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The droplet drift during aerial spraying process of oilseed rape, which is induced by complex flow field including random lateral
wind, is difficult to predict and suppress. In this study, the high-fidelity computational fluid dynamics (CFD) technique is
employed to simulate the two-phase flow of droplets in the rotor flow field, and the influence of main operation parameters on
spraying effect is investigated numerically. Furthermore, the mechanism of droplet deposition in various operation conditions
is discussed according to the analysis of unsteady flow field characteristics. However, the simulation via CFD technique is
time-consuming, and it is not suitable for multidisciplinary work and optimization design. To address such issue, a filter white
Gaussian noise signal is used to mimic the random lateral wind, and the droplet drift distance is obtained numerically. Based
on the input and output dataset of CFD, the recursive algorithm including nonlinear autoregressive exogenous model and
surrogate-based recurrence framework and the deep learning method for time-series prediction called long short-term memory
neural network are used to build the efficient reduced-order model, respectively. Numerical simulations show that the droplet
drift distance can be predicted by measurable lateral wind speed via the reduced-order model approach, which agreed well
with the results obtained via the CFD method. In addition, the reduced-order model could decrease computation cost by 6
orders of magnitude with an acceptable accuracy, which indicates that the proposed method could be used for the design of
off-line closed-loop controller of a variable spraying system.

1. Introduction

As a most important source of edible oil, oilseed rape is
widely planted in mid-lower Yangtze River of China. In
addition, different growth stages and various parts of oilseed
rape can be processed as vegetable, forage, fertilizer, flower,
and honey in an economical way [1, 2]. However, the growth
of oilseed rape is seriously affected by pests and diseases, for
instance, sclerotia can reduce the yield of oilseed rape crop
up to 70% during the blooming period. Considering the lim-
itations of a complex terrain in China, the inefficient tradi-
tional ground plant protection machinery cannot satisfy
the requirement of plant protection of modern agriculture.

The near-ground aerial spraying based on unmanned
aerial vehicle (UAV) flight control and navigation technol-

ogy, which can operate at high flight speed without the direct
touch of crops, provides a feasible and efficient approach
[3–6]. Compared with traditional ground plant protection
operation, aerial spraying could increase operating efficiency
and reduce pesticide consumption. However, the aerial
spraying process is a complex gas-liquid-solid interaction
system, and the spraying effect is significantly influenced
by different operation conditions and environment parame-
ters, such as flight altitude, free-stream velocity, environ-
mental wind field, and nozzle performance [7]. For
instance, increasing the flight speed can improve the spray-
ing efficiency but weaken the ability of the downwash to
forcing droplets to deposit on the crop surface, making the
droplet drift along the downstream direction especially when
lateral wind exists [8, 9]. A high flight speed will strengthen
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the coupling effect of vortex and turbulence effect of rotor,
leading to the decrease of uniformity, effective range, and
density of droplet deposition significantly [10]. Furthermore,
the flow field characteristics of downwash near the crop can-
opy and the droplet spraying uniformity are sensitive to the
flight altitude. Based on the computational fluid dynamics
(CFD) simulation results for different flight altitudes, it is
indicated that as the UAV is far away from the crops, veloc-
ity amplitude distribution of the flow field will be more con-
centrated and the longitudinal velocity gradient of the
downwash will be reduced; thus, the wall reflection effect
between the downwash flow and crops would be weakened
[11]. Wang et al. [8] analyzed the effects of operation alti-
tude and flight speed of UAV on droplet deposition and dis-
tribution characteristics; the results indicate that
appropriately increasing flight altitude and reducing flight
speed had a significant impact on the improvement of spray-
ing effect. Qin et al. [12] investigated the influence of flight
parameters of plant protection UAV on droplet drift via
experimental method; it is found that the droplet deposition
in corn crop canopy could get the ideal operation state when
the flight altitude is 7 meters, while the spraying effect is eas-
ily affected by downwash flow field and lateral wind at other
flight altitudes, which makes a lower penetration and depo-
sition efficiency. In addition, based on the numerical simula-
tion results and wind tunnel experiments, it has been
pointed out that the initial velocity direction and droplet tra-
jectory will be changed for various nozzle angles, making a
significantly difference in the droplet drift distance along
the direction of lateral wind. For instance, the droplet drift
distance could be reduced 60% by choosing the proper angle
of spraying nozzle when the lateral wind speed reaches 5m/s
[13]. Furthermore, the droplet drift induced by the uncon-
trollable random lateral wind coupled with the strong peri-

odic downwash flow field of rotor aircraft is difficult to
suppress, leading to the waste of pesticide and environmen-
tal pollution, which is the most concerned issue to be solved
in aerial spraying field. When considering the influence of
lateral wind alone, the droplet drift distance and drift rate
are linearly related to the amplitude of wind speed. However,
when the coupling effect of downwash is taken into account,
the lateral wind with small amplitude has limited influence
on the droplet drift while a strong lateral wind will signifi-
cantly increase the droplet drift distance due to the coupled
aerodynamic effect of the lateral wind shear and rotor vor-
tex [14].

It can be seen from the above research that the random
lateral wind plays an important role in improving the effec-
tiveness and efficiency of aerial spraying. It should be noted
that once the desired variable spraying feedback control sys-
tem is established, the variable-spraying actuator could be
automatically operated based on the measured random lat-
eral wind signal to ensure the uniformity of spraying and
suppress the droplet drift. However, the construction of con-
trol system relies on the high-fidelity CFD method, which is
time-consuming especially for the multi-parameter simula-
tion of three-dimensional two-phase flow; thus, it cannot
be used in controller design directly [15–17]. To address
such issue, the reduced-order model (ROM) technique,
which could transform the high-order finite element model
into an approximation low-order model, can be used to
design the off-line controller in an efficient and accurate
way. For instance, based on the system identification theory,
Glaz et al. [18] developed the efficient ROM of the rotor to
predict the unsteady aerodynamics response via the Kriging
surrogate model and surrogate-based recurrence framework.
Zhang et al. [19] built the nonlinear ROM of the aeroelastic
system in transonic regime by employing the RBF neural
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Figure 1: The schematic diagram of oilseed rape aerial spraying.
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network, and the nonlinear dynamics behaviors including
limited cycle oscillation and flutter boundary are predicted
accurately. Recently, the deep learning method involving
long short-term memory (LSTM) neural network has been
used to build the ROM of multiple-input-multiple-output
fluid-structure interaction system [20, 21]. Based on the
integration of the control algorithm and efficient ROM tech-
nique, Huang et al. [22] developed the control method for
flutter suppression to expand flight envelope via a numerical
and experimental technique.

In the process of time-consuming CFD unsteady simula-
tion, the target current output (i.e., droplet deposition)
depends mainly on the current input (i.e., the random lateral
wind) and previous output. The motivation of this paper is
based on the basic principle of CFD unsteady calculation,

the reduced-order models are built by employing
surrogate-based recurrence framework and deep learning
method, respectively, which could predict the current output
by the known external input and previous predicted output;
thus, the droplet drift response under random lateral wind
can be obtained in an efficient way. In what follows, with
the consideration of the computational efficiency of multipa-
rameter analysis, a single-rotor model is used to perform the
high-fidelity CFD simulation numerically. In particular, the
ground is modeled as a conveyor belt, and the droplet depo-
sition characteristics on the ground in forward flight could
be presented more accurately and intuitively. Finally, two
efficient ROMs are built based on data-driven theory to pre-
dict the response of droplet drift. The contributions of this
study are as follows: (i) Based on the data obtained via the
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CFD method, the ground is modeled as a conveyor belt to
perform the temporal and spatial distribution characteristic
of droplets. (ii) The efficient ROMs are established via the
deep learning method and surrogate-based recurrence
framework, respectively, to predict the behavior of droplet
drift.

The remainder of this study is organized as follows. In
Section 2, the simplified finite element model and time-
dependent ROM technique based on the recursive algorithm
and the LSTM theory are introduced. In Section 3, various
simulation cases under different operation conditions are
investigated, involving steady and transient situation. In
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addition, the prediction results of ROMs are performed to
assess the validity of proposed method. Finally, Section 4
concludes this paper.

2. Background and Theory

2.1. Governing Equation and Simplified Model. The sche-
matic diagram of the oilseed rape aerial spraying system
considering the influence of lateral wind is shown in
Figure 1, which performs the droplet drift to the nontarget
region due to unpredictable meteorological condition. In
this study, ignoring the influence of fuselage, the commercial
software Fluent is used to analyze the two-phase flow inter-
action dynamics, and the sliding mesh method is employed
to simulate the high-speed rotational motion of the rotor
wing. As shown in Equation (1), the governing Navier-
Stokes equation can be discretely solved by the second order
upwind scheme.

ρ
dV
dt

= f−∇p + μ∇2V , ð1Þ

where ρ is the density of fluid and V , f , and p are the vectors
of velocity, external force per unit volume, and pressure,
respectively.

To accurately capture the details of the flow field, Euler
method and shear stress transfer k-ω turbulence model
expressed are chosen to calculate the steady and transient

aerodynamic response of the fluid phase. The discrete phase
model described via dynamics equation Equation (2) is used
to mimic the motion of a discrete phase in the Lagrangian
reference frame, where mp is the mass of particle, u and up
are the velocity of fluid phase and discrete phase, and ρ
and ρp denote the density of fluid phase and discrete phase,
respectively [23]. mpððu − upÞ/τrÞ and F are the drag force
and additional force term, respectively, where τr is the relax-
ation time of droplet. It can be seen that the transport of
droplet is mainly governed by the initial state of the droplet
leaving the nozzle and the aerodynamic load around the
rotor.

mp

dup
dt

=mp

u − up
� �

τr
+mp

g ρp − ρ
� �

ρp
+ F: ð2Þ

The speed of the rotor and the corresponding time step
of transient simulation after steady calculation are set as
2500 rpm and 0.0025 seconds, respectively. Furthermore, a
wall-film boundary condition is chosen to capture the depo-
sition and distribution of the droplet on the ground. The
surface mesh of rotor wing is presented in Figure 2(a), the
hybrid grid is employed to divide the volume mesh, and
the total number of grids is about 3:35 × 106, where the
diameter and the chord length at 3/4-span location of rotor
are 400mm and 42mm. The height of the first boundary
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Figure 8: The height of deposited liquid film on the ground when velocity is 1m/s.
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layer is 5 × 10−6m and the corresponding y+ contour is
shown in Figure 2(b), which indicates that the volume mesh-
ing and boundary layer satisfy the requirement of the chosen
turbulence model. The dynamic domain and overall domain
are presented in Figures 2(c) and 2(d), respectively, where the
diameter and height of dynamic domain are 1032mm and
400mm; the size of the overall computation domain is about
26m × 8m × 16m. In order to perform the droplet drift
behavior well, the computation domain downstream is larger
than the upstream one. The sliding grid method and multiple
reference frame (MRF) are employed to model dynamic pro-
cess of the high-speed rotation of rotor, where the static
domain with sparse meshing and dynamic domain with dense
meshing are adopted. In addition, a pressure-swirl atomizing
hollow cone nozzle is used to generate 200μm droplets with
0.08kg/s total flow rate, where the initial velocity of droplets
is 35m/s and the con angle of nozzle is 55 degrees.

2.2. ROMs Based on Recursive Algorithm and LSTM
Neural Network

2.2.1. Recursive Algorithm. Based on the time-series predic-
tion method, such as nonlinear autoregressive exogenous
model with exogenous inputs Tsungnan et al., [24] and
surrogate-based recurrence framework [18] presented in
Figure 3, the response of the following multiple-input and
multiple-output dynamic system can be predicted, which
yields

ŷ tð Þ = bΦ y t − 1ð Þ,⋯,y t − nð Þ, u tð Þ,⋯,u t −mð Þð Þ, ð3Þ

ŷ tð Þ = bΦ ŷ t − 1ð Þ,⋯,ŷ t − nð Þ, u tð Þ,⋯,u t −mð Þð Þ, ð4Þ

where Φ is the nonlinear map between the input u and out-
put y and m and n are the time-delay order of input and out-
put, respectively. Superscript ∧ denotes the approximation
of corresponding accurate term.

Equations (3) and (4) are black box models based on
data-driven of the nonlinear autoregressive exogenous
model and surrogate-based recurrence framework, respec-
tively, which can convert a complicated high-order nonlin-
ear system into an approximate low-order model by using
the dataset of input and output. It should be noted that the
prediction of current output value ŷðtÞ via the nonlinear
autoregressive exogenous model depends the true value of
past output ðyðt − 1Þ,⋯,yðt − nÞÞ, while the prediction of
surrogate-based recurrence framework is based on the pre-
diction value of past output dataset ðŷðt − 1Þ,⋯,ŷðt − nÞÞ.
However, the true value of output may be difficult or time-
consuming to obtain in some situations; thus, the ROM
based on surrogate-based recurrence framework provides a
feasible approach for such case. In other words, the predic-
tion via surrogate-based recurrence framework-based ROM
just needs a well-trained surrogate model bΦ and a real-
time measurable input dataset ðuðtÞ,⋯,uðt −mÞÞ.
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Figure 9: The height of deposited liquid film on the ground when velocity is 2m/s.
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2.2.2. LSTM Neural Network. The LSTM network architec-
ture is presented in Figure 4(a), which consists of three dif-
ferent gates block, namely, forget gate f t , input gate it , and
output gate ot , where the gate function is a Sigmoid function
as shown in Equation (5), whereW and b are the weight vec-
tor and offset term, respectively [25].

g xð Þ = σ Wx + bð Þ: ð5Þ

When the current input ut and the previous output stor-
ing in state ht−1 pass the forget gate, the Sigmoid function in
Equation (6) decides whether the signal can pass through the

gate. For instance, when the output of the gate function is
zero, it is indicated that no information is reserved, whereas
the output is 1 represents all signals could pass without bar-
riers. In other words, the gate function suggests the probabil-
ity of the data passing the block. Similarly, the input gate and
output gate are read in Equations (7) and (8), respectively,
where W∗ and b∗ are the corresponding weight vector and
offset, respectively.

f t = σ Wf × yt−1, ut½ � + bf
� �

, ð6Þ

it = σ Wi ⋅ yt−1, ut½ � + bið Þ, ð7Þ
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ot = σ Wo ⋅ yt−1, ut½ � + boð Þ: ð8Þ
In addition, the candidate memory cell ~Ct with a tanh

function is used to map the input ut and the previous output
state ht−1 to the interval ½−1, 1�, as shown in Equation (9).
Afterwards, the current memory cell state Ct can be obtained
via Equation (10), which is used to store the long-term state
automatically based on the forget gate f t and input gate it .
Finally, the output response ht is calculated by the output
gate ot and the tanh map of memory cell state Ct , which
yield Equation (11).

~Ct = tanh W ~C ⋅ yt−1, ut½ � + bcð Þ, ð9Þ

Ct = f t ∗ Ct−1 + it ∗ ~Ct , ð10Þ
yt = ot ∗ tanh Ctð Þ: ð11Þ

A multilayered LSTM neural network is employed to

improve the generalization performance, and the network
architecture for time-series prediction is presented in
Figure 4(b) [21]. It should be pointed out that the test
and prediction process of the LSTM neural network can
be performed without the true output dataset, which is
the same as the surrogate-based recurrence framework-
based ROM.

3. Case Study and Discussion

3.1. The Droplet Drift through Time. The droplet deposition
at different moments in the hover state can be obtained via
the CFD method directly, and the desired droplet distribu-
tion in target area through time can be calculated approxi-
mately via the stack of deposition response at each
moment, as shown in Figure 5. Let the velocity of free-
stream be constant v, and the droplet distribution through
time φthrough time can be calculated, which yields,

φthrough time = φN x, z, tNð Þ + φN−1 x + v ⋅ Δt, z, tN‐1ð Þ+⋯+φ1 x + v ⋅ N − 1ð ÞΔt, z, t1ð Þ,

ð12Þ

where φk is the droplet distribution that moved along the
free stream direction at different time intervals, which can
be calculated by the following CFD simulation results.

φk x, z, tkð Þ =Φk+1 x, z, tk+1ð Þ −Φk x, z, tkð Þ, ð13Þ

where Φkðx, z, tkÞ is the function of droplet distribution
deposited on the ground directly obtained via the CFD
method at the corresponding time k.

3.2. The Characteristics of Single-Rotor Model. To investigate
the transport and deposition mechanism of droplet, the
pressure contours of flow field at different heights are
obtained as shown in Figure 6, where the velocity of free
stream is 3m/s, and the rotor is 3 meters above ground. It
can be seen that a high-pressure area is located below the
rotor, and a region of low-pressure behind the rotor is gen-
erated along the direction of free stream, forcing the droplet
to move and deposit downstream under the coupled effect of
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gravity. In addition, with the increase of the distance from
the rotor, the pressure gradient is reduced while the region
of low-pressure is enlarged, which may contribute to the
drift and transport of droplet near ground. The streamlines
of flow field in hover state and flight state with 3m/s free
stream velocity are presented in Figure 7, it can be seen that
the characteristics of the flow field, especially the distribu-
tion and strength of the vortex structure, are seriously
affected by the free stream velocity.

The droplet depositions for various velocities are per-
formed in Figures 8–10, and the top views of droplets trajec-
tory including steady and transient solution when lateral
wind velocity is 3m/s are presented in Figure 11. The simu-
lation results are consistent with the conclusion of flow field
analysis performed in Section 3.2. In Figures 8–10, the hover
state represents the rotor is hovering and the lateral wind
velocity is considered, and the forward flight state means
the rotor maintains horizontal flight with a given velocity.
It can be found in the simulation of hover state that the peak
location of droplet deposition will move downstream with
the increase of lateral wind speed.

By changing the initial state of the droplet leaving, the
nozzle and variable spraying parameters, such as spraying
pressure and nozzle angle, could be used to control the
movement and distribution of droplet. The distribution
of droplet along the lateral wind direction in the hover
state is presented in Figure 12, where the nozzle angle is
zero and lateral wind velocity is 3m/s, and it is indicated
that the peak location is about 3m from the center of
rotor and the drift distance is 8m to 10m. For various
nozzle angles, the distribution distance of droplet in hover
state is presented in Figure 13; the negative and positive
nozzle angle represents the deflections against and along
the lateral wind direction, respectively. The average posi-
tion �x is calculated by Equation (14) as follows, where
Hi and xi are the height of liquid film and corresponding
position of each grid cell. It can be found that there is lit-
tle difference for the cases of negative nozzle angle
between peak position and average position, while the
gap of peak position and average position is enlarged
when the nozzle angle is positive especially at 45 deg. In
addition, compared with the average position, the peak

position is more sensitive to the nozzle angle.

�x = ∑N
i=1 Hixið Þ
∑N

i=1 Hið Þ
: ð14Þ

3.3. The Characteristics of Quadrotor Model. For the quad-
rotor model, the steady cases with different velocities of
free stream are simulated, which could provide accurate
initial value for transient calculation. The height of the
rotor from the ground is fixed at 3m, the coordinates of
the rotor center on the horizontal plane are (0, 0), (0,
1.5m), (1.5m, 0), and (1.5m, 1.5m), respectively. The
streamlines of both hover state and forward flight state,
which is under the background of total pressure, are pre-
sented in Figure 14. It should be noted that, with the
near-ground vortex formed around the rotor in the hover
state, the flow field structure especially the position and
strength of the vortex structure in a forward flight state
can be changed significantly by a slight velocity perturba-
tion so that the movement of small and light droplets will
be obviously different for various aerodynamic loads.

The trajectory of droplets under steady state with 3m/s
free stream velocity is performed in Figure 15(a). Further-
more, due to the effect of air curtain formed by the rotor
flow field, the droplets drift farther along the outside. Based
on the steady results, the transient cases are calculated
numerically to perform the dynamic process of droplet
migration. Figure 15(b) is the transient state of aerial spray-
ing with the velocity of free stream 3m/s, and it can be found
that the drift distance along the lateral direction is much
wider than that obtained via steady simulation.

Based on the wall-film boundary condition of the
ground, the droplet deposition in the target area can be
obtained. For instance, Figure 16 is the droplet distribution
on the ground along the direction of free stream, where the
nozzle angle is zero and lateral wind velocity is 3m/s, and
it indicates that the peak location is near about 3 meters
away from the rotor, which performs a similar deposition
distribution characteristic of a single-rotor model shown as
Figure 12. In addition, for both the single-rotor model and
quadrotor model, the average droplet drift distances defined

(a) Hover state (b) Flight state at 3m/s
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Figure 14: The streamlines of quadrotor flow field.
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as Equation (14) are performed in Figure 17. It can be easily
found that the average position of quadrotor model
increases approximately linearly with the velocity of free
stream, while the average position of single-rotor model
increases nonlinearly, which indicates that the droplets
deposition characteristics of a single-rotor model is more
complicated.

3.4. The Droplet Drift due to Random Lateral Wind. Based
on the analysis of flow field and droplet drift for various
velocities in the above section, it is implied that the drift dis-
tance and distribution of droplets are closely related to lat-
eral wind velocity. It should be noted that to obtain a
sufficient amount of computational data with less computing
resources, the single-rotor model is used to generate the
high-fidelity output data. In addition, to mimic the random
lateral wind in the real operation environment, a filter white
Gaussian noise signal with 2.5m/s mean value and low fre-
quency presented in Figure 18 is employed to simulate the
value of random lateral wind, which can be obtained via a

(a) steady state (b) transient state

Figure 15: Droplets trajectory of a quadrotor model when the free stream velocity is 3m/s.
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Figure 16: The droplet distribution of quadrotor model when free stream velocity is 3m/s.
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sum of finite number of harmonic function, namely [26],

v tð Þ = 〠
100

i=1
�vi cos ωv,it + ϕv,i

� �
, ð15Þ

where v is the velocity of random lateral wind and ωv,i and
ϕv,i are angular frequency and phase, respectively. The ran-
dom lateral wind signal can be described by the user-
defined function tool in Fluent software, which is compiled
with C language and loaded as a boundary condition
automatically.

Afterwards, the simulation with 104 timesteps in 25 sec-
onds is performed to study the aerial spraying in hover state,
and the drift distance between droplet and rotor is presented
in Figure 19, where the straight line is the average drift dis-
tance of all droplets obtained from Equation (14), and the
dot one represents the average drift distance of increased
droplets in each time interval. As shown in Figure 19, it takes

about 2.5 seconds for the droplets to reach the ground, then
the drift distance of all droplets increases linearly approxi-
mately, while the drift distance of increased droplets is
markedly changed with the variation of random lateral wind
signals. It should be noted that the high-fidelity CFD calcu-
lation for the corresponding response of droplet which is
subject wind load is time-consuming, i.e., it takes about
1:54 × 106 seconds for the transient calculation of
Figure 18 (the computer platform is i7 8700k with 6 cores
@3.7GHz and 40Gb 2400MHz memory).

3.5. The Prediction of Droplet Drift via Surrogate-Based
Recurrence Framework and LSTM. To predict the drift dis-
tance of droplets with the consideration of random lateral
wind efficiently and accurately, the LSTM network and
surrogate-based recurrence framework are used to establish
the ROM, respectively, where the normalized data belong
to ½2:5 s, 22:5 s� and ½22:5 s, 25 s� are the training and test
datasets, respectively.

In the ROM based on the LSTM neural network, a two-
stacked-layer structure with 32 cells in each layer is
employed, and mean absolute error function is taken as the
error function. In addition, the value of learning rate is given
as 0.001 and the Adam optimizer is chosen to complete a
200-epoch training process [27].

In the ROM based on the recursive algorithm, the non-
linear autoregressive exogenous model is used to process
the training process, where the number of neurons and is
24, and the delay order m = n = 1. The Bayesian regulariza-
tion algorithm, which can result in good generalization for
difficult, small, or noisy datasets, is employed to perform
the training process [28]. In the test process, based on the
measurable random lateral wind signal, the prediction for
the response of aerial spraying system is performed via the
surrogate-based recurrence framework without the true out-
put dataset.

The prediction results are presented in Figure 20, and
it can be seen that both of the proposed ROMs could
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Figure 18: The signal for fluctuation of random lateral wind with
2.5m/s mean value.
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predict the trend of drift distance well, especially the ROM
based on the surrogate-based recurrence framework
scheme, where ROM 1 and ROM 2 are obtained via LSTM
and surrogate-based recurrence framework, respectively. It
should be noted that, due to the randomness of droplet
motion and high time delay between the instantaneous
loading of random lateral wind and droplet deposition,
the difficulty of establishing efficient ROM is intensified
significantly. In addition, the prediction accuracy of ROM
could be further improved by increasing the scale of train-
ing data obtained from CFD technique. Furthermore,
although it is time-consuming to obtain the training and
test datasets via CFD technique, it only takes a fraction
of one second to accurately predict the droplet response
once the ROM is established. The efficient ROM has
potential in designing the close-loop controller for a vari-
able spraying system, which has been applied in fluid-
structure interaction system successfully.

4. Conclusions

In this study, the droplet drift of the aerial spraying for var-
ious parameters including free-stream velocity, nozzle angle,
and random lateral wind are performed numerically, and the
distributions of droplets through time for different velocities
are calculated to present the overall details. Finally, the effi-
cient ROMs based on the LSTM neural network and
surrogate-based recurrence framework are developed,
respectively, to predict the droplet drift distance according
to the measurable random lateral wind. The CFD data is
employed to assess the effectiveness, and the following con-
clusions can be obtained:

(1) The distributions of droplet can be changed signifi-
cantly for different nozzle angles, which could be
treated as one of the variable spraying parameters

(2) The droplet drift is very sensitive to the wind veloc-
ity, in other words, a relatively huge difference of
drift distance will be made by a small change of wind
velocity

(3) The ROM technique based on surrogate-based
recurrence framework and LSTM neural network
can be used to predict the droplet drift distance
induced by random lateral wind accurately with a
low computational cost
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