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For future lunar exploration and planetary missions, the digital elevation model (DEM) of the target object may not be well
prepared before the mission, so developing a new robust crater detection algorithm (CDA) without prepared high-precision
DEM is needed to meet the requirements of a high-reliability and high-precision detection and navigation system. In this
paper, we presented a new robust lunar CDA method based on maximum entropy threshold segmentation. By calculating the
entropy distribution of the ternary image, the threshold for retaining the maximum amount of image information is selected
adaptively, a variety of evaluation indicators are proposed, and a multiple-indicator constraint matrix is constructed to realize
the extraction and fitting of the craters. The proposed method has the following advantages: (1) it has strong robustness and is
capable of extracting complete craters under multiple illumination conditions, which makes it suitable for the extraction of
large-scale planetary and lunar images; (2) the extracted crater edges are clear and complete and do not merge with the
surrounding environment edge; and (3) it avoids the problem of parameter sensitivity that is present in a traditional CDA
algorithm. The proposed method was verified using an image taken by the Chang’e-2 lunar probe, and a comparison with the
traditional method based on morphology and adaptive Canny edge detection shows that the number of craters detected
increases by more than 35%, while the computational efficiency is improved by more than 40%.

1. Introduction

Planetary landing exploration is a key approach to study the
formation and evolution of the solar system, the develop-
ment and utilization of space resources, asteroid impact
defense, and other major scientific issues. In the past
decades, many countries have carried out a series of success-
ful exploration missions for the Moon (Apollo [1, 2],
Chang’e [3–7]), Mars (Tianwen-1 [8], Curiosity [9], and
Opportunity [10]), asteroids (Rosetta [11]), and other celes-
tial bodies. In general, terrain with high scientific value is
more complex, and landing is more difficult; therefore, cra-
ter detection algorithms are important for lunar exploration
and planetary missions. Chang’e-4 is the only exploration
mission in a complex area that has successfully landed on
the far side or back of the Moon [12, 13]. Compared with
the traditional lunar sea area on the front of the Moon, the
terrain on the back of the Moon is more complex and lacks
high-precision terrain elevation data. Furthermore, tradi-

tional communication technology based on deep space net-
works presents greater risks for a mission due to
communication delay problems [14], and therefore, algo-
rithms need to be more robust.

To overcome the limitation of the traditional deep space
network, it is necessary to develop a robust autonomous
detection method for lunar craters under any illumination
and construct autonomous hazard detection and avoidance
(HDA) technology based on optical information for accurate
navigation and autonomous landing-point selection for the
lunar surface high-precision descent landing guidance, nav-
igation, and control (GNC) system.

To detect craters, many crater detection algorithms
(CDAs) have been studied by researchers all over the world.
Some methods have focused on positive detection rates,
while other methods pay more attention to speed or robust-
ness. Studies by Stepinski et al., Delatte et al., Silburt et al.,
and Emami et al. [15–18] used machine learning and convo-
lutional neural networks (CNNs) separately to process
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digital elevation models (DEMs). Studies by Wang et al. [19]
presented a high generalization performance transfer
learning-based CDA. Some traditional methods are also used
in this field [20], such as the Hough transform, Canny edge
detection [21, 22], cascade decision forest [23], solar illumina-
tion direction, and texture analysis [24]. Jia et al. extracted
more all craters larger than 200m of Chang’e-5 landing area
based on digital orthophoto map generated from more than
700 Lunar Reconnaissance Orbiter Camera, Narrow Angle
Camera [25]. Solarna et al. proposed a marked point process
CDA method using graph cuts and decimated wavelets [26].
Bandeira et al. detected subkilometer craters and achieved a
high detection rate through texture analysis and shape infor-
mation [27]. Galloway et al. [28] used a Hough transform
and Canny edge detection for processing high-resolution
images, which required a large number of calculations. Lee
and Hogan [29] proposed an automated CDA with human-
level performance by multiple neural networks, but the
method used not only DEMbut also thermal infrared imagery,
so the method did not have universal applicability. Francis
et al. [30] presented a dataset of craters for CDA based on deep
learning. Cui et al. [31] directly used the crater curve matching
for the planetary landing navigation system and obtained
superior accuracy. Chen et al. [32] presented a CDA based
on terrain analysis and mathematical morphology applied to
DEM with a resolution of 100m. Lee et al. [33] presented a
CNN-based CDA, but the method needs to determine detec-
tion probabilities in advance for mission planning.

However, many existing CDAs have different limita-
tions. Methods based on machine learning and CNNs
require suitable train sets [34]. The Hough transform has
poor adaptability because only circular craters can be
detected. Furthermore, texture analysis cannot be adjusted
to a variety of lighting conditions. Therefore, these methods
have problems with robustness or speed; CDA based on
image or optical information still have research value. In
the view of CDA using unsupervised algorithms and CNNs,
Emami and other researchers made a detailed research and
comparative analysis [35]. From the study of Emami et al.
[35], we can conclude that CDA based on convex grouping
and interest points performed better in combining with
CNNs for hypothesis verification. Some research results
indicate that CDAs based on optical information processing
still have great research values and have application pros-
pects in the field of navigation. Maass and other researchers
[36] used mainly image segmentation method to detect cra-
ters and applied research results to CNAV, which achieved
good performance. Furthermore, Maass [37] firstly investi-
gated image illumination direction in segmentation-based
CDA for spacecraft navigation and then pointed that the
navigation estimator can be considered robust and accurate
enough in proposed CDA.

To meet the needs of reliable on-orbit real-time naviga-
tion and HDA systems, a robust and fast CDA is proposed
in this paper. First, the gray image is filtered by an adaptive
Gaussian filter to remove image noise while retaining edge
information. Then, the image is divided into highlighted,
shadowed, and average gray areas via maximum entropy
threshold segmentation to reduce the sensitivity of the

results to light sources and to improve the reliability of
Canny edge detection. Finally, a multiple-indicator con-
straint method is proposed to match two edges that belong
to one crater, and an ellipse is used to fit the two edges.

The structure of this paper is as follows. In Section 2, an
image ternary segmentation method based on a maximum
entropy threshold is proposed to deal with the disadvantages
of traditional and adaptive Canny detection in CDAs; in Sec-
tion 3, a multiple-indicator constraint matrix is constructed
to accomplish crater edge matching and ellipse fitting; in
Section 4, simulations are presented, and a lunar image is
used as an example to demonstrate the detection quality
and computational cost of the proposed model; finally, our
conclusions are drawn in Section 5.

2. Crater Edge Detection Based on Maximum
Entropy Threshold

In this study, craters were detected by calculating the gradient
of the image, themaximum entropy threshold was used to seg-
ment the image before Canny edge detection, and then the
craters could be detected after the clear edges were extracted.
Compared to traditional methods, the crater edges extracted
by our method are clear and obvious and do not merge with
the surrounding environment; they do not need morphologi-
cal processing such as dilation and erosion and can be directly
used for crater edge matching and ellipse fitting.

2.1. Adaptive Canny Edge Detection. The craters on the lunar
surface form highlighted and shadowed areas that are quite
different from the surrounding environment and form obvi-
ous gray gradient edges under direct sunlight. Therefore,
craters can be effectively detected by edge detection. There
are many methods of edge detection, such as the Roberts
operator, Prewitt operator, and Canny operator, but the
Roberts and Prewitt operators have two disadvantages. The
first disadvantage is that they are easily affected by noise
and can detect multiple edges; the other disadvantage is that
the scale of these operators is fixed, which is not conducive
to detecting edges of different scales. Compared with the
Roberts and Prewitt operators, the Canny edge detection
can effectively suppress multiresponse edges and can
improve the accuracy of edge detection via nonmaximum
suppression. Therefore, in this study, we used the Canny
edge detection.
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Figure 1: Crater edge extraction method by the Canny edge
detection.
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Figure 3: Performance and results of the adaptive dual-threshold selection method.
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Figure 2: Performance and results for various values of high-threshold τh and low-threshold τl in the Canny edge detection.
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First, for denoising the image and preserving the edge
information of craters, a Gaussian filter is commonly used.
The Sobel operator is then used to calculate the gradient of
the image as follows:

Sx =
−1 0 1

−2 0 2

−1 0 1

2
664

3
775 Sy =

1 2 1

0 0 0

−1 −2 −1

2
664

3
775, ð1Þ

where Sx, Sy are Sobel operators along the x-axis and y-axis,
respectively. The norm G and direction θ of the image gradi-
ent can be calculated as follows:

G =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x +G2
y

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sx ∗Að Þ2 + Sy ∗A

� �2q
,

θ = arctan Sx ∗Að Þ/ Sy ∗A
� �� �

,
ð2Þ

where A is the convolution window of the Canny edge detec-
tion. Finally, the strong and weak edges are extracted by
nonmaximum suppression and dual-threshold detection.
Dual-threshold, high-threshold τh, and low-threshold τl
are the extraction standards of crater edges. The edges with
gradient intensity bigger than high-threshold τh are sure to
be crater edges, called strong crater edges, and the edges with
gradient intensity smaller than low-threshold τl are sure to
be noncrater edges. The edges whose gradient intensity lies
between high-threshold τh and low-threshold τl are classi-
fied as weak crater edges or nonedges by their connectivity.
As shown in Figure 1, the gradient intensity of edge A is big-
ger than τh, so edge A is sure to be a crater edge. The gradi-
ent intensity of crater B is between τh and τh, and edge B is
connected to edge A, so it is a weak crater edge. Edge C is
not connected to any crater edges, so it is not a crater edge.

It can be concluded that the selection of dual-thresholds,
high-threshold τh, and low-threshold τl will seriously affect
the effect of the Canny edge detection. Various values of τh
and τl were selected to analyze a 7m resolution digital ortho-
photo map (DOM) image of the lunar surface taken by
Chang’e-2. The influence of different τh and τl values is shown
in Figure 2. Figure 2(a) shows the original lunar image includ-
ing regions A and B; Figure 2(b) shows the original region A
image and different Canny edge detection results for region
A with different τl; Figure 2(c) shows the original region B
image and different Canny edge detection results for region
B with different τh; Figure 2(d) shows different Canny edge
detection results for region B with different τl.

We can infer from the results that the crater detection
algorithm based on Canny has the following two disadvan-
tages due to the parameter sensitivity: (i) the edges detected

by Canny usually connect with surrounding edges, as shown
in Figure 2(b); (ii) it is hard to choose an appropriate dual-
threshold autonomously under different light conditions,
which cannot meet the demand of a lunar exploration mis-
sion. To address these problems, He [38] proposed an adap-
tive dual-threshold selection method in the Canny edge
detection algorithm, i.e., through the histogram statistics of
the gray image after nonmaximum suppression, determine
the gradient corresponding to the maximum number of
pixels gm and the gradient amplitude mean square deviation
of the maximum number of pixels σm as follows:

σm =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑k

i=1h gið Þ gi − gmð Þ2
∑k

i=1h gið Þ

vuut , ð3Þ

where k is the number of histogram bins and hðgiÞ is the
number of pixels that fall into bin whose gray value is gi.

The high-threshold τh is as follows:

τh = gm + σm: ð4Þ

Remove the pixels whose gray value is stronger than gm,
and recalculate gm′ and σm′ using the steps above. The low-
threshold τl is as follows:

τl = gm′ + σm′ : ð5Þ

This adaptive dual-threshold selection method was used
to detect crater edges, as shown in Figure 2(a), and the
results are given in Figure 3. For the same shooting area,
by selecting different regions to analyze, the dual-
thresholds selected by the traditional Canny edge detection
method are quite different, which were easily affected by
the camera field of view and the shooting area.

First, dual-thresholds τl, τh were chosen to extract crater
edges, when only region A or region B is analyzed, and the
corresponding τl, τh values are different from the τl, τh of
the whole image, as shown in Table 1, which leads to differ-
ent results; this is not stable and robust, as shown in
Figures 3(a) and 3(b).

Figure 3(a) shows the Canny edge detection results for
the whole image; Figure 3(b) shows the Canny edge detec-
tion results for regions A and B, where (i) is the enlargement
of region A in Figure 3(a), (ii) is the Canny edge detection
result for region A alone, (iii) is the enlargement of region
B in Figure 3(a), and (iv) is the Canny edge detection result
for region B alone.

From Table 1 and Figure 3 results, we can infer that
although the adaptive dual-threshold selection method in
the Canny edge detection algorithm by Jiang [38] can select
dual-threshold autonomously and extract the crater edges,
the edges are usually broken and discontinuous and are
sometimes connected with the surrounding area, which is
not conducive to further processing. In those circumstances,
the edges of craters cannot be extracted effectively for ellipse
fitting; therefore, an image ternary segmentation method

Table 1: Dual-thresholds τl , τh of different images.

Image τl τh
Region A 0.278 0.774

Region B 0.118 0.728

Whole mage 0.313 0.815
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based on the maximum entropy threshold is proposed,
which can effectively solve this problem.

2.2. Image Ternary Segmentation Method Based on
Maximum Entropy Threshold. Under sunlight, the shadowed
area, the highlighted area, and the surrounding environment
can be seen on the lunar surface. The ternary segmentation
method based on maximum entropy threshold is proposed
to distinguish these three parts. After obtaining a filtered
image, examining all gray colors, and calculating image
entropy, the image can be ternary segmented by two thresh-
olds, α, βðα ≤ βÞ, which correspond to maximum entropy.

The entropy of the image H is

H = −〠
255

i=0
pi log pi, ð6Þ

where pi is the probability density of the pixels whose gray
value is i.

We select α, β to segment the image and divide the
image into shadowed areas C1, background areas C2, and
highlighted areas C3. The corresponding cumulative proba-
bility is as follows:

P1 αð Þ = 〠
α

i=0
pi,

P2 α, βð Þ = 〠
β

i=α+1
pi,

P3 βð Þ = 〠
255

i=β+1
pi:

ð7Þ

Pi is satisfied as follows:

P1 αð Þ + P2 α, βð Þ + P3 βð Þ = 1: ð8Þ

The entropies of those three areas are as follows:

(a) (b)

Figure 4: Ternary segmentation image result.
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Figure 5: Distribution of segmented image entropy.
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H1 αð Þ = −〠
α

i=0

pi
P1 αð Þ log

pi
P1 αð Þ, ,

H2 α, βð Þ = − 〠
β

i=α+1

pi
P2 α, βð Þ log

pi
P2 α, βð Þ ,

H3 βð Þ = − 〠
255

i=β+1

pi
P3 βð Þ log

pi
P3 βð Þ :

ð9Þ

The total entropy of the image is the sum of Hi as fol-
lows:

H α, βð Þ =H1 αð Þ +H2 α, βð Þ +H3 βð Þ: ð10Þ

We obtain a maximum Hðα, βÞ by keeping the image
information via selecting appropriate values of α, β.

α, β½ � = arg max
α,β∈ 0,255½ �

H α, βð Þ: ð11Þ

By choosing different α, β values to segment the image,
as shown in Figure 4(a), this leads to the distribution of
the segmented image entropy, as shown in Figure 5. By find-
ing the thresholds α, β corresponding to the maximum
entropy, the ternary segmentation image result based on
the maximum entropy threshold is as shown in Figure 4(b).

We then detect the edges of craters after getting a ternary
segmentation image. For the two different thresholds τl, τh,
the Canny edge detection produces results similar to those
shown in Figure 6. From the results, we can infer that this
method is robust in terms of dual-thresholds τl, τh. No mat-
ter how the dual-thresholds τl, τh are chosen, clear and con-
tinuous edges can be detected after image ternary
segmentation, which helps to match semicrater edges and
ellipse fitting in the next step.

3. Crater Edge Matching and Ellipse Fitting
Based on Multiple-Indicator Constraints

After image ternary segmentation and crater edge detection,
we need to match pairs of edges that belong to the same cra-
ter. To achieve this goal, we first use a series of feature points
to represent the semicrater edge, as Figure 7 shows.

One semicrater edge can be represented by four feature
points; they are the vertices A and B, geometric center C1,
and midpoint of vertices C2. Then, the orientation vector
of the semicrater edge r can be defined as follows:

r =C1C2
��!

: ð12Þ

Taking into account the length, distance, orientation,
brightness, and other constraints comprehensively, we
match two semicrater edges v1, v2 by constructing multiple
constraints Ji. When Ji = 1, two edges match best, and when
Ji = 0, two edges match worst; they do not match at all. The
constraints are constructed as follows:

(1) Normalized length similarity constraint J1ðvi, vjÞ

The lengths of two matched edges should not be widely
different. The bigger the constraint, the better the two semi-
crater edges match.

J1 vi, vj
� �

= 1 −
li − l j
�� ��
li + l j

 J1 ∈ 0, 1ð Þ: ð13Þ

where li, l j are pixel lengths of the edges to be matched

(2) Brightness constraint J2ðvi, vjÞ

Under sunlight, two semicrater edges belonging to the
same crater should be in different highlighted and shadowed
areas. The gray value of the geometric center C1 is used to
distinguish the two semicrater edges to be matched as fol-
lows:

J2 vi, vj
� �

=
1 lexi ≠ lexj

0 lexi = lexj,

(
ð14Þ

where lexi, lexj are the two geometric centers’ gray values of
the edges to be matched. lexi ≠ lexj indicates that two edges
belong to the highlighted area and the shadowed area,
respectively

τ1 = 0.1 τk = 0.9 τ1 = 0.2 τk = 0.7 τ1 = 0.3 τk = 0.4

Figure 6: Canny detection results with various values of τl , τh.
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Figure 7: Feature points of semicrater edge.
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Table 2: Experience conditions.

Item Parameter

Sand table size 2m × 2m
Number of craters 8

Maximum depth of crater 0.30m

Reference height of sand table 0.18m

Parallel light source 5600K × 2

MT9V034 camera
45 fps@1280 × 960, 60 fps@1280 × 720
80 fps@640 × 480, 160 fps@320 × 240

(a) (b)

Figure 8: Front-facing camera and lunar sand table in experiment. (a) MT9V034 camera. (b) Lunar sand table.

Figure 9: Hardware-in-loop simulation environment.
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(3) Normalized orientation constraint J3ðvi, vjÞ

Two semicrater edges belonging to the same crater
should be located in opposite directions, which means two
orientation vectors ri, rj are at an obtuse angle. The bigger
the constraint is, the better the two semicrater edges match.

J3 vi, vj
� �

=
rij j rj
�� �� − ri ⋅ rj
2 rij j rj

�� ��  J3 ∈ 0, 1ð Þ ð15Þ

(4) Distance constraint J4ðvi, vjÞ, J5ðvi, vjÞ

Two semicrater edges belonging to the same crater

should not be far apart. We use the geometric mean
ffiffiffiffiffi
lil j

q
to measure the distance between two semicrater edges. The
distance is divided into horizontal distance J4ðvi, vjÞ and
vertical distance J5ðvi, vjÞ as follows:

J4 vi, vj
� �

=
1 r1 ⋅ sj j < η1

ffiffiffiffiffi
lil j

q
0 r1 ⋅ sj j ≥ η1

ffiffiffiffiffi
lil j

q
,

8><
>:

J5 vi, vj
� �

=
1 r1 × sj j < η2

ffiffiffiffiffi
lil j

q
0 r1 × sj j ≥ η2

ffiffiffiffiffi
lil j

q
,

8><
>:

ð16Þ

where s is the sunlight vector and η1 and η2 are scale param-
eters. In general, the distance between two semicrater edges
belonging to the same crater is shorter than half the perim-

eter of the crater. And the geometric mean
ffiffiffiffiffi
lil j

q
is usually

shorter than half the perimeter of the crater. The relation-

ship of ηi and
ffiffiffiffiffi
lil j

q
can be written as follows:

ηk

ffiffiffiffiffi
lil j

q
max li, l j

� � = 1 k = 1, 2: ð17Þ

In this paper, we chose η1 = η2 = 2:5

(5) Normalized shape constraint J6ðvi, vjÞ

According to the above constraints Jiði = 1, 2,⋯,5Þ, to
match the edges of craters, there are two matching results,
that is, X-shape results and O-shape results; O-shape results
are real craters, and X-shape results usually come from stone

(a) (b)
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2
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7 6

(c) (d)

(e)

1

2
3

4

8
6

5

(f)

Figure 10: Detection results under different illumination directions.

Table 3: Image information and PC parameters.

Image information PC parameter
Image size Image resolution CPU RAM

9638 × 12472 7m Intel i9-10900 32G
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shadow influence. To avoid this influence, the vector from
the center of the shadowed area to the center of the high-
lighted area should be consistent with the direction of the
sunlight vector as follows:

J6 vi, vj
� �

=
C2iC2j
���!��� ��� − lexi − lexj

� �
C2iC2j
���! ⋅ s

2 C2iC2j
���!��� ��� ,

J6 ∈ 0, 1ð Þ:

ð18Þ

For any two semicrater edges, the multiple-indicator
constraint Jðvi, vjÞ can be calculated to represent the similar-
ity between them as follows:

J vi, vj
� �

= Ji,j =
Y
k

Jk vi, vj
� �

,

k = 1, 2,⋯, 6:
ð19Þ

For n semicrater edges, we construct a matching similar-
ity multiple-indicator constraint matrix as follows:

D =

J v1, v1ð Þ J v1, v2ð Þ ⋯ J v1, vnð Þ
J v2, v1ð Þ J v2, v2ð Þ ⋯ J v2, vnð Þ

⋮ ⋮ ⋱ ⋮

J vn, v1ð Þ J vn, v2ð Þ ⋯ J vn, vnð Þ

2
666664

3
777775: ð20Þ

D is a symmetric matrix with diagonal elements that are
zero; Ji,j means the similarity between edges vi and vj.

First, we choose two largest elements Jð1Þmax in D, which
are located in coordinates ði, jÞ and ðj, iÞ. Then, we remove
the other elements in D whose positions are row i and col-
umn j, and row j and column i. We name the new
multiple-indicator constraint matrix D1. Then, we choose
the new two largest elements Jð2Þmax in D1 and repeat the above
steps until the largest element JðmÞ

max ∈D
m−1 is lower than the

Table 4: Ground truth and detection results.

Item Total number
Number of craters

D < 70m 70m <D < 700m D > 700m
Ground truth 1337 96 1204 37

Detection results 1170 77 1056 37

Percentage 87.5% 80.2% 87.7% 100%

Figure 11: Crater detection results.
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matching threshold ε. After the semicrater edge matching is
complete, we ellipse fit pairs of edges that belong to one
crater.

Craters can be described mathematically as follows:

F Xð Þ = XTAX + bTX + c = 0: ð21Þ

We use the least-squares method (LSM) to calculate A,
b, c. Since the projections of the craters are ellipse, it is nec-

essary to exclude the case for which A has nonpositive eigen-
values. After ellipse fitting, the candidate for the crater center
is the following:

Xo = xo yo½ �T = −
1
2
A−1b: ð22Þ

3000m

Figure 12: Ground truth including detected craters and undetected craters.

Table 5: D > 700m crater extracted information.

Crater number Average diameter (m) Center coordinates θ (rad) Crater number Average diameter (m) Center coordinates θ (rad)

1 743.8 (20593, 2888) −3.072
2 2847.3 (3258, 4001) 3.105 20 1036.8 (10940, 8802) −3.140
3 784.0 (233, 3486) 2.620 21 2678.5 (660, 3470) −3.079
4 831.8 (621, 5962) 2.630 22 4977.8 (1060, 7760) 2.675

5 983.9 (833, 5802) 2.445 23 2922.7 (2450, 1900) −1.331
6 1070.3 (919, 6135) 2.773 24 1321.5 (2910, 5960) −2.981
7 784.1 (10029, 6139) 3.131 25 7467.4 (5240, 2290) −2.919
8 1023.9 (2016, 7452) 3.046 26 3782.9 (5440, 5050) −0.940
9 966.5 (2480, 7419) 2.749 27 3986.1 (6270, 7120) −2.936
10 3875.1 (4856, 6660) −2.461 28 2407.3 (6160, 1370) 2.538

11 1137.6 (7525, 6770) −1.293 29 3973.4 (6880, 1480) −2.424
12 2342.1 (9993, 6947) 2.566 30 8360.0 (8720, 1000) −1.814
13 2101.2 (11755, 7191) −1.003 31 1153.2 (9230, 3740) −1.769
14 905.5 (1063, 9242) −1.056 32 5564.8 (6040, 3940) −1.483
15 1187.7 (1699, 8675) 2.774 33 3521.4 (11610, 940) −2.494
16 2828.8 (3555, 9513) 2.802 34 1777.8 (4210, 5620) 2.916

17 1652.6 (9167, 9006) −2.298 35 3665.2 (11120, 8600) 2.735

18 1102.9 (9445, 8651) 2.832 36 2281.0 (11210, 6670) −0.908
19 2271.4 (10194, 9394) −0.792 37 6030.9 (10430, 5980) 3.014
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4. Results and Discussion

Crater detection is basic to optical navigation, crater recon-
struction, and HDA. To verify the effectiveness and robust-
ness of the method proposed, two experiments are carried
out in this article. The first experiment verifies that the pro-
posed CDA works well and has robustness under different
illumination directions for the same area. The second exper-
iment verifies that compared with the traditional method,
the proposed CDA can detect more craters and has lower
computational efficiency.

4.1. Simulation Verification on Sand Table under Different
Illumination Directions. Crater detection is basic to optical
navigation, crater reconstruction, HAD, and landing site
selection. A 2m × 2m simulated lunar sand table is con-
structed to verify the robustness of the proposed CDA. The
parallel light source is set at different positions of the sand
table to simulate different sunlight illumination directions.
The environment around the sand table is processed to
avoid the influence on the detection of sand table craters.
The experimental conditions are shown in Table 2.

Hardware-in-loop simulation experiment is constructed
by a front-facing camera, sand table, parallel light source,
and data switching exchanges. Figure 8 shows the camera
and the lunar sand box used in the experiment. Figure 9
shows the hardware-in-loop simulation environment.

The parallel light sources are, respectively, set on the left
and right sides of the lunar simulation sand table, with a
height of about one meter, to simulate the different light
directions of the Sun. After Gaussian smoothing of the sand
table images under different light conditions, maximum
entropy threshold segmentation is used to form the different
highlight and shadow areas of the crater, and then the cra-
ters are detected. Detected results are as shown in Figure 10.

Figure 10 shows the following: (a) parallel light source is
set on the left of sand table; (b) maximum entropy threshold
segmentation of (a); (c) detected craters of (a); (d) parallel
light source is set on the right of sand table; (e) maximum
entropy threshold segmentation of (d); and (e) detected cra-
ters of (d).

We can make some discussions from Figure 10.

(1) Seven craters are detected in each image. Crater No.
1~6 are all detected in two images because their
shadows are easily segmented from the surrounding
environment. Crater No. 7 and crater No. 8 are all
covered by the shadow of crater No. 2, so the pro-
posed CDA can detect only one of them in each
direction of sunlight. This is caused by the shape
and distribution of the craters on the sand table,
not by our proposed method

(2) Although crater No. 1~6 are all detected in two
images, the ellipse shapes of the craters are different.
That is because shadows of the same craters under
different sunlight directions are usually quite differ-
ent as shown in Figures 10(b) and 10(e)

(3) CDA proposed can work well under different illumi-
nation directions, which means our CDA method
has strong robustness.

4.2. Simulation Verification in Lunar Image. According to
the lunar surface image data released by Chang’e series of
probes, we can obtain optical images of the lunar surface
with different resolutions. In this paper, a DOM (7m) gray
image, detected by the Chang’e-2 lunar probe, named
CE2_GRAS_DOM_07m_C101_66N172W_A.tif was selected
as the experimental data to extract large and small craters.
We can download it from https://moon.bao.ac.cn/

Table 6: Detected crater numbers and quality factors.

Matching threshold ε Number of craters
Quality factors Detection results

D Q B P TP FP FN

0.1 1430 89.8%∗ 76.7% 0.19 84.0% 1201 229 136

0.2 1276 89.7% 84.8% 0.06 94.0% 1199 77 138

0.3 1264 89.7% 85.5% 0.05 94.9% 1199 65 138

0.4 1230 88.6% 85.6% 0.04 96.3% 1184 46 153

0.5 1170 87.5% 87.5%∗ 0∗ 100%∗ 1170 0 167

0.6 1074 80.3% 80.3% 0∗ 100%∗ 1074 0 263

0.7 962 72.0% 72.0% 0∗ 100%∗ 962 0 375

0.8 909 68.0% 68.0% 0∗ 100%∗ 909 0 428

0.9 209 15.6% 15.6% 0∗ 100%∗ 209 0 1128
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Figure 13: Detection percentage (D) curve.
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searchOrder_dataSearchData.search. The image information
and PC parameters are shown in Table 3.

There were 1337 craters counted in Chang’e-2 DOM
(7m) image, and the number 1337 was used as the ground
truth (Table 4). To detect craters fast and accurately, a slid-
ing window sized 963 × 1247 is used to detect small craters.

At a matching threshold of ε = 0:5, 1170 craters can be
detected in this image without false positives. The detection
results 1170 craters are shown in Figure 11. The image reso-
lution is 7m per pixel, and we can calculate the average
diameter of each detected crater. For different sizes of crater,
our method has different extraction rates; the bigger the cra-
ter, the higher the extraction rate. Through analysis, the
main reasons for the decline in the extraction rate of smaller
craters are as follows: the slope of lunar surface with small
craters is too small, the changes of light and darkness are
not obvious, and there is a large degree of overlap with the
surrounding craters.

To make the detection results more obvious, Figure 12
shows the ground truth of all craters by manual counting.

The red circles represent the center of the undetected craters,
and the blue circles represent the crater detected by the
method proposed.

Table 5 shows the extracted information for craters
whose average diameters are larger than 700m. The
recorded information includes the average diameter, center
coordinates, and direction angle (θ).

Many researchers [39, 40] proposed different parameters
to evaluate the performance of the CDA. These methods
work by counting craters detected in different states, i.e., true
positives (TPs) corresponding to real detected craters and
false positives (FPs) corresponding to detected craters that
do not exist. A false negative (FN) represents the number
of existing craters that are not detected. After obtaining the
TP, FP, and FN, the quality factors can be calculated, which
include the detection percentage (D), the quality percentage
(Q), the branching factor (B), and the precision (P) as fol-
lows:

Detection percentage = 100% × TP
TP + FN

� �
,

Quality percentage = 100% ×
TP

TP + FP + FN

� �
,

Branching factor = FP
TP

� �
,

Precision = 100% ×
TP

TP + FP

� �
:

ð23Þ

P shows that our method proposed is better than ran-
dom guess; D, Q, and B can help us to choose the best
threshold.

Different thresholds were chosen, i.e., ε from 0.1 to 0.9,
and then the detected crater numbers and quality factors
were calculated using our proposed method. The results
are shown in Table 6. The symbol ∗ represents the optimal
value.

The detection percentage curve as shown in Figure 13
was drawn using the data in Table 6.

We can make the following conclusions from Table 6
and Figure 13.

(1) When ε = 0:1, although the number of detected cra-
ters is even more than manual counting ground
truth, TP and detection percentage do not reach
100%. There are two reasons, the first reason is that
some structures of old craters are broken, and the

Table 7: Comparison with other crater detection algorithms.

Method (ε = 0:5) Crater number
Quality factors Detection results

D Q B TP FP FN

Our approach 1170 87.5% 87.5% 0 1170 0 167

He [38] 979 64.6% 60.0% 0.12 865 104 472

Hough transform 917 45.8% 38.5% 0.42 613 255 724

Highlight/shadow region 1047 59.2% 52.5% 0.22 792 171 545

Table 8: Comparison with He’s CDA.

Methods
(ε = 0:5)

Crater
number

Quality factors Detection results
D Q B TP FP FN

Our
approach

1170 88.5% 88.1% 0.005 3835 19 498

He [38] 979 58.4% 44.2% 0.55 2532 1401 1801

He approach

Our approach

0 0.5 1 1.5 2 2.5 3.5

Image preprocessing
Ternary segmantation
Adaptive double-threshold
selection

Edge detection
Edge match
Ellipse fitting

3

Computation cost (s)

Figure 14: Computational cost of different methods.
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other reason is that some semicrater edges mismatch
to other craters

(2) When the matching threshold ε increases, the con-
straint for matching semicrater edges becomes stron-
ger, and therefore, the number of extracted craters
decreases; TP and FP decrease at the same time

(3) When the matching threshold ε increases, FN
increases along with it, because of irregularly shaped,
incomplete crater edges, or craters that did not have
an obvious change in gray values

(4) The CDA achieves the best result only by choosing
the appropriate threshold. When the matching
threshold ε increases, quality factors D and B become
better but the number of detected craters decreases.
When ε = 0:5, there is no FP which matters with
navigation, and Q and B are all the best value, which
means ε = 0:5 is an appropriate threshold

(5) Design an evaluation parameter E to comprehen-
sively consider various quality factors.

E =D +Q + 1 − Bð Þ + P: ð24Þ

When ε = 0:5, E = 3:75, which is larger than other
parameters that correspond to other ε.

The area under the curve (AUC) in Figure 13 could be
calculated to evaluate the performance of the proposed
method; the higher the AUC, the better the proposed
method.

(i) AUC = 1 means that the proposed CDA is perfect,
and it can detect all craters without any FP and FN

(ii) 0:5 < AUC < 1 means the proposed CDA is better
than random guess. If the matching threshold ε is
set appropriately, the proposed method can work
very well

(iii) AUC = 0:5 means that the proposed method works
the same with random guess

(iv) AUC < 0:5 means that the proposed method works
even worse than random guess.

The AUC of the proposed method is 0.9192, which is
much higher than 0.5, which means that our method works
well and has robustness for crater detection.

Table 7 shows a comparison of the quality factors of our
proposed method with He’s CDA [38]. For the same lunar
surface picture, our method obtained a better detection per-
centage, quality percentage, and branching factor, due to a

larger number of TPs, smaller number of FPs, and smaller
number of FNs.

Compared to He’s method and other traditional
methods, the proposed method improves TP by 35.3%, and
FP and FN are much smaller than He’s method. Quality fac-
tors are also better. It can be concluded that the proposed
method is a more effective large-scale image CDA.

In Table 8, we compared the quality factors using a pub-
lished lunar crater database [24, 41]; there are 4333 craters at
the landing site.

By dividing the crater detection algorithm into substeps
(image preprocessing, ternary segmentation, adaptive dual-
threshold τlτh selection, edge detection, edge matching,
and ellipse fitting), we can compare the difference between
the proposed method and He’s method. Therefore, we
selected a subgraph in Figure 11 of 963 × 1247, calculated
the time for each step, and analyzed the computational cost;
the result is shown in Figure 14 and Table 9.

Compared with He’s method, the computational cost of
the proposed CDA is significantly reduced. The time for
image preprocessing is basically the same; He’s method takes
a long time to adaptively select two thresholds, while ternary
segmentation based on the maximum entropy threshold, as
proposed in this paper, takes a short time. In addition, as
compared with He’s method, using our method, the edges
detected are continuous, smooth, and without broken edges,
and the time for edge matching is also shorter. Because our
method has less mismatching and strong robustness, the
ellipse fitting time is also slightly less than for He’s method.
Overall, compared to He’s method, the computational effi-
ciency of He’s method can be improved by 40.1%.

5. Conclusions

In this paper, a robust crater detection algorithm based on a
maximum entropy threshold was proposed. The proposed
method can effectively improve the robustness of crater
detection algorithms for Mars, the Moon, asteroids, and
other celestial bodies and can enhance the quantity and reli-
ability of crater extraction. It can also be used for the vision
navigation tasks of Mars, the Moon, asteroids, and other
celestial bodies, hazard avoidance, and path planning. In
our method, the entropy distribution is first calculated using
two thresholds of the detected image, and the maximum
entropy threshold of the image is calculated to make the
image ternary. Then, the edge of the ternary image is
detected to complete the edge extraction of the crater; a
multiple-indicator constraint matrix is constructed, and the
extracted edge of the crater is matched and fitted by compre-
hensively considering the length similarity, brightness, and
other normalized factors, so as to complete the extraction
of the crater.

Table 9: Computational cost comparison with He’s CDA.

Method (ε = 0:5) Image preprocessing Ternary segmentation τl , τh selection Edge detection Edge match Ellipse fitting Total time

Our approach 0.395 s 0.257 s 0 s 0.353 s 0.701 s 0.025 s 1.831 s

He’s approach 0.364 s 0 s 1.112 s 0.664 s 0.842 s 0.015 s 3.057 s
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A simulation lunar sand table and a lunar surface image
captured by the Chang’e probe were used to verify the pro-
posed algorithm. The simulation results show that, com-
pared with traditional crater detection algorithms, the
extraction results and quality factors of the proposed
method are significantly improved, the robustness is good,
TPs increase by more than 30%, and the computational effi-
ciency is improved by more than 40%. The method therefore
has good development prospects for exploration missions to
Mars, the Moon, asteroids, and other celestial bodies.

Data Availability

In this paper, a DOM (7m) gray image, detected by the
Chang’e-2 lunar probe, named CE2_GRAS_DOM_07m_
C101_66N172W_A.tif was selected as the experimental data
to extract large and small craters. We can download it from
https://moon.bao.ac.cn/searchOrder_dataSearchData
.search.
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