustment coefficient μ = 25. The simu-
lation results are shown in Table 4.

It can be seen from Table 4 that when x = 6, y = 20, L1
= 13:1647, and L2 = 6:83533, the survival probability of mis-
sile weapon system is the largest and the probability is
0.6420127. At the same time, other data obtained by solving
the model can also be used for reference. When considering
the actual factors such as topography, road traffic, and so on,
decision makers can choose a more realistic position config-
uration scheme according to multiple sets of data.

6.2. Performance Analysis of Improved Algorithm

6.2.1. Comparison of Model Test Problems. The 10 value
sequences of x and y in the deployment optimization model
are used as test problems, as shown in Table 3. The
improved WOA, WOA, and genetic algorithm (GA) [32]
are used to solve each test problem, and Table 5 is obtained.
In order to ensure the effectiveness of the experiment, the
population number of the three algorithms is set to 200,
and the maximum number of iterations is 300. The other
parameters of GA are crossover ratio is 0.8, and mutation
probability is 0.2.

Compared with the three groups of data in Table 5,
when using the improved WOA and WOA to solve the sur-
vival probability, the numerical value is greater than that of
the genetic algorithm, indicating that the improved WOA

and WOA model are better. In the 10 groups of test prob-
lems, the survival probability obtained by the improved
WOA is slightly better than those obtained by the WOA,
but the amplitude is not large. To better reflect the advan-
tages of the improved WOA, this paper selects 10 classical
test functions from reference [17] and combines them with
10 basic test functions in CEC2017 test set to further verify
the performance of the improved WOA.

6.2.2. Comparison of Classical Test Functions. The function
names, expressions, and other features of the 10 test func-
tions are shown in Table 6.

In this paper, the improved WOA and WOA are used to
solve the test function, respectively. The dimensions of the
test function are set to 50 dimensions, 200 dimensions, and
1000 dimensions, respectively. Through the solution results
of the two algorithms, the performance of the improved
algorithm is analyzed and compared.

In this paper, two indexes, accuracy (AC) and optimiza-
tion success rate (SR), are selected to evaluate the perfor-
mance of the improved algorithm [33]. The closeness
between the result obtained by the algorithm and the global
optimal solution is called the accuracy. Assuming that the
global optimal solution of the problem is X∗ and the optimal
solution obtained after kmax iterations of the algorithm is
Pbest, the expression of AC is

AC = f X∗ð Þ − f Pbestð Þj j: ð37Þ

After many experiments, the proportion of the algorithm
converging to the optimal solution of the problem is called
the success rate of optimization. If the total number of
experiments is z and the number of times the algorithm con-
verges to the optimal solution of the problem is ze, the
expression of SR is

SR = 100% × ze
z
: ð38Þ

In each experiment, if the AC of the algorithm is less
than the convergence accuracy of the test function, it is

Table 5: Comparison of test results.

Tests x y
IWOA WOA GA

L∗1 L∗2 P∗
S L∗1 L∗2 P∗

S L∗1 L∗2 P∗
S

1 5 20 9.31076 10.6892 0.6409329 8.10199 11.8980 0.6409328 12.1908 15.5498 0.6409101

2 5 21 8.88211 11.1179 0.6409331 8.30287 11.6971 0.6409329 12.3602 13.2476 0.6409180

3 5 22 9.55878 10.4412 0.6409328 9.81265 10.1873 0.6409325 13.5191 9.65475 0.6409161

4 5 23 13.6141 6.38594 0.6409166 13.7714 6.22863 0.6409153 15.6792 6.15669 0.6408942

5 5 24 16.9736 3.02639 0.6408727 17.1397 2.86029 0.6408694 18.2783 2.85869 0.6408431

6 5 25 17.0312 2.96875 0.6408716 17.1265 2.87352 0.6408696 17.9551 2.92603 0.6408513

7 5 26 17.0650 2.93495 0.6408709 18.0227 1.97730 0.6408496 18.3023 2.85368 0.6708425

8 6 20 13.1647 6.83533 0.6420127 13.3492 6.65084 0.6420114 15.6296 6.31112 0.6419876

9 6 21 17.4328 2.56721 0.6419560 17.6574 2.34260 0.6419510 18.5669 2.31422 0.6419280

10 6 22 17.4937 2.50627 0.6419547 17.8038 2.19622 0.6419476 18.7671 2.25703 0.6419223
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considered that this experiment has converged to the global
optimal solution.

In the comparative experiment, the two algorithms
adopt the same parameter settings, the population size N =
30, and the maximum number of iterations kmax = 500.
Other parameters of the Improved WOA are constant b =
1, initial value of convergence factor δinitial = 2, final value

δfinal = 1, and nonlinear adjustment coefficient μ = 25. Each
test function is run 30 times with the two algorithms, respec-
tively, and the optimal precision value, the worst precision
value, the average accuracy (ACave), the precision standard
deviation (SD), and the SR obtained from the experiment
are recorded. The experimental results are shown in
Table 7. Among them, to more clearly reflect the

Table 7: Optimization comparison of two algorithms (classical test function).

F Algorithm
D = 50 D = 200 D = 1000

ACave SD SR ACave SD SR ACave SD SR

f1 xð Þ WOA 2:14E − 083 1:49E − 082 100% 3:90E − 081 2:01E − 080 100% 3:24E − 080 1:39E − 079 100%
IWOA 2:19E − 086 1:51E − 085 100% 4:05E − 089 2:60E − 088 100% 1:69E − 087 7:04E − 087 100%

f2 xð Þ WOA 9:16E − 035 5:60E − 034 100% 9:67E − 052 6:07E − 051 100% 1:94E − 049 1:24E − 048 100%
IWOA 1:37E − 050 6:21E − 050 100% 1:21E − 053 5:76E − 053 100% 9:06E − 052 6:34E − 051 100%

f3 xð Þ WOA 3:39E − 125 1:90E − 124 100% 4:07E − 125 2:81E − 124 100% 1:01E − 123 5:72E − 123 100%
IWOA 1:00E − 179 0:00E + 00 100% 4:63E − 194 0:00E + 00 100% 1:09E − 195 0:00E + 00 100%

f4 xð Þ WOA 4:77E + 001 4:00E − 001 0% 1:97E + 002 2:15E − 001 0% 9:92E + 002 9:00E − 001 0%
IWOA 4:76E + 001 2:60E − 001 0% 1:97E + 002 1:74E − 001 0% 9:91E + 002 5:66E − 001 0%

f5 xð Þ WOA 2:30E − 003 2:39E − 003 4% 2:93E − 003 3:40E − 003 2% 2:89E − 003 3:00E − 003 4%
IWOA 5:23E − 003 6:01E − 003 6% 1:36E − 003 1:62E − 003 4% 1:53E − 003 1:56E − 003 10%

f6 xð Þ WOA 3:34E − 015 1:76E − 014 100% 0:00E + 00 0:00E + 00 100% 0:00E + 00 0:00E + 00 100%
IWOA 2:27E − 015 1:59E − 014 100% 0:00E + 00 0:00E + 00 100% 0:00E + 00 0:00E + 00 100%

f7 xð Þ WOA 5:08E − 015 2:32E − 015 100% 4:87E − 015 2:42E − 015 100% 4:44E − 015 2:46E − 015 100%
IWOA 3:94E − 015 2:25E − 015 100% 3:38E − 015 2:38E − 015 100% 4:30E − 015 2:35E − 015 100%

f8 xð Þ WOA 6:50E − 003 3:20E − 002 96% 0:00E + 00 0:00E + 00 100% 0:00E + 00 0:00E + 00 100%
IWOA 2:22E − 018 1:55E − 017 100% 0:00E + 00 0:00E + 00 100% 0:00E + 00 0:00E + 00 100%

f9 xð Þ WOA 0:00E + 00 0:00E + 00 100% 0:00E + 00 0:00E + 00 100% 0:00E + 00 0:00E + 00 100%
IWOA 0:00E + 00 0:00E + 00 100% 0:00E + 00 0:00E + 00 100% 0:00E + 00 0:00E + 00 100%

f10 xð Þ WOA 1:43E − 001 9:52E − 002 0% 6:17E − 001 2:81E − 001 0% 6:66E + 00 3:50E + 00 0%
IWOA 4:64E − 002 2:54E − 002 0% 5:71E − 001 4:39E − 001 0% 4:80E + 00 1:48E + 00 0%

Table 8: Comparison of convergence algebra of two algorithms.

F
WOA IWOA

D = 50 D = 200 D = 1000 D = 50 D = 200 D = 1000
caave camin caave camin caave camin caave camin caave camin caave camin

f1 xð Þ 142 119 151 124 157 135 81 73 84 72 86 80

f2 xð Þ 170 153 179 159 185 167 99 90 103 92 101 90

f3 xð Þ 45 27 47 32 48 28 56 48 56 43 56 47

f4 xð Þ 0 0 0 0 0 0 0 0 0 0 0 0

f5 xð Þ 346 271 351 351 229 224 318 177 410 387 244 144

f6 xð Þ 141 119 147 113 155 130 111 51 92 78 92 77

f7 xð Þ 181 168 187 171 187 163 105 93 105 97 103 15

f8 xð Þ 142 120 145 125 152 125 85 72 83 72 82 76

f9 xð Þ 110 89 123 100 132 105 72 63 73 65 74 65

f10 xð Þ 0 0 0 0 0 0 0 0 0 0 0 0
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experimental comparison, better results have been marked
with black bold.

It can be seen from Table 7 that when the function dimen-
sion is 50, the improvedWOA can converge to the global opti-
mal solution when solving the other eight functions except
f4ðxÞ and f10ðxÞ and can converge to the theoretically optimal
value 0 when solving f9ðxÞ. When solving f1ðxÞ, f2ðxÞ, and
f3ðxÞ, the solution obtained by the improved algorithm is very
close to the theoretically optimal value 0 (E − 086, E − 054,
and E − 179, respectively). Compared with WOA, the
improved WOA obtains better optimization results when
solving f1ðxÞ, f2ðxÞ, f3ðxÞ, f8ðxÞ, and f10ðxÞ. When solving
f4ðxÞ, f5ðxÞ, f6ðxÞ, and f7ðxÞ, the result of the improved
WOA is slightly better than that of the WOA. For the success
rate of optimization, when solving f1ðxÞ, f2ðxÞ, f3ðxÞ, f6ðxÞ,
f7ðxÞ, and f9ðxÞ, the SR of both algorithms is 100%. When
solving f5ðxÞ and f8ðxÞ, the SR of the improved WOA is
slightly higher than that of the WOA. When solving f4ðxÞ,
the success rate of both algorithms is 0.

When the function dimension is 200, for f6ðxÞ, f8ðxÞ,
and f9ðxÞ, both algorithms can converge to the theoretically
optimal solution 0. In contrast, the improved WOA can get
better results when solving most functions.

When the function dimension is 1000, the optimization
performance of the two algorithms has little change. This
also fully demonstrates that the robustness of the two algo-
rithms is strong when solving large-scale optimization
problems.

Table 8 shows the comparison of the average conver-
gence algebra (caave) and minimum convergence algebra
(camin) of the two algorithms when solving test functions
with different dimensions.

It can be seen from Table 8 that compared with the two
algorithms, when solving the nine functions except f3ðxÞ, the
average convergence algebra and the minimum convergence
algebra of the improved WOA are smaller than those of the
WOA, indicating that the improved WOA has faster solving
speed. At the same time, it can be seen from Tables 7 and 8
that the improved WOA can effectively deal with large-scale
optimization problems.

To show the performance of the improved WOA more
intuitively, Figure 5 shows the image of the test function
and the convergence curves of the two algorithms when
solving the test function (dimension is 1000). It can be
clearly seen that the convergence speed and convergence
accuracy of the improved WOA are better than those of
the WOA.

The above mainly compares the performance of the
improved algorithm from the optimal solution and the min-
imum number of iterations obtained by the algorithm. From
the comparison results, the performance of the improved
algorithm is better than the original algorithm. Next, the
performance of the improved algorithm is evaluated from
the perspective of statistics. Wilcoxon test [34] is used to test
and count the data that the algorithm runs 50 times inde-
pendently when solving classical test functions with different
dimensions. The significance level is 0.05. If the inspection
value p < 0:05, it indicates that the performance difference
is significant, otherwise, the difference is not obvious. Use
p1, p2, and p3 to represent the inspection value when the
dimension is 50, 200, and 1000, respectively. The test results
are shown in Table 9, in which, “+” indicates that the perfor-
mance ratio result of the improved algorithm is “excellent”,
“-” indicates that the comparison result is “inferior”, “=”
indicates that the performance of the two algorithms is
equivalent, and “NA” indicates that the comparison is inva-
lid, that is, the performance of the two algorithms is
equivalent.

According to the Wilcoxon rank sum test results, most
of the test values compared with the improved algorithm
are less than 0.05. The test value of functions f6ðxÞ and f9ð
xÞ is “NA,” that is, when solving f6ðxÞ and f9ðxÞ, the perfor-
mance of the improved algorithm is equivalent to that of the
original algorithm. When the dimension of function f4ðxÞ is
low, the performance of the improved algorithm is inferior
to that of the original algorithm. In addition, there are signif-
icant differences in solving other functions. Therefore,
according to the Wilcoxon rank sum test results, from a sta-
tistical point of view, the improved algorithm is effective.

6.2.3. Comparison of CEC2017 Test Functions. In order to
further verify the performance of the improved algorithm,
this paper selects 10 basic test functions of different types
in CEC2017 test set [35] to compare and test the algorithm.
Test function information is shown in Table 10.

Similarly, the improved WOA and WOA are used to
solve the CEC2017 test function, and the dimensions are
set to 10, 50, and 100 dimensions, respectively. The param-
eter setting of the algorithm is the same as the previous sec-
tion. Each test function was run 50 times with two
algorithms, and the optimal precision value, the worst preci-
sion value, the average precision value, the standard differ-
ence of precision, and the success rate were recorded. The
experimental results are shown in Table 11. In order to more
clearly reflect the experimental comparison, better results
have been marked with black bold.

Table 11 shows that when the dimension is 10, the
improved algorithm can converge to the global optimal solu-
tion when solving 10 basic test functions and can converge

Table 9: Rank sum test value under classical test function.

F p1 p2 p3
f1 xð Þ 1:23E − 06 + 2:23E − 09 + 5:06E − 09 +
f2 xð Þ 7:55E − 10 + 2:12E − 05 + 1:20E − 08 +
f3 xð Þ 7:56E − 10 + 7:56E − 10 + 7:56E − 10 +
f4 xð Þ 1:16E − 01 − 2:50E − 01 − 8:15E − 08 +
f5 xð Þ 5:04E − 03 + 3:00E − 03 + 9:00E − 03 +
f6 xð Þ NA= NA= NA=

f7 xð Þ 3:94E − 02 + 6:10E − 03 + 9:42E − 03 +
f8 xð Þ 5:00E − 01 = NA= NA=

f9 xð Þ NA= NA= NA=

f10 xð Þ 1:42E − 08 + 1:99E − 01 − 2:48E − 03 +
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to the theoretically optimal value 0 when solving functions
CEC02, CEC05, nd CEC08. Compared with the original
algorithm, the improved algorithm obtains better optimiza-
tion results except functions CEC02 and CEC05. When solv-
ing functions CEC03, CEC04, and CEC08, the optimization
success rate of the improved algorithm is better than that of
the original algorithm.

When the dimension is 50, the improved algorithm can
converge to the theoretically optimal value 0 when solving
CEC02, CEC05, and CEC08. Compared with the original
algorithm, the improved algorithm also obtains better opti-
mization results.

When the dimension is 100, the optimization perfor-
mance of the two algorithms has little change. From the data
in Table 11, the performance of the improved algorithm is
better than the original algorithm.

Similarly, Wilcoxon rank sum test is used to test and
count the data independently running 50 times when the
algorithm solves the basic test function of CEC2017 in dif-
ferent dimensions. p1, p2, and p3 are used to represent the
test values of dimensions 10, 50, and 100, respectively. The
test results are shown in Table 12, where “+” denotes that
the performance ratio of the improved algorithm is “excel-
lent,” “-” denotes that the comparison result is “inferior,”

Table 10: CEC2017 test function.

F Name Range fmin

Unimodal functions

CEC01 Bent cigar function [-100, 100] 0

CEC02 Sum of different power function [-100, 100] 0

CEC03 Zakharov function [-100, 100] 0

Simple multimodal functions

CEC04 Rosenbrock’s function [-100, 100] 0

CEC05 Rastrigin’s function [-100, 100] 0

CEC08 Noncontinuous rotated Rastrigin’s function [-100, 100] 0

CEC09 Levy function [-100, 100] 0

Hybrid functions

CEC11 High conditioned elliptic function [-100, 100] 0

CEC12 Discus function [-100, 100] 0

CEC13 Ackley’s function [-100, 100] 0

Table 11: Optimization comparison of two algorithms (CEC2017).

F Algorithm
D = 50 D = 200 D = 1000

ACave SD SR ACave SD SR ACave SD SR

CEC01
WOA 2:25E − 50 1:49E − 49 100% 6:59E − 50 2:95E − 49 100% 2:41E − 49 1:14E − 48 100%

IWOA 6:76E − 72 3:41E − 71 100% 1:53E − 64 9:75E − 64 100% 1:14E − 64 5:83E − 64 100%

CEC02
WOA 0:00E + 00 0:00E + 00 100% 0:00E + 00 0:00E + 00 100% 0:00E + 00 0:00E + 00 100%

IWOA 0:00E + 00 0:00E + 00 100% 0:00E + 00 0:00E + 00 100% 0:00E + 00 0:00E + 00 100%

CEC03
WOA 1:64E + 01 2:04E + 01 16% 8:92E + 02 1:59E + 02 0% 1:80E + 03 3:03E + 02 0%

IWOA 1:93E + 00 2:48E + 00 62% 8:12E + 02 1:36E + 02 0% 1:69E + 03 1:64E + 02 0%

CEC04
WOA 1:08E + 01 2:83E + 01 0% 6:87E + 00 4:09E − 01 0% 6:87E + 00 4:24E − 01 0%

IWOA 6:35E + 00 1:28E + 00 4% 6:11E + 00 1:75E + 00 8% 6:48E + 00 9:28E − 01 2%

CEC05
WOA 0:00E + 00 0:00E + 00 100% 0:00E + 00 0:00E + 00 100% 0:00E + 00 0:00E + 00 100%

IWOA 0:00E + 00 0:00E + 00 100% 0:00E + 00 0:00E + 00 100% 0:00E + 00 0:00E + 00 100%

CEC08
WOA 3:58E + 00 8:22E + 00 68% 7:11E − 17 3:48E − 16 100% 3:55E − 17 2:49E − 16 100%

IWOA 0:00E + 00 0:00E + 00 100% 0:00E + 00 0:00E + 00 100% 0:00E + 00 0:00E + 00 100%

CEC09
WOA 1:13E − 01 1:17E − 01 100% 1:88E + 00 6:52E − 01 100% 4:35E + 00 6:82E − 01 100%

IWOA 4:95E − 04 7:59E − 04 100% 7:21E − 01 3:23E − 01 100% 3:49E + 00 6:53E − 01 100%

CEC11
WOA 1:67E − 53 8:70E − 53 100% 4:64E − 50 3:25E − 49 100% 4:62E − 53 2:34E − 52 100%

IWOA 9:59E − 71 5:49E − 70 100% 4:51E − 68 2:82E − 67 100% 1:45E − 67 6:72E − 67 100%

CEC12
WOA 2:70E − 56 1:18E − 55 100% 1:62E − 58 6:20E − 58 100% 1:20E − 55 5:23E − 55 100%

IWOA 3:53E − 76 1:67E − 75 100% 5:52E − 71 3:75E − 70 100% 6:53E − 69 4:54E − 68 100%

CEC13
WOA 4:80E − 15 2:27E − 15 100% 4:65E − 15 2:06E − 15 100% 4:87E − 15 2:53E − 15 100%

IWOA 3:87E − 15 2:60E − 15 100% 3:94E − 15 2:25E − 15 100% 4:16E − 15 2:64E − 15 100%
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“=” indicates that the performance of the two algorithms is
equivalent, and “NA” indicates that the comparison is inva-
lid, that is, the performance of the two algorithms is
equivalent.

According to the Wilcoxon rank sum test results, most
of the test values obtained by comparison with the improved
algorithm are less than 0.05. The test values of functions
CEC02, CEC05, and CEC08 are “NA,” indicating that when
solving these three test functions, the performance of the
improved algorithm is equivalent to that of the original algo-
rithm. Except function CEC13, there are significant differ-
ences in solving other functions. Therefore, it can be
considered that the improved algorithm is effective.

7. Conclusions

In this paper, an optimal deployment model based on
MINLP is established for the position deployment optimiza-
tion of mobile conventional missiles, and a two-stage solu-
tion method of the model is proposed. The whale
optimization algorithm is improved from two aspects of
convergence factor and optimal individual variation, which
provides a new method for solving the position deployment
optimization problem. The example shows that the model
established in this paper is easy to solve and is helpful to
the rational allocation of missile positions. And the calcula-
tion result of the model is no longer a single data, but a
group of data with reference significance, which is more con-
ducive to the deployment and construction of missile posi-
tions. At the same time, the experimental result of test
functions shows that the improved WOA proposed in this
paper has fast convergence speed and high convergence
accuracy and can effectively solve large-scale optimization
problems.

At the same time, the models and methods proposed in
this paper also have certain limitations. On the one hand,
the deployment optimization of positions is a complex opti-
mization problem, involving many factors, which needs to
be further improved in the assumption of operation scheme
and position configuration mode. On the other hand,
although the improved WOA proposed in this paper has a
good optimization effect, compared with the WOA, the con-

vergence speed of the improved algorithm in the early stage
of search is not much improved, and it also needs to be fur-
ther improved.

Next, the research will be improved from two aspects:
the first is to explore the more complex location configura-
tion mode for location optimization problems. The second
is for the improved WOA, and the generation method of
the initial population of the algorithm will be improved to
accelerate the convergence speed of the improved algorithm
in the initial search.
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