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Trajectory prediction for hypersonic glide targets is a difficult task that needs to be solved. To improve the prediction precision for
hypersonic glide targets, based on the analysis of the target’s maneuver characteristic, an intelligent trajectory prediction algorithm
based on the maneuver mode identification is proposed in this paper. Firstly, according to the typical maneuver modes of the
target, a group of parameter suitable for maneuver mode identification and parameter estimation is proposed. The proposed
maneuver parameters can reflect the maneuvering characteristics of the target than the other control parameters. Then, the
rationality of parameters is analyzed. Secondly, using the long-short-term memory network (LSTM), the structure of intelligent
trajectory prediction based on maneuver mode identification is proposed. The proposed prediction method is designed to
improve the prediction accuracy by combining the target dynamic model with the flight data. Finally, the maneuver trajectory
data set is established to train and test the method. For the test data set, when the observation time for the target is 200 s and
the prediction time is 150 s, with a fast prediction speed, our method’s average error of spatial distance (AESD) is less than
2.9 km, and the maximum error of spatial distance (MESD) is less than 6.9 km. The result is better than other compared
mainstream methods. And it is also proved valid with some observational error.

1. Introduction

Hypersonic glide targets can glide in the near space with a
high speed and high mobility. The targets usually have a
flight speed higher than Mach 5, a longitudinal maneuver-
able range of tens of kilometers and a lateral maneuverable
range of hundreds of kilometers [1]. Compared with the bal-
listic target, its longitudinal and lateral maneuverability
makes it more difficult to predict its trajectory precisely.
Therefore, the trajectory prediction for hypersonic glide tar-
gets has been a greater challenge for the interception of
interceptors which realize handover between midcourse
and terminal guidance according to high probability region
prediction [2].

To predict the trajectory of hypersonic glide targets more
accurately, the maneuver characteristics of them need to be
analyzed. To maximize the longitudinal range and meet
the constraints of trajectory points and no-fly zones during
flight, a variety of maneuvering modes may be adopted in

the trajectory of the target. In the longitudinal direction,
according to whether there exists skip glide in the target’s
trajectory, the modes can be divided into two types: equilib-
rium and skip glide maneuver. Using optimization methods,
Ruan [3] proved that the hypersonic target can reach a larger
longitudinal range gliding with the maximum lift-to-drag
ratio, while the trajectory is usually not in equilibrium glide
maneuver. Ferreira [4] and Chen et al. [5] analyzed the long
period trajectory of equilibrium glide first, fitting skip glide
maneuver into shock curve by Liouville transformation
and general multiple scale theory (GMS) method, and gave
the formula for the number of skip maneuver. For the lateral
maneuver, the target usually adopts a weaving maneuver
and turning maneuver according to the need for penetration.
P. Zarcha et al. [6, 7] demonstrated that the target can get rid
of the interceptor effectively in the weaving maneuver. T.r.
Morris et al. [8, 9] proved that a hypersonic glide target
can avoid the no-fly zone by turning maneuver when gener-
ating the nominal trajectory. For several maneuver modes, Li
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et al. [10] formulated the trajectory expression, deduced the
acceleration variation law, and proposed the trajectory
generation method considering constraints. The trajectory
characteristics in several hypersonic maneuver modes are
analyzed in the above literature, which provides the theoret-
ical grounding for our new maneuver parameters to identify
maneuver modes in this paper.

According to the prediction mechanism, the current tra-
jectory prediction methods of hypersonic glide targets can be
divided into three types: equation analytical method, trajec-
tory fitting method, and control parameter estimation. The
equation analytical method can obtain the analytic solution
of the target trajectory using the two-body law, which is
proved very effective for the ballistic target. However, its
only low-order approximate solution can be obtained for
an unconventional ballistic target like a hypersonic glide tar-
get. Chaptman [11] and Loh et al. [12] et al. proposed
approximate analytical solutions of hypersonic target trajec-
tory under certain assumptions. Vinh et al. [13, 14] pro-
posed the second-order approximate solutions of skip glide
and equilibrium glide with constant Angle of attack, but
the solutions were pretty complex. Lu et al. [15] regarded
the quasi-equilibrium glide state of lift vehicles as a regular
perturbation problem. The longitudinal trajectory of quasi-
equilibrium glide was divided into the combination of equi-
librium glide and high-order terms, and the error between
the real solution and the low-order solution is discussed.
The equation analytic method can obtain a predicted trajec-
tory without the trajectory iteration, which can reach a faster
prediction speed. But the precision of this method is
restricted because the exact analytical solution cannot be
obtained effectively.

The second type is trajectory fitting method, in which
linear combination of simple basis functions is used to fit
the target trajectory function according to the spatial charac-
teristic of target trajectory [16]. Han et al. [17] established a
polynomial model for trajectory of hypersonic glide target
and obtained predicted trajectory by estimating the optimal
parameters of the polynomial model. In ambition to this,
Han et al. [18] also tried to divide the target trajectory
directly into several parts without studying the control law
and obtained predicted trajectory by fitting the variation
law of trajectory state like flight height. The trajectory fitting
method performs well when identifying the trajectory char-
acteristics easily, while it is not suited to predict a large num-
ber of trajectories in different maneuver modes.

The third type is estimating the control parameter to
obtain the predicted trajectory. By fitting the variation law
of the key parameters, the predicted trajectory of the target
is obtained by integrating from the last observed state. Lei
and Han et al. [19, 20] obtained the predicted trajectory
through the polynomial fitting of aerodynamic parameters
and integrating control parameters with the dynamic model.
Li et al. [21] proposed several control laws for different
observed trajectories of targets to obtain the predicted trajec-
tory, which could fit the change law of the target’s control
parameters. Zhai et al. [22] proposed a new control param-
eter that could reduce the dimensionality of noncooperative
target states effectively and fitted in a simple function. The

method of estimating control parameters has better predic-
tion accuracy, while the observed state is accurate, and the
control law is fitting well. However, the temporal law of
the control parameters is usually not a simple function.
Improper fitting methods for the parameter will lead to the
rapid accumulation of integral errors. Therefore, to improve
the prediction precision, a new trajectory prediction method
that can provide more prior information and fit the change
law of control parameters better is proposed in this paper.

The fitting methods of trajectory prediction for hyper-
sonic glide targets all rely on models or trajectory character-
istics, which have a low utilization rate of flight data.
However, in recent years, data-driven temporal sequential
prediction methods have obtained good effects [23, 24], by
which the trajectories of reentry glide targets can be pre-
dicted with the help of flight data. On the other hand, in
recent years, deep learning technology has shown strong
advantages in temporal law prediction [25] and target recog-
nition [26], which had been widely used in vessel trajectory
prediction [27, 28] and vehicle trajectory prediction [29].
Especially, several complicated temporal sequential predic-
tion problems have been solved based on the recurrent neu-
ral network (RNN), which has shown the powerful studying
ability of data. For example, Kailiu et al. [30] combined long-
and short-term memory networks (LSTM) and the Gaussian
process regression method (GPR) to predict battery capacity
and service life in the future accurately. At the same time, a
RNN framework is designed to obtain an effective daily
capacity prediction value whether storage of battery has been
observed [31]. And the neural networks also were applied to
hypersonic trajectory prediction. Yang et al. [32] modified
the trajectory prediction error based on the generalized
regression neural network (GRNN), by which the accurately
predicted trajectory could be obtained. Li et al. [33] com-
bined the neural network and Kalman filter, based on the fil-
tering result obtained the predicted trajectory. Cai et al. [34]
established trajectory data sets of different maneuver modes
for hypersonic targets and realized the classification and pre-
diction of hypersonic glide target trajectory by using LSTM.
Xie et al. [35] designed a gated recurrent unit (GRU) based
on a double-channel neural network and proposed a trajec-
tory data set. According to the network, the predicted trajec-
tories of the hypersonic glide target were obtained. All the
above methods regard the prediction of the target’s trajec-
tory state as the prediction of a temporal sequence and use
a temporal neural network to learn the state’s variation
law. However, these methods cannot make full use of the
information of the observed target, which lacks a combina-
tion with the target’s dynamic model.

1.1. Motivation and Contribution. Identifying the maneuver
modes of the target accurately is helpful to trajectory predic-
tion. And considering using a temporal neural network to
learn the temporal law of the target’s control parameters
may obtain better results than fitting with a simple function,
an intelligent trajectory prediction algorithm for hypersonic
glide targets is proposed in this paper, which is based on
maneuver mode identification by combining LSTM with
maneuver parameter model. Compared with the traditional
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trajectory prediction of hypersonic glide targets, the flight
data are used to improve the accuracy of maneuver mode
identification and trajectory prediction. And compared with
the data-driven prediction methods, the dynamic models
and maneuver characteristics are used to provide more
information for prediction.

In this paper, the dynamic models and common maneu-
ver modes of hypersonic glide targets are given firstly.
According to the trajectory characteristics in different
maneuver modes, a group of maneuver parameters suitable
for maneuver mode identification and parameters estima-
tion is proposed, when the rationality of parameters is
deduced. Then, an intelligent trajectory prediction algorithm
based on maneuver mode identification is proposed, which
consists of the initial and last point modification network,
maneuver parameters modification network, and prediction
network. By generating and learning the hypersonic target
trajectory data set, our method can predict the trajectory of
the target effectively and obtains excellent prediction preci-
sion. In the case of the observation time is 200 s and the pre-
diction time is 150 s, the prediction accuracy of our model
reaches 98.63%, the prediction consuming time is about
0.0105 s, the average error of spatial distance (ASDE) is less
than 2.64 km, and the maximum error of spatial distance
(MSDE) is less than 6.91 km. And it is proved valid with
the larger observational error. Finally, compared with some
mainstream prediction methods, the simulation results show
that our method has better prediction precision.

The innovation of this paper can be summarized in
several points:

(1) A new group of maneuver parameters is proposed,
which is easier to be estimated and to identify the
maneuver modes. And its rationality is analyzed
according to the dynamic models of the hypersonic
glide target

(2) An intelligent trajectory prediction algorithm for
hypersonic glide targets based on maneuver mode
identification is proposed, and the algorithm’s
framework, process, and training loss function are
introduced

(3) The data set for the trajectory of hypersonic glide
targets in different maneuvers is established, based
on which several neural networks in the algorithm
are trained and tested. The ablation experiment
results of each partial network in the algorithm are
shown when the experiment results with different
observational errors are shown. And the prediction
results of our method are compared with part of
the current trajectory prediction algorithms

1.2. Organization. This paper is organized as follows: Section
1 introduces the research status of maneuvering characteris-
tics and trajectory prediction of hypersonic glide targets
when the work of this paper is introduced briefly. Section
2 provides the dynamic model and common maneuver
modes of hypersonic glide targets; then, definition and anal-
ysis of maneuver parameter are introduced. Section 3 pro-

vides the framework and process of our trajectory
prediction algorithm. In Section 4, the simulation data set
is constructed, and the simulation result is shown. Conclu-
sions are drawn in Section 5.

2. The Dynamic Model of Hypersonic Glide
Target and Analysis of Parameters

2.1. Dynamic Models of Hypersonic Glide Targets. Using the
earth-centered earth-fixed coordinate (ECFG), east-north-up
(ENU) coordinate, velocity-turning-climb (VTC) coordinate,
and geographic coordinate, based on simple atmospheric
and gravity models, while ignoring the effect of earth rotation,
the dynamic model of hypersonic glide targets can usually be
shown as

_h = v sin θ

_ϕ =
v cos θ sin ψ

Re + hð Þ cos φ

_φ =
v cos θ cos ψ

Re + hð Þ

_v = −
D
m

− g sin θ

_θ =
L cos β
mv

+ cos θ
v

Re + h
−
g
v

� �

_ψ =
L sin β

mv cos θ
+
v cos θ sin ψ tan φ

Re + h

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

, ð1Þ

where h is the flight height of target, ϕ is the longitude of tar-
get, φ is the latitude of target, v is the speed of target, θ is the
path angle of target,ψ is the heading angle of target, L is the lift
on the target, D is the drug on the target, and Re is the earth
radius.

Switch the state of the target to the ENU coordinate,
when h < <Re, the new state of the target can be shown as
S = ½X, Y , Z, _X, _Y , _Z�.

X = ϕRe

Y = φRe

Z = h

_X = v sin ψ cos θ
_Y = v cos ψ cos θ
_Z = v sin θ

8>>>>>>>>>>><
>>>>>>>>>>>:

, ð2Þ

where X is the east position of target in ENU, Y is the north
position of target in ENU, and Z is the up position of target
in ENU.
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In general, the dynamic model of the hypersonic glide
targets can be transformed into

_x tð Þ =
03×3 I3×3
03×3 03×3

" #
x tð Þ +

03×3
I3×3

" #
1
2
ρV2TENU

VTC

ξv tð Þ
ξt tð Þ
ξc tð Þ

2
664

3
775 + g tð Þ

0
BB@

1
CCA,

ð3Þ

where ξv, ξt , ξc are the aerodynamic parameters of target in
VTC coordinate.

2.2. Analysis for Maneuver Modes of Hypersonic Glide
Targets. According to literature [10], hypersonic glide targets
have several maneuver modes in the longitudinal and lateral
directions. Lateral maneuvers usually contain weaving
maneuver and turning maneuver, and longitudinal maneu-
vers usually contain equilibrium glide and skip glide. The
definition is shown as follows:

2.2.1. Longitudinal Maneuver. If the target is in equilibrium
glide maneuver mode, it must meet

_θ =
L cos β
mv

+ cos θ
v

Re + h
−
g
v

� �
= 0: ð4Þ

In general, cos θ ≈ 1 if target is in equilibrium glide
maneuver mode. And the equilibrium glide maneuver equa-
tion can be simplified as L cos β/m = g − v2/Re + h. If the
target’s aerodynamic force meets this equation, it is in the
equilibrium glide maneuver mode. Otherwise, the target’s
trajectory appears as a skip glide. According to the common
guidance methods of hypersonic glide targets, an attack
angle profile is usually designed to finish the longitudinal
guide. By the attack angle profile, the target can finish the
skip glide with longer range when constraints are met.

2.2.2. Lateral Maneuver. The trajectory in lateral maneuver
mode of hypersonic glide targets usually contains weaving
maneuver and turning maneuver. And the weaving maneu-
ver can be expressed as follows:

l =
l0 + lb bð Þ

2 ⋅ sin ω bð Þb +w bð Þð Þ , ð5Þ

where l0 is the base line position of weaving maneuver mode,
lb is the range of maneuver mode, ω is the frequency of
weaving, and w is the initial phase position.

The trajectory in turning maneuver mode is usually a
monotonous curve line that can be expressed by polynomial
functions.

l = 〠
N

i=0
f ib

i, ð6Þ

where f i is constants coefficient and the trajectory meets dl
/db < 0 or dl/db > 0.

2.3. Analysis of Maneuver Parameter Model. According to
the analysis in Section 2.2, there are four typical types of lon-
gitudinal and lateral maneuver modes for hypersonic glide
targets. And based on the analysis of maneuver characteris-
tics, it is found that the longitudinal maneuver mode’s iden-
tification mainly depends on whether the longitudinal
equilibrium equation can be satisfied. What is more, the
lateral maneuver mode identification depends on the func-
tional relation between lateral and baseline trajectory. There-
fore, the original parameter relation of the ENU coordinate
is transformed in this section.

Assuming that the aerodynamic parameters of the target
in the ENU coordinate are ξeðtÞ, ξnðtÞ, ξuðtÞ, The functional
relation between ξe, ξn, ξu and ξv, ξt , ξc is

ξd tð Þ
ξt tð Þ
ξc tð Þ

2
664

3
775 = TVTC

ENU

ξe tð Þ
ξn tð Þ
ξu tð Þ

2
664

3
775, ð7Þ

where TVTC
ENU is the transformation matrix between ENU and

VTC coordinate.
And assuming the included angle between the baseline

direction of the target and the longitudinal direction (east)
is σ, the parameters of the target in the baseline, lateral,
and up direction are ξbðtÞ, ξlðtÞ, ξuðtÞ, and then, the function
relation between ξb, ξl, ξu and ξe, ξn, ξu is

ξb tð Þ
ξl tð Þ
ξu tð Þ

2
664

3
775 =

cos σ sin σ 0

−sin σ cos σ 0

0 0 1

2
664

3
775
−1 ξe tð Þ

ξn tð Þ
ξu tð Þ

2
664

3
775 = TENU

AX
� �−1 ξe tð Þ

ξn tð Þ
ξu tð Þ

2
664

3
775,
ð8Þ

where TENU
AX is the transformation matrix between baseline

coordinate and ENU coordinate.
Therefore, the dynamic equation of the target can be

expressed as

_x tð Þ =
03×3 I3×3

03×3 03×3

" #
x tð Þ +

03×3
I3×3

" #
1
2
ρV2TENU

AX

ξb tð Þ
ξl tð Þ
ξu tð Þ

2
664

3
775 + g tð Þ

0
BB@

1
CCA,

ð9Þ

where ρ is the atmospheric density and I3×3 is the standard
matrix whose size is 3 × 3.

Let ξuq = ξu − g/q, the baseline-lateral-up coordinate is
called the BLU coordinate, and the aerodynamic accelera-
tion in the BLU coordinate can be expressed as

ab

al

au

2
664

3
775 =

1
2
ρV2

ξb

ξl

ξuq

2
664

3
775: ð10Þ

The dynamic model of the hypersonic glide targets can
be transformed as
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_h =V sin θ

_ϕ =
V cos θ sin ψ

Re + hð Þ cos φ

_φ =
V cos θ cos ψ

Re + h

_V = −
cos Δδ sin ψ cos θ + sin Δδ cos θð Þξb

2
ρV2 +

cos Δδ cos ψ cos θ − sin Δδ sin ψð Þξl + cos Δδ sin θξu
2

ρV2 − g sin θ

_θ =
sin ψ sin ψb − cos ψb cos ψð Þξb + sin ψ sin ψb + cos ψ cos ψbð Þð ÞξlρV

2
+

cos θ
V

Re + h
−

g
V

� �

_ψ = −sin ψ sin ψb sin θ − cos ψ cos ψb sin θð ÞξbρV +
2 cos θ

+

sin ψ cos ψb sin θ − cos ψ sin ψb sin θð Þξl + cos θξuð Þρv
2 cos θ

+
V cos θ sin ψ tan φ

Re + h

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

,

ð11Þ

where ψb is the heading angle of the baseline.
According to the definition of lateral maneuver in

Section 2.2, the lateral maneuver distance often can be
thought to have a certain functional relation with the base-
line distance, which is more obvious in the lateral curvature.
If the target’s lateral maneuver mode is weaving maneuver,
the lateral curvature can still be seen as a sine function.
And if the target’s lateral maneuver mode is turning maneu-
ver, the lateral curvature ra can still be seen as a polynomial
function whose order decreases. The functional relation
between ra and ξb, ξl is

ra =
d2l

db2
=
l″b′ − b″l′

b′3

=
ρ

2
V2ξlv cos θ cos Δψ −V2ξbv cos θ sin Δψ

V3 cos3θ cos3Δψ
,

=
ρ

2
ξl cos Δψ − ξb sin Δψ

cos2θ cos3Δψ
ð12Þ

where Δψ is the difference value between the yaw angle of
the target with the baselines.

2.3.1. Analysis of Longitudinal Maneuver Parameters.

ξuq =
€Z
q
=
€h
q
= v sin θð Þ′ = _v sin θ + _θv cos θ: ð13Þ

When the target’s longitudinal maneuver is equilibrium
glide, _θ = 0, θ is unchanged and close to 0. Then, ξuq = _v sin
θ = ðD/m − g sin θÞ sin θ/q ≈Dθ/mq = ξdθ, and ξuq changes
stably and smoothly. The result of ξuq changes is shown in

Figure 1(a). For skip glide, _θ is a fluctuation value between
the positive value and the negative value. Because v cos θ is
always a positive value, _θv cos θ can be regarded as a vibration
term added on the previous term, and skip glide’s result is
shown in Figure 1(b). As shown in Figure 1, the ξuq in equilib-

rium glide mode changes smoothly. However, it is more
likely that the wave effect added on the smooth curve in
skip glide mode.

2.3.2. Analysis of Lateral Maneuver Parameter. Because the
initial position and baseline direction of the target’s trajec-
tory cannot be effectively inferred from the observation data,
therefore, the initial velocity direction of the first observation
point is chosen to replace the baseline direction in this
paper. The rationality is analyzed as follows:

(1) The Rationality for Weaving Maneuver. For weaving
maneuver, l≪ b, and the overload of hypersonic glide targets
is limited, and its lateral velocity increases slowly and far less
than the baseline velocity, so dl/db is close to 0. The offset
between the first observation point’s velocity direction with
the baseline direction is a small value.

Assuming the first observation point position is ðx0, y0Þ,
the heading angle is σ. And the actual heading angle of base-
line direction is σ + Δσ. Δσ is a small value, so the following
function relation exists

cos σ −sin σ

sin σ cos σ

" #
y − y0

x − x0

" #
=

l

b

" #
, ð14Þ

where l is the lateral position of target in the actual BLU
coordinal and b is the longitudinal position in the actual
BLU coordinal.

If regard the first observation point as the initial position
of target, then

cos σ + Δσð Þ −sin σ + Δσð Þ
sin σ + Δσð Þ cos σ + Δσð Þ

" #
y

x

" #
=

l′

b′

" #
, ð15Þ

where l′ is the lateral position of the target in the observa-
tion BLU coordinal and b′ is the longitudinal position in
the observation BLU coordinal.

Because Δσ is a small value and l≪ b

l′

b′

" #
≈

cos σ y − y0ð Þ − sin σ x − x0ð Þ − Δσ sin σ y − y0ð Þ + cos σ x − x0ð Þð Þ +
y0 cos σ + x0 sin σ − Δσ sin σy0 − Δσ cos σx0ð Þ

sin σ y − y0ð Þ + cos σ y − y0ð Þ + Δσ cos σ y − y0ð Þ − cos σ x − x0ð Þð Þ +
y0 sin σ + x0 cos σ + Δσ cos σy0 − Δσ sin σx0ð Þ

2
666664

3
777775,

=
l − Δσb + y0 cos σ + x0 sin σ − Δσ sin σy0 − Δσ cos σx0ð Þ
b + Δσl + y0 sin σ + x0 cos σ + Δσ cos σy0 − Δσ sin σx0ð Þ

" #
,

≈
l − Δσb + y0 cos σ + x0 sin σ − Δσ sin σy0 − Δσ cos σx0ð Þ

b + y0 sin σ + x0 cos σ + Δσ cos σy0 − Δσ sin σx0ð Þ

" #
:

ð16Þ
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Then,

d2l′
db′2

=
d dl′/dt
� �

dt/db′
� �

dt
dt
db

=
€l′ _b′ − €b′l′

  b⃛′

≈
€l − Δσ€b
� �

_l − _l − Δσ _b
� �

€l

  ⃛l

=
€b_l‐ _b€l
  ⃛l

=
d2l

db2
:

ð17Þ

Therefore, trajectory curvature for weaving maneuver
can be simplified as

ra =
ρ

2
ξl

cos2θ
: ð18Þ

The curvature effect of weaving maneuver is shown in
Figure 2. As shown in Figure 2, ra changes between positive
with negative value, and its change looks like a sinusoidal
curve can be identified easily.

(2) The Rationality of Turning Maneuver. According to the
definition of turning maneuver, the expression of turning
maneuver is l =∑n

i=1 f ib
i, and _lðbÞ > 0 or _lðbÞ < 0, the sign

of trajectory curvature K does not change. K is expressed
as follows:

K =
€l

1 + _l
2� �3/2 : ð19Þ

Therefore, when the curvature’s sign does not change,

we can obtain

€l ≤ 0, if _l < 0
€l ≥ 0, if _l > 0

(
: ð20Þ

As shown in Figure 3, a new B′L′U coordinate is estab-
lished from the first observation point. And the observation
position in the new coordinate is

b′

l′

" #
=

1ffiffiffiffiffiffiffiffiffiffiffi
1 + _l

2
0

q 1 _l0

−_l0 1

" #
Δb

l − l0

" #
=

Δb + _l0 l − l0ð Þffiffiffiffiffiffiffiffiffiffiffi
1 + _l

2
0

q
−_l0Δb + l − l0ð Þffiffiffiffiffiffiffiffiffiffiffi

1 + _l
2
0

q

2
6666664

3
7777775
,

ð21Þ

where l0 is the longitudinal position of the target in the orig-
inal BLU coordinate, and Δb is the difference value between
the target lateral position with the first observation point’s
lateral position in the original BLU coordinate.

Due to the sign of _l which does not change in the turning
maneuver, _lðl − l0Þ is always greater than 0. Assuming there
will be no turning and turning trajectory during the turning
trajectory, let _l > 0,€l > 0 in the original design trajectory.
And because

dl′
db′

=
_l − _l0
1 + _l0_l

> 0, ð22Þ

d2l′
db′2

=
€l 1 + _l

2
0

� �3/2

1 + _l_l0
� �3 =

€l

1 + _l_l0
� �3/2

1 + _l
2
0

� �3/2

1 + _l_l0
� �3/2 : ð23Þ
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t (s)

–3.5
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–2
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q

Trajectory 1
Trajectory 2
Trajectory 3

(a)
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0 ⨯10–4

𝜉 u
q

(b)

Figure 1: The variation of ξuq. (a) is the variation of ξuq in equilibrium glide, and (b) is the variation of ξuq in skip glide.
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Then, we can obtain

€l

1 + _l0
2� �3/2 ≥

d2l′
db′2

≥
€l

1 + _l
2� �3/2

1 + _l
2
0

� �3/2

1 + _l
2� �3/2 = Kb′

1 + _l
2
0

� �3/2

1 + _l
2� �3/2 > 0:

ð24Þ

Therefore, fitting the lateral trajectory in the B′L′U
coordinate by a polynomial function, the trajectory can still
be regarded as a turning maneuver according to the defini-
tion. For the turning maneuver, the curvature ra is expressed
as follows:

ra =
ρ

2
ξl cos Δσ − ξb sin Δσ

cos2θ cos3Δδ
: ð25Þ

The variation of curvature ra is shown in Figure 4.
Figures 4(a) and 4(b) represent the variation of parameters
ra in longitudinal equilibrium and skip glide modes. For
turning maneuver, the lateral overload of the hypersonic
glide target is limited, so the trajectory curvature is a small
value. Because the target’s state is coupled to the overload
constraint, its flight trajectory is influenced by the longitudi-
nal maneuver mode, even so ra can still keep stable within a
certain range and its variation is smooth.

In conclusion, according to the variation of ξb, ra, ξuq,
the maneuver modes of the target can be identified effec-
tively. According to the definition of maneuver, if the trajec-
tory of weaving maneuver contains sine term, ra is still the
sine function of b. If the trajectory is in turning maneuver
mode, its lateral design function is usually a high-order poly-
nomial function. Obtained predicted trajectory by ra can
reduce the function’s order effectively. Based on the param-
eters ξb, ra, ξuq, an intelligent trajectory prediction for hyper-
sonic glide targets is designed in Section 3.

3. Intelligent Trajectory Prediction Algorithm
Based on Maneuver Mode Identification

In the above section, the maneuver parameters ξb, ra, ξuq are
deduced, and the rationality of them has been analyzed.
Therefore, an intelligent trajectory prediction algorithm for
hypersonic glide targets based on maneuver mode identifica-
tion is proposed in this section.

3.1. LSTM Neural Network. The long and short temporal
memory neural network (LSTM) is specially designed to
solve temporal sequence problems. The unit of LSTM con-
tains forgetting gate, input gate, and output gate, several three
gates structures, which can protect and control the temporal
information more effectively than the common unit structure
of RNN. The structure of LSTM unit is shown in Figure 5.

In Figure 5, f t is the forgetting gate; f t = δðWf ⋅ ½ht−1, xt�
+ bf Þ. Forgetting gate reads the output of the previous unit
and the input of the current unit. δ is the sigmoid function,
and Wf , bf are the network parameters of forgetting gate. ~Ct
= tanh ðWi ⋅ ½ht−1, xt� + biÞ and it = δðWi ⋅ ½ht−1, xt � + biÞ

constitute the input gate, where Wf , bf are the network
parameters of the input gate. it determines the information
to be updated, and ~Ct generates the vector to select the content
to be updated and finally update the unit state combining with
two parts; ot = δðWo ⋅ ½ht−1, xt� + boÞ, ht = ot ⋅ tanh ðCtÞ is the
output value of the out gate, where Wo, bo are the network
parameters of output gate. The output gate determines the
output content. LSTM network has an excellent memory
and learning ability for temporal information and can extract
and fit temporal law effectively. Using the LSTM network and
maneuver parameters model, a trajectory prediction algorithm
based on maneuver mode identification is proposed in
this paper.

3.2. Intelligent Trajectory Prediction Algorithm. From the
analysis in Section 2.3, the function relation between ra with
ξl is

2ra cos2Δσ cos2θ
ρ

+ ξb tan Δσ = ξl: ð26Þ

For different maneuver modes, there are different
equations with prior information that can be used to predict
trajectory. The transformation relationship of different
maneuver modes is shown in Table 1.
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As shown in Table 1, the dynamic models of different
maneuver modes differ greatly. It means that the prediction
precision can be improved when the maneuver mode of tar-
get is identified before predicting trajectory. What is more,
the lateral and longitudinal maneuver modes of the target
can be identified by estimating the three maneuver parame-
ters ½ξb, ra, ξuq�, and the predicted trajectory can be obtained
through prior information with Equation (11).

3.2.1. Structure of Trajectory Prediction Algorithm

(1) Initial and Last Point Modification Network φilð⋅Þ. The
prediction algorithm in this paper makes the first observa-
tion point and its velocity direction the initial position and
baseline direction. Therefore, the velocity direction of the
initial point must be accurate enough. On the other hand,
for the trajectory prediction using integration, the initial
point’s state of integration has a great influence on the
prediction accuracy. The original data and observation data
were brought into the initial and last point modification
network to modify the positions of the observed initial
and last point position. The size of the LSTM network is

½6, 128, 2�. The observed normalized initial and last point
6-dimensional sequence ½Roi, ϕoi, φoi, voi, θoi, ψoi� and ½Rol,
ϕol, φol, vol, θol, ψol� are brought into the LSTM network,
which has 2 layers with 128 intermediate nodes. Then, connect
to the fully connected network for training. The initial and last
point modification network is used to obtain the direction of
modified observation initial point heading angle ψbm and
modified observation last point state ½Rl, ϕl, φl, vl, θl, ψl�.

(2) Maneuver Parameter Modification Network φmð⋅Þ. Due
to the error of the filtering algorithm, the variation of the
maneuver parameters obtained by filtering is not smooth.
Therefore, the error of directly applying the maneuver
parameter obtained by filtering into the temporal sequence
prediction network is pretty large. The original maneuver
parameter data and filtering maneuver parameter data are
brought into the parameter modification network, which
can modify and smooth the variation of maneuver parame-
ters. The size of the LSTM network is ½3, 128, 2�. Then,
connect to the fully connected network. The normalized

maneuver parameter data after filtering ξfb , ra
f , ξfuq are

brought into the parameter modification network for train-
ing, and the modified maneuver parameter data ξmb , ram,
ξmuq are obtained.
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Figure 4: The variation of ra in turning maneuver mode. (a) is the variation of ra in equilibrium glide. (b) is the variation of ra in skip glide.
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Table 1: Transformation relationship table.

Maneuver mode
Transformation relationship and prior

knowledge

Weaving equilibrium
glide

2ra/ρ = ξl , _θ = 0

Weaving skip glide 2ra cos2θ/ρ = ξl

Turing equilibrium
glide

2ra cos2Δσ/ρ + ξb tan Δσ = ξl , _θ = 0

Turning skip glide 2ra cos2Δσ cos2θ/ρ + ξb tan Δσ = ξl
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(3) Prediction Network. This network is used to learn
temporal sequence relationships from a large number of
original maneuver parameter data and predicted maneuver
parameters in the future. The presegment and postsegment
maneuver data are brought into the network to learn their
temporal sequence relationship. Similarly, the size of LSTM
is ½3, 128, 2�. Then, connect to the full connection network.
The network can predict the maneuver mode of the target
mp and maneuver parameters ξpb, rap, ξ

p
uq in the future.

The trajectory prediction structure based on maneuver
identification is shown in Figure 6, and the process of pre-
diction is as follows:

3.2.2. Data Normalization. In order to improve the learning
efficiency of the network, the observation data is normalized
first. Then, the upper and lower limits of all kinds of data
Xmax, Xmin are obtained by using the original data of all tra-
jectories, and the data is normalized as

X ′ = X − Xmin
Xmax − Xmin

: ð27Þ

Through the normalization operation, all the data can be
transformed into ½0, 1�, which is convenient for network
training.

3.2.3. Modification of the Initial and Last Point Position. The
normalized position of the observation initial and last point
is put into the start and last point modification network to
calculate the baseline direction and the position of the mod-
ified last point.

ψbm, Sl = φil Soð Þ: ð28Þ

3.2.4. Modification of Maneuver Parameters. Use the track-
ing algorithm to deal with the observation data to obtain
the filtering dataSf = ½Rf , ϕf , φf ,V f , θf , ψf �. Then, the new

filtering maneuver parameters ξf = ξfb , ra
f , ξfuq are calculated

according to the dynamic model M. The filtering parameters
are sent into the maneuver parameter modification network
φmð⋅Þ to obtain the modified maneuver parameters ξm = ξmb ,
ra

m, ξmuq.

ξm = φm ξf
� �

: ð29Þ

3.2.5. Trajectory Prediction. According to the temporal law of
the modified parameters ξmb , ram, ξ

m
uq, predict the longitudinal,

lateral maneuver mode, and maneuver parameter’s variation
law using the prediction network. According to the equation
in Table 1, the more accurate parameter ξml is obtained.
Finally, the trajectory of target Sp = ½Rp, ϕp, φp, Vp, θp, ψp� is
extrapolated integrally with the dynamic model and the mod-
ified position.

Sp =M Sl, ψbm, ξp
	 


: ð30Þ

3.3. The Loss of Algorithm. Prediction loss l contains three
parts: the loss of initial and last point modification network
loss lil, the loss of maneuver parameter modification network
lm, and the loss of prediction network lp, where the loss of pre-
diction network loss lp = lcls + lreg and lcls, lreg represent the loss
of mode identification network and the loss of maneuver
parameter prediction network. The mean square error is used
for the initial and last point modification network, the loss of
parameter maneuver parameter modification network, and
the loss of the prediction network. What is more, the cross-
entropy loss is used for the mode identification network. The
formulas of loss are shown as follows:

lif =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i Smlli − Sollið Þ2
N

s
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i Smili − Soilið Þ2
N

s
, ð31Þ

lm =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i ξmi − ξfið Þ2
N

s
, ð32Þ

lreg =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i ξpi − ξdi
	 
2

N

s
, ð33Þ

lcls = − lcls log pcls + 1 − lclsð Þ log pcls½ �, ð34Þ

where SmiliSmlli represent the position of the i − th predicted
start point and last point in a batch, SoiliSolli represent the posi-
tion of the i − th observed start point and last point in a batch,
and N represents the number of batches in Equation (31); ξmi
is the i − th modified maneuver parameter sequence in a
batch, and ξfi is the i − th filtering maneuver parameter
sequence in a batch in Equation (32); ξpi is the i − thmodified
maneuver parameter sequence in a batch, and ξdi is the i − th
generated maneuver parameter sequence in a batch in
Equation (33). lcls, pcls, respectively, represent the one-hot
value of label classification and prediction classification in
Equation (34).

4. Simulation

4.1. Maneuver Trajectory Data Set. According to the defini-
tion of hypersonic maneuver modes in 2.2, two maneuver
modes in the longitudinal direction are designed is this sec-
tion by using the equilibrium equation and attack angle pro-
file, when the weaving and turning maneuver trajectory in
the lateral direction are also designed. The specific formula
is shown in Table 2.where α − v is the attack angle-velocity
profile. Because the hypersonic glide target has a high initial
speed, a high angle of attack is usually be using in the start
stage, which can reduce the heat flux density of the target
to meet the constraints. On the other hand, to reach the
maximum longitudinal range, hypersonic glide targets
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usually use the maximum lift-to-drag ratio angle of attack.
The profile is as shown in

α =

αmaxV ≥V1
αK − αmax
V2 −V1

V −V1ð Þ + αmaxV2 ≤V < V1

αKV <V2

8>>><
>>>:

, ð35Þ

where αK is the maximum lift-drag ratio angle of attack, V1
is the extreme points of speed beyond the constraint, and V2
is the extreme points of speed within the constraint when the
target selects maximum lift-to-drag ratio angle of attack.

In this paper, according to the method of reference [21],
the attack angle corridor is used to limit the range of attack
angle. And the CAV-H aircraft [36] is used to generate 5000
trajectories in all four modes meeting the constraints: weav-
ing equilibrium glide, weaving skip glide, turning equilib-
rium glide, and turning skip glide. The generating
trajectories are shown in Figure 7. According to Figure 7,
all kinds of expected maneuver trajectories in longitudinal
and lateral directions can be generated.

4.2. Simulation Conditions

4.2.1. Simulation Environment. Matlab and Python are used
be the simulation environment. Pytorch framework is used
for neural network training. Select Inter I7 as CPU and
Geforce 2080TI as GPU in our simulation.

4.2.2. Data set. In this paper, the IMM-UKF algorithm [37]
is used to track observed 20, 000 trajectories at the position
(0.4°E, 0°N, 100). Assuming that the observational error of
radar is Gaussian error with ½ð30mÞ2, ð0:1°Þ2, ð0:1°Þ2�, the
original trajectory data of all trajectories from 400 to 600 s
are generated as observation data set and filtering data set.
And the original trajectory data from 600 to 750 s are used
as labels. The original trajectory data set and the maneuver

parameter data set are used for the training and prediction
of the initial and last point modification network, maneuver
parameter modification network, and prediction network.

4.2.3. Training Conditions and Method. Each network took
100 trajectories as a batch and is trained 1000 epochs in total.
The ADAM optimizer is used. And the training learning rate
is 0.001 for the first 10 epochs and then adjusted to 0.0001.

To improve the robustness of the network, the observa-
tion data with a wider range of observational errors can be
used to train the start and last point modification network.
And dynamic models error can be added when generating
the maneuver trajectory data set.

4.2.4. Definition of Error. In this paper, three types of errors
usually used in trajectory prediction are selected: average
error of spatial distance (AESD), final error of spatial dis-
tance (FESD), and maximum error of spatial distance
(MESD). The definition is expressed as follows:

AESD is the average spatial distance between original
trajectories and predicted trajectories

AESD =
∑N

i ∑
Lp
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi
pk − Xi

tk

� �2
+ Yi

pk − Yi
tk

� �2
+ Zi

pk − Zi
tk

� �2
r

/Lp
N

:

ð36Þ

FESD is the final spatial distance between original trajec-
tories and predicted trajectories

FESD =
∑N

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi
pLp − Xi

tLp

� �2
+ Yi

pLp − Yi
tLp

� �2
+ Zi

pLp − Zi
tLp

� �2
r

N
:

ð37Þ
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Figure 6: The prediction structure of the trajectory prediction based on the maneuver mode identification.

Table 2: Maneuver modes design formula.

Maneuver modes Weaving maneuver Turning maneuver Equilibrium glide Skip glide

Design formula l = l0/2 + l0/2 ⋅ sin ωbð Þ l = ab2 _θ = 0 α − v
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MESD is the maximum spatial distance between original
trajectories and predicted trajectories.

MESD =
∑N

i max
Lp

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi
pk − Xi

tk

� �2
+ Yi

pk − Yi
tk

� �2
+ Zi

pk − Zi
tk

� �2
r

N
,

ð38Þ

where N is the number of the test data set trajectories per
maneuver mode. Lp is the length of predicted temporal

sequence. ½Xi
pk, Yi

pk, Z
i
pk� represent the predicted position at

the time k of the i − th test trajectory when ½Xi
tk, Yi

tk , Z
i
tk�

represent the real position.

4.3. Simulation Results

4.3.1. The Simulation Result of the Initial and Last Point
Modification Network. According to analysis in Section 2.3,
the large offset of the observation initial point can lead to a
sharp increase of error for the trajectory prediction using
integration. On the other hand, the start state of integration
(the observation last point) has a great influence on trajec-
tory prediction’s precision. Especially the hypersonic target’s
path angle is small and close to 0, the instability of the obser-
vation last point may lead to a large longitudinal error of
spatial distance as shown in Figure 8. For weaving equilib-
rium glide maneuver, the path angle of target should be
unchanged, but the vibration of the observation last point
without modification leads to trajectory integrated to the

wrong direction, which obtains a large error of spatial dis-
tance. However, this problem can be solved better by using
the start and last point modification network.

4.3.2. Result of Maneuver Parameter Modification Network.
Since the filtering algorithm has limited suppression effect
on noise, the prediction result based on maneuver parame-
ters is easily affected by filtering the parameter’s instability.
As shown in Figure 9(a), in which the target is in the turning
skip glide mode, there is a large gap between filtering param-
eters and original parameters, so it is difficult to fit the
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Figure 7: Example trajectory in different maneuver modes. (a) represents trajectories in weaving equilibrium glide. (b) represents
trajectories in weaving skip glide. (c) represents trajectories in turning equilibrium glide. (d) represents trajectories in turning skip glide.

6000400020000

0
10

20

100

80

60

40

X (km)

Y (km
)

H
 (k

m
)

Original trajextory
Without modification
With modification
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original temporal sequence and predict the future temporal
sequence of maneuver parameters. However, it can be seen
from Figure 9(b) that the modified maneuver parameters
can fit the original parameters accurately after using the
parameter modification network. But the parameter’s
modification result is slightly worse in the early stage due
to the influence of instable filtering parameter, while the
fitting result is more accurate after LSTM modification in
the late stage.

Variation of error in each maneuver mode is shown in
Figure 10. It can be seen that the prediction errors in each

maneuver mode increase gradually. And there exist certain
errors in the prediction initial state, which is caused by the
error of the baseline direction and position of the observa-
tion last point with the start and last point modification net-
work. On the whole, the error in skip glide is greater than its
equilibrium glide, and the error in turning maneuver mode
is greater than its weaving maneuver mode. That means after
identifying maneuver mode, the equilibrium glide has more
prior knowledge and simpler model of maneuver parame-
ters. Compared with the error in turning maneuver mode,
the trajectories in weaving maneuvers are less affected by
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Figure 9: Result of parameter modification network. (a) is the variation of filtering maneuver parameters. (b) is the variation of filtering
maneuver parameters.
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Figure 10: Variation of trajectory prediction’s error. (a) is the prediction error in weaving equilibrium glide. (b) is the prediction error in
weaving skip glide. (c) is the prediction error in turning equilibrium glide. (d) is the prediction error in turning skip glide.
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the error of baseline direction and have easily identified
maneuver parameter temporal sequence. What is more, the
trajectories in turning skip glide maneuver mode have the
least use of prior knowledge and the most complex parame-
ters sequence, which make the predicted trajectories in these
modes to have the largest error and the fastest error accumu-
lation speed. To show the advantage of the parameter mod-
ification network, the error in 150 s prediction trajectory
with or without the parameter modification network is
shown in Table 3.

From Table 3, the prediction precision of maneuver tra-
jectories is greatly improved using parameter modification
network, which is because the parameter instability brought

by the filtering algorithm affects the prediction result of
maneuver parameters seriously. For the overall prediction
result, the error of equilibrium glide is smaller than that of
skip glide. On the one hand, the longitudinal maneuver
parameter sequence of equilibrium glide is more predictable.
That means the prior information work up in improving the
prediction accuracy. On the other hand, the error accumula-
tion of turning skip glide is more serious when the parame-
ter modification is not accurate enough, which leads to the
overall error of turning skip glide is higher.

4.3.3. Result of Prediction Error Pipe. According to the max-
imum spatial distance for each direction in different

Table 3: Prediction result in 150 s with and without parameter modification network.

Maneuver modes

LSTM-ξb, ra, ξuq
Without parameters modification network With parameters modification network

AESD (m) FESD (m) MESD (m)
Mode

identification
precision (%)

AESD (m) FESD (m) MESD (m)
Mode

identification
precision (%)

Weaving equilibrium
glide

40, 818.62 123, 554.73 123, 555.30

17.82

626.39 1, 062.22 1, 099.51

98.63Weaving skip glide 44, 307.53 159, 668.08 159, 668.08 718.68 1, 422.50 1, 423.32

Turning Equilibrium glide 23, 863.16 170, 390.39 170, 394.72 834.20 1, 855.09 1, 861.15

Turning skip glide 62, 592.56 62, 314.43 62, 314.426 2, 645.57 6, 936.62 6, 950.66
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Figure 11: Prediction error pipe. (a) is the prediction error pipe in weaving equilibrium glide. (b) is the prediction error pipe in weaving skip
glide. (c) is the prediction error pipe in turning equilibrium glide. (d) is the prediction error pipe in turning skip glide.
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prediction times, the prediction error pipelines within 150 s
are shown in Figure 11, where (a), (b), (c),and (d), respec-
tively, represent the error pipes for four types of maneuver
trajectories: weaving equilibrium glide, weaving skip glide,
turning equilibrium glide, and turning skip glide. By com-
paring (a) and (b) and (d) and (c), it can be seen that the
width of the longitudinal error pipe of the skip glide is larger
than that of the equilibrium glide when the longitudinal
expansion speed of the pipe is faster. Comparing (b) with
(d), it can be seen that the pipe expansion speed in the turn-
ing maneuver is faster than that in the weaving maneuver.
The reason is that the prior information of the turning
maneuver is less utilized when the parameter model in turn-
ing maneuver mode is more complex. As a whole, the pre-
diction errors of hypersonic glide target in each maneuver
mode are small, and the error pipeline based on it can pro-
vide information for interceptors effectively to achieve hand-
over between midcourse and terminal guidance.

4.3.4. Analysis of the Effect for Trajectory Prediction of
Observation Error. Since different observation errors of tar-
gets may affect the precision for trajectory prediction, several
simulations to analyze the prediction effect with different
radar observation errors are operated in this paper, in which
the radar error parameters are ½ð30mÞ2, ð0:1°Þ2, ð0:1°Þ2�,
½ð50mÞ2, ð0:2°Þ2, ð0:2°Þ2�, and ½ð100mÞ2, ð0:5°Þ2, ð0:5°Þ2�.
And the influence of the errors on the trajectory predic-
tion is analyzed.

Take the most complex trajectory in turning skip glide
mode as an example, as shown in Figures 12 and 13. error1,
error2, and error3 in Figures 12 and 13 represent the
trajectories with the above three radar error parameters,
respectively. It can be seen from Figure 12, even though obser-
vation error increases, that the parameter modification net-
work can still modify maneuver parameters effectively after
using a filtering algorithm. It means the training method is
valid to predict the noisy trajectory. However, a large observa-

tion error may lead to greater variation for the modified
parameters, as shown in Figure 12(a). Besides, the modified
parameters are passed through the maneuver parameter pre-
diction network, and the variation law of maneuver parame-
ters of the target can still be effectively estimated when its
maneuver mode can also be identified. However, the variation
of the modified parameters will lead to a large deviation of the
predicted parameters, as shown in Figure 12(b).

On the other hand, a large observation error can lead to
a large deviation of the modified last point position through
the start and last point modification network, which will also
have a certain impact on the trajectory prediction precision
of the target as shown in Figure 13. In general, the method
proposed in this paper is robust to the observation error
when its mode identification accuracy can still reach 96.8%
with a larger observation error. And when the method is
applied, the error range of the radar is a knowable parame-
ter, which can be analyzed and trained before using.
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Figure 12: The variation of parameters with different error of observation. (a) is the variation of modified filtering maneuver parameters. (b)
is the variation of predicted maneuver parameters.
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4.3.5. Comparison Results. The intelligent trajectory predic-
tion algorithm based on maneuver mode identification in
this paper is compared with the intelligent prediction
method with aerodynamic parameters ξv, ξt , ξc, maneuver
parameter ξb, ra, ξuq fitting method, parameter ξv, ξt , ξc
fitting method used in literature [22], and pure LSTM pre-
diction method (in which the trajectory is predicted by using
LSTM to estimate the target’s flight state). The prediction
result of various maneuver trajectories is shown in
Figure 14. Figures 14, a and b represent the original trajec-
tory and filtered trajectory; c is the prediction result of our
method proposed in this paper; method d is the prediction
result of the intelligent prediction method of parameters ξv
, ξt , ξc; e and f are the prediction result of fitting parameters
ξb, ra, ξuq and ξv, ξt , ξc with simple function; and g is the
result of pure LSTM method. (a), (b), (c), and (d), respec-
tively, represent the prediction results in weaving equilib-
rium glide mode, weaving skip glide mode, turning
equilibrium glide mode, and turning skip glide mode.

As can be seen from Figure 14, comparing the result of
LSTM-ξb, ra, ξuq with LSTM-ξv , ξt , ξc, our method has
higher prediction precision in weaving maneuver mode
and turning equilibrium maneuver. The season is the
maneuver parameter sequence is more predictable, and
more prior knowledge is obtained when the maneuver mode

of target is identified. Compared with pure LSTM method,
our method has smaller error and higher prediction preci-
sion. The season is the pure LSTM methods does not con-
sider the dynamic model of the target in the process of
prediction. Compared with methods e with f, it can be seen
that the temporal sequence law of maneuver parameters
ξb, ra, ξuq is easier than aerodynamic parameter ξv, ξt , ξc
to be fitted, which obtain better prediction result. What
is more, by comparing the prediction result of our method
with that of method e and f, it is found that the prediction
error of method e and f is large. That means the temporal
sequence law of maneuver parameters is influenced by the
instability of filtering algorithm and cannot be accurately
expressed by simple function. Fitting directly without
modification will lead to inaccurate prediction results.
The prediction errors of each method in 150 s are shown
in Table 4.

As can be seen from Table 4, the best prediction preci-
sion can be mainly obtained through LSTM-ξb, ra, ξuq algo-
rithm proposed in this paper in several maneuver modes.
AESD of our method in each mode does not exceed
2.6 km, and MESD does not exceed 6.9 km, with a pretty fast
prediction speed.

During the simulation, there are several problems that
affect the application of this method. Firstly, the observation
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Figure 14: Comparison of prediction results for different methods. (a) is predicted trajectories in weaving equilibrium glide. (b) is predicted
trajectories in weaving skip glide. (c) is predicted trajectories in turning equilibrium glide. (d) is predicted trajectories in turning equilibrium
glide.
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noise and dynamic models uncertain could lead to the fail-
ure of prediction. It is valid to train neural networks through
trajectories data with the wider observation noise and
dynamic models noise. By this way, the prediction precision
is improved. And in order to solve this problem better, the
intelligent filtering algorithm will be designed to learn more
accurate parameter variation laws during tracking. Secondly,
using complicate dynamic models to predict trajectory may
lead to larger prediction error. It is found that the informa-
tion of maneuver modes can be used to simply the dynamic
equation. Through the maneuver mode identification, the
more accurate predicted trajectory can be obtained.

5. Conclusion

In this paper, according to the trajectory characteristics of
hypersonic glide target in various typical maneuver modes,
a group of maneuver parameters suitable for maneuver
mode identification is proposed. Through the analysis of
parameters, it is verified that the maneuver parameters can
keep characteristics in different maneuver modes. Based on
it, the BLU coordinates at the observation start point are
established, and its rationality has been analyzed. Then,
combined with the maneuver parameters with LSTM, an
intelligent trajectory prediction algorithm based on maneu-
ver mode identification is proposed. Finally, the prediction
result of the method is verified by the maneuver trajectory
data set. The simulation results show that the maneuver
mode identification precision of the proposed method can
reach 98.63%, the average error of spatial distance is less
than 2.64 km, and the maximum error of spatial distance is
less than 6.95 km, which is better than the other comparison
methods and can predict the trajectory of the hypersonic
glide target accurately. And it also has a robustness to the
observational error.

The proposed method could predict the trajectory of
hypersonic glide target accurately when the maneuver
modes of target do not change in the future time. It may
not work well when the maneuver mode is different with
the observation time. To handle this problem, the more
prior information such as the intention of targets should
be added. As a nonparter, the distribution of our strategic

places and no-fly zones should be considered as prior infor-
mation, and the model of importance map and association
model between the strategic places and predicted trajectories
can be designed. Based on these models, the trajectory pre-
diction algorithm based on the intention inference of target
will be researched in the future work.
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