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This paper investigates finite-time attitude tracking control strategies for hypersonic flight vehicles (HFVs) with parameter
uncertainties, external disturbances, and actuator saturations by applying sliding model control, adaptive mechanism, and
nonlinear disturbance observer techniques. A nonlinear dynamic model of HFV attitude system in reentry flight phase is
established. Then, a basic attitude control method of the HFV system is designed based on a terminal sliding mode control
(TSMC) scheme to accommodate the system-lumped disturbance torques and guarantee the finite-time stability. To relax the
prior knowledge of bounded lumped disturbance of the TSMC-based HFV attitude system, an adaptive TSMC (ATSMC)
scheme is proposed. In order to relax the limit of compound uncertainties and attenuate chattering phenomenon of the
TSMC-based HFV attitude system, a nonlinear disturbance observer-based TSMC (DO-TSMC) scheme is presented, which
enhances the disturbance attenuation and robust tracking performance. Finally, simulation results of a generic X-33 nonlinear
model exhibit the effectiveness of the proposed TSMC, ATSMC, and DO-TSMC schemes.

1. Introduction

Research on hypersonic flight vehicles (HFVs) is widely con-
cerned in recent years due to its high-speed transportation,
ability to accomplish modern space missions, and broad appli-
cation in military and civil fields [1–4]. However, there exists
many challenges to design control law for the HFV attitude
system containing complex coupling terms, unknown distur-
bances, and uncertainty of external environment [5, 6]. Under
the influence of inaccurate modeling and external disturbances,
the control system may not be able to complete the scheduled
task, or even out of control. Therefore, it is essential for us to
propose efficient approaches to design the attitude system.

In recent years, there have been a lot of research results on
hypersonic vehicle controller design with external disturbances
and uncertainties. Slidingmode control (SMC) [7, 8], backstep-
ping control [9], twisting control [10], adaptive control [11],
coupling effect-triggered control (CETC) [12], and compound
control methods of the ways mentioned above have been
largely used to enhance the attitude control performance. In
[13], a tracking control scheme with quantization mechanism,
which uses an interval type-2 fuzzy neural network (IT2FNN)

is proposed for HFVs. A coordinate-free, finite-time, attitude
control is employed for thrust-vectoring spacecraft to guaran-
tee the required thrust vector exactly at the predefined time
[14]. In [15], under the condition of the inaccuracy of mea-
sured flight path angle, external disturbances, and actuator sat-
uration, a backstepping-based control is developed for the
tracking control of HFVs. In [16], the predefined-time adaptive
fuzzy tracking control problem of HFVs is solved by a novel
fuzzy adaptive control strategy based on fuzzy approximation
and backstepping control techniques. To cope with tracking
performance with uncertainties of HFVs, the article [17]
explores a new adaptive fuzzy nonsmooth backstepping
output-feedback control scheme.

On account of its fast global convergence, simple algo-
rithm, high robustness against external perturbation, and
system uncertainties, SMC has been extensively applied to
compensate for the lumped disturbances. In order to improve
the robust performance and obtain finite-time convergence,
the terminal sliding mode (TSM) controller based on the back-
stepping frame is designed [18]. However, by reason of the dif-
ficulty to obtain the upper bound of uncertainty or disturbance
in practice, compound control methods may lead to large
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chattering phenomenon and energy loss. In [19], a method
combined with TSMC and adaptive techniques is raised to
overcome actuator faults, which ensures the system stable in
the fixed time even under the condition of actuator faults and
model uncertainties. An adaptation strategy is employed to
estimate unknown information. In [20], the synthetic neural
learning combined with the nonsingular second-order terminal
sliding mode is raised to deal with model uncertainties for
hypersonic reentry vehicle (HRV). In this paper, the influence
value of system fault is obtained by RBF neural network mech-
anism. However, the disturbance in the system is not estimated.
The disadvantage of this controller design method is that it
needs to select a larger gain to ensure the disturbance and fault
estimation error in the system, which will cause energy waste.
In [21], a singular free fast terminal sliding mode controller is
proposed for velocity subsystem of HFVs with multisource
uncertainty and actuator fault. In order to attenuate chattering
and compensate for the disturbances, the article [22] presents a
novel fixed-time sliding mode disturbance observer (SMDO).
In [23], a novel fixed-time convergent nonsmooth backstep-
ping control scheme for air-breathing hypersonic vehicles
through augmented sliding mode observers (ASMOs) is raised
to solve uncertainty and measurement noise. It is worth noting
that although references [21–23] use the scheme of disturbance
observer to compensate the lumped disturbance value, the
design of disturbance observer has certain limitations. For
example, the disturbance should be differentiable and some
observers require the disturbance to be constant or slowly
varying. In reality, the disturbance or fault may not satisfy these
assumptions. In [24], a novel learning observer-based control
strategy is proposed for a faulty rigid spacecraft attitude system.
The observer can estimate actuator fault that are constant, peri-
odic, or aperiodically time-varying. In addition, because the
actuator is constrained by its own physical conditions, we need
to consider the case of actuator input saturation in the control-
ler design process. Input saturation will seriously affect the
performance of the control system, leading to system instability
[25, 26]. In [27], the difference between the required control
input and the actual control input is expressed as a known con-
tinuous function multiplied by an unknown constant vector.
The adaptive technique is used to estimate the unknown vector,
and then, a backstepping controller is designed to compensate
the error value of control saturation. In order to further solve
the problem of input saturation, reference [28] proposed a fast
adaptive terminal sliding mode controller with antisaturation
by introducing hyperbolic tangent function and auxiliary sys-
tem, which can not only meet the physical constraints of the
actuator but also ensure that the sliding mode manifold is
finite-time stable. In [29], an adaptive fixed-time antisaturation
control (AFAC) algorithm is proposed for FHV with actuator
constraints. The adaptive law in controller is updated according
to the deviation value of the control signal to improve the abil-
ity of the controller to suppress actuator saturation. However,
the introduction of adaptive update increases the complexity
of the controller. To the best of our knowledge, the results
about the integrated attitude tracking control design for HFV
system with time-varying disturbance and actuator saturation
are limited, which remain challenging and motivate us to do
this study.

In this paper, we focus on the attitude control problem of
HFVs in reentry phase, where the model uncertainty, external
disturbance, and actuator saturation are taken into account. In
order to achieve the finite-time stability, the terminal sliding
mode manifold is introduced. Assuming that there exists a
prior knowledge of the bounded external disturbances and
inertia uncertainties, a basic TSMC-based attitude control
scheme is proposed. Further, an adaptive mechanism and a
nonlinear disturbance observer are, respectively, designed for
the TSMC-based attitude control system, which ensure the
finite-time convergence in both reaching phase and sliding
phase. Comparing with the results in the literature, the main
contributions of this paper are as follows:

(1) A basic TSMC scheme is proposed for the HFV atti-
tude system in the presence of model uncertainties,
external disturbance, and actuator saturation. Com-
pared with the conventional control methods, such
as backstepping control [30] and integrated SMC
[31, 32], the basic TSMC method can ensure the
closed-loop attitude system to be asymptotically stable
and track the reference signals in a finite time. Inspired
by reference [32, 33], the TSMC control strategies with
the low-pass filter are proposed to attenuate the chat-
tering phenomenon caused by switching function.
The discontinuous signal can be smoothed by the
low-pass filter so the system can be stable with no
chattering in the finite time. The stability of closed-
loop attitude control system is analyzed using the Lya-
punovmethod, andmoreover, the system can be guar-
anteed to be finite-time stable

(2) To overcome the requirement of a prior knowledge of
bounded lumped disturbance of the basic TSMC-
based HFV attitude system, an adaptive law is intro-
duced to adapt the switching gains, yielding an adap-
tive TSMC (ATSMC) scheme which is proposed.
Compared with the conventional methods [32, 33], a
suitable switching gain is selected according to the
adaptive mechanism, which can reduce the large chat-
tering phenomenon caused by the large gain

(3) To solve the limits of lumped disturbance and atten-
uate chattering phenomenon of the basic TSMC-
based HFV attitude system, a nonlinear disturbance
observer-based TSMC (DO-TSMC) is presented,
which enhances the disturbance attenuation and
robust performance. Compared with the existing
adaptive SMC [31] and observer-based methods
[34], the proposed DO-TSMC scheme relaxes the
limits of uncertainties and disturbance and achieves
higher precision, less chattering, faster finite-time
convergence, and no need for prior knowledge of
uncertainties. The class of disturbance considered
in this paper can be much larger than the existing
disturbance observer method [34]

This paper is organized as follows. In Section 2, the atti-
tude control problem of the HFVs is formulated. In Section
3, the TSMC, ATSMC, and DO-TSMC-based attitude control
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systems are designed, respectively. Simulation studies are
given in Section 4 to demonstrate the effectiveness of the pro-
posed schemes, followed by the conclusion of this study in
Section 5.

2. Attitude Model and Control System
Framework of HFVs

In this section, a dynamic model of HFVs with parameter
uncertainty, external disturbance, and actuator saturation is
given, and the attitude control system framework is designed.

2.1. HFV Attitude Dynamic Model

2.1.1. Generic Attitude Dynamic Model. The attitude dynamic
equations of HFVs are given by

_
p =

IzzMx

IxxIzz − I2xz
+

IxzMz

IxxIzz − I2xz
+

Ixx − Iyy + Izz
À Á

Ixz
IxxIzz − I2xz

pq +
Iyy − Izz
À Á

Izz − I2xz
IxxIzz − I2xz

qr,

q =
My

Iyy
+
Ixz
Iyy

r2 − p2
À Á

+
Izz − Ixx

Iyy
pr,

_r =
IxzMx

IxxIzz − I2xz
+

IxxMz

IxxIzz − I2xz
+

Ixx − Iyy
À Á

Ixx + I2xz
IxxIzz − I2xz

pq +
Iyy − Ixx − Izz
À Á

Ixz

IxxIzz − I2xz
qr,

ð1Þ

and the kinematic equations of HFVs are given by

where ϕ, α, and β are bank, attack, and sideslip angles; p, q,
and r are roll, pitch, and yaw angular rates; χ, ξ, and τ are
heading, latitude, and longitude angles; ΩE is the Earth’s
angular rate; and the definitions of other variables are given
in [31].

2.1.2. Attitude Dynamic Model in Reentry Phase. In the reentry
flight phase, because the rotational motion of the HFVs in
reentry phase is much faster than the rotational motion of
the Earth, the angular velocity of the Earth ΩE can be
neglected, and the translational motion can hardly affect the
rotational motion. The derivatives of both position and direc-
tion of velocity and the Earth’s angular velocity are negligible
with respect to the rotational motion. Therefore, Equation
(2) can be simplified as

α = −p cos α tan β + q − r sin α tan β,
_β = p sin α − r cos α,

_ϕ = −p cos α cos β − q sin β − r sin α cos β:

ð3Þ

2.1.3. Uncertain Model with Disturbance. The reentry attitude
dynamics of HFVs with parameter uncertainty and external
disturbance can be described as

I + ΔIð Þ _ω = −ω× I + ΔIð Þω +M + d, ð4Þ

whereω = ½p, q, r�T is the angular rate vector, I ∈ R3×3 is the
inertia matrix, and ΔI ∈ R3×3 is an uncertain part of the inertia
matrix, which is caused by the fuel consumption and variations
of particular payloads. d = ½d1, d2, d3�T is the external distur-
bance vector. M = ½Mx,My,Mz�T is the control torque vector,

which is calculated by

M =D tð Þu, ð5Þ

where DðtÞ ∈ R3×m, m is the number of the control surfaces,
and u = ½u1, u2,⋯, um�T is the vector of aerodynamic surface
deflections. Then, the attitude dynamicmodel can be rewritten
as

_Ω = Rω,

_ω = −I−1ω×Iω + I−1Du + f1,
ð6Þ

where Ω = ½ϕ, α, β�T is attitude angle vector, f1 = I−1ðd − ΔI _ω
− ω×ΔIωÞ, and the matrices R, I, and ω× are as

R =

−cos α cos β −sin β −sin α cos β

−cos α tan β 1 −sin α tan β

sin α 0 −cos α

2
664

3
775,

I =

Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

2
664

3
775,

ω× =

0 −r q

r 0 −p

−q p 0

2
664

3
775:

ð7Þ

2.1.4. Uncertain Model with Disturbance and Actuator
Saturation. Since there are input constraints on the control
surfaces of HFVs, thus the attitude dynamic model (6) is

_α = −p cos α tan β + q − r sin α tan β −
cos ϕ
cos β

_γ − _ξ cos χ − _τ +ΩEð Þ cos ξ cos χ
h i

+ sin ϕ

cos β
_χ cos γ − _ξ sin χ sin γ + _τ +ΩEð Þ cos ξ cos χ sin γ − sin ξ cos γð Þ

n o
,

_β = p sin α − r cos α + sin ϕ _γ − _ξ cos χ + _τ +ΩEð Þ cos ξ sin χ
h i

+ cos ϕ _χ cos γ − _ξ sin χ sin γ − _τ +ΩEð Þ cos ξ cos χ sin γ − sin ξ cos γ
h i

,

_ϕ = −p cos α cos β − q sin β − r sin α cos β + _α sin β − _χ sin γ − _ξ sin χ cos γ + _τ +ΩEð Þ cos ξ cos χ cos γ + sin ξ sin γð Þ,
ð2Þ
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rewritten as

_Ω = Rω,

_ω = −I−1ω×Iω + I−1Dsat uð Þ + f1,
ð8Þ

where satðuiÞ, i = 1, 2,⋯,m is defined as

sat uið Þ =
�ui, ui > �ui,

ui, ui ≤ ui ≤ �ui,

ui, ui < ui:

8>><
>>: ð9Þ

Further, define an auxiliary variable δ = ½δ1, δ2,⋯, δm�T as

δi =

�ui − ui, ui > �ui,

0, ui ≤ ui ≤ �ui,

ui − ui, ui < ui,

8>><
>>: ð10Þ

then (9) and (10) yield to

sat uð Þ = δ + u: ð11Þ

Substituting (11) into (8), the HFV attitude dynamic
model with uncertainties, disturbances, and actuator input
saturations can be expressed by

_Ω = Rω,

_ω = − I−1ω×Iω + I−1Du + f ,
ð12Þ

where f = I−1ðd − ΔI _ω − ω×ΔIωÞ + I−1ðDδÞ and it can be con-
sidered as a lumped disturbance for HFV attitude dynamics.

2.2. Attitude Control Problem and Control
System Framework

2.2.1. Control Objective. The control objective is to solve the
attitude control problem of HFV system (12) with the
parameter uncertainties, external disturbances, and control
input constraints. An advanced control method is necessary
to make the attitude system output Ω track a reference input
Ωr in the finite time.

2.2.2. Control Method Motivation. As a robust nonlinear
control method, the SMC theory is applied in this control
problem. Therefore, a basic TSMC scheme is designed, an
ATSMC scheme is designed in which an adaptive law is used
to estimate the upper bounds of the lumped disturbance,
and finally, a DO-TSMC is designed in which a nonlinear
disturbance observer is used to online estimate the value of
lumped disturbances.

2.2.3. Control System Framework. A block diagram of the
HFV attitude control system is designed as shown in
Figure 1. It consists of two parts; the inner loop is the adap-
tive mechanism and disturbance estimation observer, while
the outer loop is the basic TSMC-based attitude controller.

3. Finite-Time Attitude Controller Design

In this section, three finite-time attitude controllers based on
the TSMC, ATSMC, and DO-TSMC schemes are designed
for the HFV attitude system in the presence of model uncer-
tainties, external disturbances, and actuator saturations.

3.1. Preliminaries

Assumption 1. The reference signal Ωr = ½ϕr , αr , βr�T is
bounded and continuously differentiable, and its derivative
_Ωr is bounded.

Assumption 2. The system-lumped disturbance torque f is
bounded, and it satisfies k f k ≤ ld , where ld > 0 is a constant.

Assumption 3. The derivative of the system-lumped distur-
bance torque is bounded, and it satisfies k _f k ≤ kd , where kd
> 0 is a constant.

Lemma 4 [35]. Consider the nonlinear system described as
_x = f ðx, uÞ, f ð0Þ = 0, x ∈ Rn. Suppose VðxÞ is a continuous
positive definite function (defined on D ∈R) and _VðxÞ + λ
VρðxÞ is negative semidefinite on D for 0 < ρ < 1 and λ > 0,
then there exists an area D0 ∈R such that any VðxÞ which
starts from D0 ∈R can reach VðxÞ ≡ 0 in the finite time.
Moreover, if Treach is the time to reach VðxÞ ≡ 0, then

Treach ≤
V1−ρ xoð Þ
λ 1 − ρð Þ , ð13Þ

where Vðx0Þ is the initial value of VðxÞ.

Lemma 5 [36]. Consider the nonlinear system described as _x
= f ðx, uÞ, f ð0Þ = 0, x ∈ Rn and there exists a continuous func-
tion VðxÞ, scalars ε > 0, 0 < κ < 1, and 0 < η <∞ such that

_V xð Þ ≤ −εVκ xð Þ + η: ð14Þ

Then, the trajectory of the nonlinear system is finite-time
stable. Therefore, the trajectory of the closed-loop system is
bounded in finite time as limθ⟶θ0

x ∈ ðVκðxÞ ≤ ðη/ð1 − θÞεÞÞ,
here 0 < θ0 < 1. And the time to reach such a neighborhood is
bounded as

T ≤
V1−κ x0ð Þ
εθ0 1 − κð Þ , ð15Þ

where Vðx0Þ is the initial value of VðxÞ.

Lemma 6 [36]. For any real number li ∈R, i = 1,⋯, n, there
exists 0 < p ≤ 1 such that

l1j j + l2j j+⋯+ lnj jð Þp ≤ l1j jp + l2j jp+⋯+ lnj jp: ð16Þ

3.2. TSMC-Based Attitude Control System Design. A finite-
time attitude control system is designed based on the basic
TSMC scheme.
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3.2.1. Outer-Loop Controller. A tracking error of outer loop
of attitude system is defined as

e1 =Ω −Ωr , ð17Þ

where e1 ∈ R3 and Ωr ∈ R3 is reference input which can be
constant or time-varying. The first fast terminal sliding
mode surface is defined as

s1 = _e1 + c1e1 + c2e
q1/p1
1 , ð18Þ

where s1 ∈ R3, c1 > 1, c2 is a positive scalar, and q1 and p1 are
odd integers satisfying p1 > q1 > 0. Then, a virtual control
law ωc can be designed as

ωc = R−1 ωeq + ωn

À Á
,

ωeq = _Ωr − c1e1 − c2e
q1/p1
1 ,

_ωn = v1,

v1 = −k1s1 − η1 sgn s1ð Þ,

ð19Þ

where ωnð0Þ = 0; k1 and η1 are two positive constants.

3.2.2. Inner-Loop Controller. Similarly, a tracking error of
system inner loop is defined as

e2 = ω − ωc, ð20Þ

where e2 ∈ R3. The second fast terminal sliding mode surface
is defined as

s2 = _e2 + c3e2 + c4e
q2/p2
2 , ð21Þ

where s2 ∈ R3, c3 > 1, c4 is a positive scalar, and p2 and q2 are
odd integers satisfying p2 > q2 > 0. Then, the TSMC-based

attitude control law is designed as

u = I−1D
À Á†

ueq + un
À Á

ueq = I−1ω×Iω − c3e2 − c4e
q2/p2
2 + _ωc,

_un + Tun = v2,

v2 = −k2s2 − kd + kT + η2ð Þ sgn s2ð Þ,

ð22Þ

where ðI−1DÞ† = ðI−1DÞT ½ðI−1DÞðI−1DÞT �−1; unð0Þ = 0; kT , k2,
and η2 are positive constants; kd is a constant defined in
Assumption 3; and T ≥ 0 and kT are selected to satisfy kT
≥ Tld .

Theorem 7. Consider the HFV attitude system (12) with
uncertainties, disturbances, and actuator saturations, suppose
that three assumptions are satisfied, the TSMC-based attitude
controller (22) guarantees that the attitude angle error e1 and
angular velocity error e2 converge to zeros in the finite time.
Furthermore, the convergent time is calculated by

Treach ≤
V1/2 0ð Þ
η

ffiffiffi
2

p : ð23Þ

Proof. Choose a Lyapunov function candidate for the closed-
loop attitude control system as

V =
1
2
sT1 s1 +

1
2
sT2 s2: ð24Þ

Substituting the virtual control law (19) into the sliding
manifold (18) and differentiating s1, we have

_s1 = R_e2 + _Re2 − k1s1 − η1 sgn s1ð Þ: ð25Þ

Considering the system model (12), the sliding mode
manifold (21) can be rewritten as

s2 = −I−1ω×Iω + I−1Du + f − _ωc + c3e2 + c4e
q2/p2
2 : ð26Þ

Attitude
tracking

controller
Actuator

Adaptive
law

Virtual
controller

 HFVs Attitude
systems

M

DisturbancesSaturationNormal controller

Disturbance
observer

u

f

𝜔c

𝜔 𝜔

𝛺r

𝛺

𝛺

ˆ k̂

Figure 1: Block diagram of the HFVs attitude control system.
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Substituting the control law (22) into (26) gives

s2 = −I−1ω×Iω + ueq + un + f − _ωc + c3e2 + c4e
q2/p2
2 = f + un:

ð27Þ

The solution of (22) is given by

un tð Þ = un t0ð Þ + 1
T

kd + kT + η2ð Þ sgn sð Þ + k2s2

� �
et−t0

−
1
T

kd + kT + η2ð Þ sgn s2ð Þ + k2s2ð Þ:
ð28Þ

Thus, the following relationship under the condition un
ð0Þ = 0 can be obtained.

kT ≥ Tld ≥ T un tð Þj jmax ≥ T un tð Þj j: ð29Þ

For the sliding manifold (21), its derivative with respect
to t along system (12) can be obtained as

_s2 =
d
dt

f + _un + Tun − Tun =
d
dt

f + v2 − Tun: ð30Þ

Substituting (22) into (30) gives

_s2 =
d
dt

f − kd + kT + η2ð Þ sgn s2ð Þ − k2s2 − Tun: ð31Þ

Considering (25) and (31), the time derivative of V is
given by

_V = sT1 R_e2 + _Re2 − η1 sgn s1ð Þ − k1s1
À Á

+ sT2
d
dt

f − kd + kT + η2ð Þ sgn s2ð Þ − k2s2 − Tun

� �

≤ −η1 s1k k − k1s
T
1 s1 + sT2

d
dt

f − kd s2k k
� �

− Tuns2 + kT s2k kð Þ − η2 s2k k − k2s
T
2 s2 + sT1 _Re2 + R_e2

À Á
≤ −η1 s1k k − η2 s2k k − k1s

T
1 s1 − k2s

T
2 s2 + sT1 _Re2 + R_e2

À Á
:

ð32Þ

According to the Young inequality [37], the following
inequality can be obtained:

sT1 _Re2 ≤
1
2
sT1 _R _R

T
s1 +

1
2
eT2 e2 ≤

1
2
sT1 _R _R

T
s1 +

1
2
sT2 s2: ð33Þ

Substituting (33) into (32) and assuming the term R_e2 is
bounded satisfying kR_e2k ≤ ρ, where ρ is a positive constant,
then

_V ≤ − η1 − ρð Þ s1k k − η2 s2k k − sT1 k1I −
1
2
_R _R

T
� �

s1 − k2 −
1
2

� �
sT2 s2:

ð34Þ

Let η =min fη1 − ρ, η2g. By selecting the appropriate k1,
k2, η1, and η2, such that k2 > 1/2, η1 − ρ > 0, and k1I − 1/2 _R
_R
T > 0. Considering Lemma 6, we have

_V ≤ − η1 − ρð Þ s1k k − η2 s2k k ≤ −η
ffiffiffi
2

p
V1/2 < 0: ð35Þ

According to Lemma 4, it is not difficult to find that the
sliding manifold s1 and sliding manifold s2 converge to zeros
in the finite time. Meanwhile, the convergent time is calculated
by

Treach ≤
2V1/2 0ð Þ
η

ffiffiffi
2

p : ð36Þ

This completes the proof of Theorem 7.

3.3. ATSMC-Based Attitude Control SystemDesign.The TSMC-
based attitude controller (22) is designed based on the assump-
tion that the bounds of the uncertainties and their derivatives
are known in advance. However, it is difficult to obtain the
bound values in advance in some situations, and the switching
gain needs to be chosen as a large value to compensate the
impact of uncertainties. Unfortunately, the large switching gain
may cause large chattering on the sliding surface. To enhance
the performance of the HFV attitude control system, an adap-
tive strategy is employed into the TSMC scheme.

3.3.1. ATSMC-Based Attitude Controller. The ATSMC-based
attitude controller is designed as

u = I−1D
À Á†

ueq + un
À Á

,

ueq = I−1ω×Iω − c3e2 − c4e
q2/p2
2 + _ωc,

_un + Tun = va,

va = −k2s2 − k̂ + η2

� �
sgn s2ð Þ,

ð37Þ

where the gain k̂ is the predicted value of the gain ðkd + kTÞ.
3.3.2. Adaptive Law of the Gain. The gain k̂ is online regu-
lated by an adaptive law:

_̂k =
1
ε

s2k k, ð38Þ

where ε > 0 is the adaptation coefficient. The smaller ε
will provide a faster convergence but may generate a bigger
value than the desired one.

Theorem 8. Considering the HFV attitude control system
(12) with uncertainties, external disturbances, and input sat-
urations, suppose the assumptions are satisfied, the ATSMC-
based attitude controller (37) with adaptive law (38) guaran-
tees the system trajectory to reach the sliding surface and
remain on it in the finite time, which means that the control
system is finite-time stable.
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Proof. Define a Lyapunov function candidate as

V =
1
2
sT1 s1 +

1
2
sT2 s2 +

1
2
ε~k

T~k, ð39Þ

where the adaptation error ~k = k̂ − ðkd + kTÞ. Differentiating
(39), we have

_V = sT1 _s1 + sT2 _s2 + ε~k
T _~k ≤ − η1 − ρð Þ s1k k − k1s

T
1 s1

+ sT1 _Re2 − k̂ + η2

� �
s2k k + sT2

d
dt

fð Þ − sT2Tun

− k2s
T
2 s2 + ε k̂ − kd + kTð Þ

� � _bk:
ð40Þ

Substituting the adaptive law (38) into (40) yields

_V = − η1 − ρð Þ s1k k + sT2
d
dt

fð Þ − kd + kT + η2ð Þ s2k k − sT2Tun

− k1s
T
1 s1 + sT1 _Re2 − k2s

T
2 s2 ≤ − η1 − ρð Þ s1k k

+ sT2
d
dt

fð Þ − kd s2k k
� �

+ −sT2Tun − kT s2k kÀ Á
− η2 s2k k ≤ − η1 − ρð Þ s1k k − η2 s2k k:

ð41Þ

By selecting the appropriate positive constants η1 and η2,
it is found that _V < 0. Therefore, the attitude conntrol sys-
tem is asymptotically stable. This implies that the trajectory
reaches the sliding surface and remains on it in the finite
time. This completes the proof.

3.4. DO-TSMC-Based Attitude Control System Design. A non-
linear disturbance observer is designed to enhance the distur-
bance attenuation ability and robustness performance against
the uncertainties of the inertia parameters and disturbances.
It estimates and compensates for the uncertainties through
feedforward, which is no need for prior information of
uncertainties.

A new state ωaðtÞ ∈ R3 is preliminarily introduced with
its dynamic satisfying

_ωa = −I−1ω×Iω + I−1Du + Fωe, ð42Þ

where ωe = ω − ωa and F ∈ R3×3 is a constant matrix deter-
mined by the design.

3.4.1. Nonlinear Disturbance Observer. A nonlinear distur-
bance observer is given by

_̂x = −Lx̂ + L Fωe − P ωeð Þð Þ,
f̂ = x̂ + P ωeð Þ,

ð43Þ

where f̂ is the estimation of the compound disturbance, x̂ is
the internal state of the nonlinear observer, PðωeÞ is a vector-
valued function designed as PðωeÞ = Lωe, and L is the posi-
tive observer gain matrix defined by L = LT ∈ R3×3.

Theorem 9. Considering the HFV attitude dynamics (12) and
the nonlinear disturbance observer (43), by selecting a suffi-
ciently large matrix L, the following results can be achieved
for all ~f ð0Þ.

Result 1: the disturbance estimation error ~f = f − f̂ is
globally exponentially stable if _f = 0

Result 2: if _f ≠ 0 and the rate of change of f is bounded,
i.e., there exists a positive scalar kd ∈ R such that k _f ðtÞk ≤
kd for all t ≥ 0, then the disturbance estimation error ~f con-
verges with an exponential rate, equal to ð1 − ςÞðlmin − 1/4Þ,
where 0 < ς < 1

Proof. From (12) to (42), it can be obtained that the dynam-
ics of ωe is such that

_ωe = _ω − _ωa = f − Fωe: ð44Þ

In accordance, it follows from (44) that the estimation
error ~f is such that

_~f = _f + Lx̂ − LFωe + LP ωeð Þ − L f − Fωeð Þ = _f − L~f : ð45Þ

Considering the following candidate Lyapunov function

as V1 = 1/2~f T~f , one has

_V1 = ~f
T _~f = −~f

T
L~f + ~f

T _f : ð46Þ

Then, the following two cases are discussed to analyze
the stability of ~f .

Case 1: if _f = 0, then (46) can be further simplified as

_V1 = −~f
T
L~f ≤ −2lminV1, ð47Þ

where lmin > 0 is the minimum eigenvalue of L
Solving (47) yields V1ðtÞ ≤V1ð0Þe−2lmint or

~f tð Þ
  ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V1 0ð Þ

p
e−lmint , ð48Þ

which implies that the estimation error ~f ðtÞ will be globally
exponential stabilized for any initial observer state, i.e., li
mt⟶∞k~f ðtÞk = 0.

Case 2: if _f ðtÞ ≠ 0 and k _f ðtÞk ≤ kd , one can get from (46)
that

_V1 ≤ −lmin
~f tð Þ

 2 + ~f tð Þ
 kd ð49Þ

At this stage, by applying the following well-known Young
inequality 2aTb ≤ aTa + bTb, ∀a, b ∈ Rn, it can be formulated
that
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_V1 ≤ − lmin −
1
4

� �
~f tð Þ

 2 + k2d = − 1 − ςð Þ lmin −
1
4

� �
~f tð Þ

 2
− ς lmin −

1
4

� �
~f tð Þ

 2 + k2d ,

ð50Þ

where 0 < ς < 1 is a positive constant. Therefore,

_V1 ≤ − 1 − ςð Þ lmin −
1
4

� �
~f tð Þ

 2,∀ f tð Þk k ≥ 2kdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ς 4lmin − 1ð Þp :

ð51Þ

To this end, it can be concluded from (51) and the uniform
ultimate boundedness theorem that the estimation error ~f ðtÞ
is globally, uniformly, and ultimately bounded.

Moreover, solving the inequality (51), one has

V1 tð Þ ≤V1 0ð Þe−2 1−ςð Þ lmin−1/4ð Þt ,∀ f tð Þk k ≥ 2kdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ς 4lmin − 1ð Þp ,

ð52Þ

~f tð Þ
  ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V1 0ð Þ

p
e− 1−ςð Þ lmin−1/4ð Þt ,∀ f tð Þk k ≥ 2kdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ς 4lmin − 1ð Þp :

ð53Þ
Hence,

~f tð Þ
  ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V1 0ð Þ

p
e− 1−ςð Þ lmin−1/4ð Þt +

2kdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ς 4lmin − 1ð Þp ,∀t ≥ 0:

ð54Þ

Then, one can conclude that the estimation error ~f ðtÞ
converges with an exponential rate to the ball with radius 2

kd/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ςð4lmin − 1Þp

for all ~f ð0Þ.

3.4.2. Composite Control Law. The DO-TSMC-based atti-
tude controller is designed as

u = I−1D
À Á†

ueq − f̂ + un
� �

,

ueq = I−1ω×Iω − c3e2 − c4e
q2/p2
2 + _ωc,

_un = vb,

vb = −k3s2 − η3 sgn s2ð Þ,

ð55Þ

where f̂ is the estimate of f which can be obtained by the
observer (43), unð0Þ = 0, and η3 and k3 are positive constants.

Theorem 10. Considering the HFV attitude system (12), the
DO-TSMC-based attitude controller (55) with the nonlinear
disturbance observer (43) and the virtual controller (19) can
guarantee that the attitude angle error e1 and angular veloc-
ity error e2 converge to zeros in the finite time.

Vertical rudders
(i)

(ii)
(iii)

Body flaps
Elevons

Function: yaw control and
pitch trim bias

Electromechanical actuators

Rudders: 60° outboard and
30° inboard deflection

Elevons: ±25° inboard and
±30° outboard
Electromechanical actuators
Function: pitch control and
roll control at all speeds

Electromechanical actuators
Pneumatic load assist device
Flaps: –15° to 26°
Function: pitch control at all
speeds, yaw control and entry

(i)

(iv)

(ii)
(iii)

(i)

(ii)
(iii)

Figure 2: The configuration of the X-33 HFV.

Table 1: Position limits on the control surface of X-33.

Actuator
Position limit

Minimum Maximum Unit

Right inboard elevons -25 +25 Deg

Left inboard elevons -25 +25 Deg

Right body flaps -15 +26 Deg

Left body flaps -15 +26 Deg

Right rudders -60 +30 Deg

Left rudders -30 +60 Deg

Right outboard elevons -30 +30 Deg

Left outboard elevons -30 +30 Deg
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Proof. Choose the Lyapunov function candidate for the
closed-loop attitude control systems as

V =
1
2
sT1 s1 +

1
2
sT2 s2: ð56Þ

Differentiating (56), substituting (25), (31), and (55), it
leads to

_V = sT1 −η1 sgn s1ð Þ − k1s1 + R_e2 + _Re2
À Á

+ sT2
_~f − η3 sgn s2ð Þ − k3s2

� �
:

ð57Þ

According to the Young inequality, the following inequal-
ities can be obtained:

sT2
_~f ≤

1
2
sT2 s2 +

1
2
_~f
T _~f =

1
2

s2k k2 + _~f
 2� �

: ð58Þ

Substituting (58) and (33) into (57) and selecting the
appropriate k1, k3, η1, and η2, such that k3 > 1, η1 − ρ > 0,
and k1I − 1/2 _R _R

T > 0, it further has

_V ≤ − η1 − ρð Þ s1k k − η3 s2k k + ϖ, ð59Þ

where ϖ = 1/2k _~f k
2
> 0. Let χ =min fη1 − ρ, η3g. 6, we have

_V ≤ −χ
ffiffiffi
2

p
V1/2 + ϖ: ð60Þ

According to Lemma 5, it is not difficult to find that the
sliding manifold s1 and sliding manifold s2 converge to zero
in the finite time. This completes the proof of Theorem 10.

Remark 11. In terms of singular perturbation theory, the
inner-loop sliding mode dynamics in (21) must be much fas-
ter than the outer-loop sliding mode dynamics in (18) to
preserve sufficient time-scale separation between two loops.

Remark 12. In the HFV attitude control system, since the con-
trol system keeps the sideslip angle β = 0∘ during the reentry
phase, it is assumed that the singular situation ðβ = ±90∘Þ will
not occur. Moreover, only v2, va, and vb contain switch terms,
while the actual control u does not contain these terms. In the
designed controller (22), _un + Tun = v2 is equal to a low-pass
filter with the bandwidth of T, where v2 is input signal and
un is output signal. The Laplace transformation of it is given
by ðunðsÞ/v2ðsÞÞ = ð1/s + TÞ. Although v2 is chattering because
of the switch function, un can be smoothed due to the low-pass
filter, which can eliminate the impact of chattering on the sys-
tem. In particular case, T = 0, such as the designed controller
(55), _un = vb is same as a pure integrator, which can also soften
the sgn ðs2Þ signal. In addition, the introduction of adaptive
mechanism and disturbance observer can make the sign func-
tion gain selection very small. Therefore, the proposed control
methods are chattering-free.

Remark 13. Most disturbance observers are designed on the
assumption that the disturbance value is a constant or a
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Figure 3: Attitude angle and angular rate responses under different methods.
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slowly varying [34], i.e., _f = 0, _f ≈ 0, or limt⟶∞
_f = 0. The

designed nonlinear disturbance observer can release the
restrictions on the change speed of the lumped disturbance
and prove that the estimation error of the lumped distur-
bance is exponentially convergent.

4. Simulation Study

In this study, the proposed finite-time attitude tracking con-
trol algorithms are applied to a generic nonlinear model of
X-33 HFV, and a MATLAB/Simulink-based thorough simu-
lation study is conducted to show some insights in the non-
linear system.

4.1. Parameters of HFV Model and Attitude Control System

4.1.1. HFV Model. In this section, we choose the X-33 HFV as
the controlled plant and the parameters of this model refer to
reference [34]. Figure 2 shows the configuration of the X-33
HFV [31, 38]. Its weight is 136078kg, and it is equipped with
four sets of control surfaces. Each control surface can be inde-
pendently actuated with one actuator, i.e., rudders, body flaps,
and inboard and outboard elevons, respectively, with left and
right sides for each set. The selection of matrix D ∈ R3×8 refers
to reference [34, 39]. Hence, the control input vector is u =
½u1, u2, u3, u4, u5, u6, u7, u8�T, where u1 and u2 are the right
and left inboard elevons, u3 and u4 are the right and left body
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Figure 5: Control surface deflection and adaptive value responses under ATSMC.
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flaps, u5 and u6 are the right and left rudders, and u7 and u8
are the right and left outboard elevons, respectively. The actu-
ator position limits of the X-33 vehicle are listed in Table 1.
The moment of inertia tensor and parameter uncertainties
are given by

I =

554486 0 −23002

0 1136949 0

−23002 0 1376852

0
BB@

1
CCA,

ΔI =

−500 0 0

0 −500 0

0 0 −500

0
BB@

1
CCA:

ð61Þ

Furthermore, the external disturbances of the NSV are
assumed as

d tð Þ =
d1 tð Þ
d2 tð Þ
d3 tð Þ

2
664

3
775 =

160000 sin 5tð Þ + 0:25ð Þ
25000 sin 5tð Þ + 0:20ð Þ
25000 sin 5tð Þ + 0:10ð Þ

2
664

3
775: ð62Þ

4.1.2. Control Commands and Control Schemes. Assume that
the HFV is flying with velocity of 2500m/s and height of
40000m. The initial attitude angles are that ϕ = 1rad, α = 0
rad, β = 0:2rad, and p = q = r = 0ðrad/sÞ. The HFV attitude
tracking commands are given as ϕr = 0:5rad, αr = 0:3rad,
and βr = 0rad. The effectiveness of the TSMC scheme is veri-
fied by comparing with a backstepping control (BSC) method
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Figure 6: Attitude angle and its angular rate responses under DO-TSMC.
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[30] and an integral sliding mode control (ISMC) method [32].
Furthermore, the effectiveness of the ATSMC and DO-TSMC
is also verified. For the BSC, Λ1 = diag f25,25,25g and Λ2 =
diag f25,25,25g. For the ISMC, K1 = diag f0:4,0:4,0:4g, K2
= diag f1:88,1:88,1:88g, ρ = diag f1,0:15,0:08g, and bρ = diag
f4:0 × 106, 4:0 × 106, 4:0 × 106g. For the TSMC, p1 = 3, q1 =
1, p2 = 7, q2 = 5, c1 = 2, c2 = 3, c3 = 7, c4 = 10, k1 = 15, k2 =
10:5, η1 = 0:1, η2 = 0:4, kd + kT = 15, and T = 0:5. For the
ATSMC, p1 = 3, q1 = 1, p2 = 4, q2 = 5, c1 = 2, c2 = 3, c3 = 7, c4
= 10, k1 = 15, k2 = 10:5, η1 = 0:1, η2 = 0:4, T = 0:5, and γ =
0:4. For the DO-TSMC, p1 = 3, q1 = 1, p2 = 7, q2 = 5, c1 = 2,
c2 = 3, c3 = 7, c4 = 10, k1 = 15, k2 = 10:5η1 = 0:1, η3 = 0:2, and
L = diag f105,105,105g.

4.2. Simulation Results and Discussion. The comparisons on
the tracking performance of attitude angle and angular rate
as well as actuator inputs using the BSC, ISMC, and TSMC
schemes are shown in Figure 3. The responses of the attitude
angles and angular velocities by the ATMC method are
shown in Figure 4. And Figure 5 shows the control surface
deflections and adaptive value responses. Figure 6 shows
the tracking responses of the attitude angles and angular
rates under DO-TSMC scheme, and Figure 7 gives the con-
trol surface deflections and observer estimation error
responses. Figure 8 shows the lumped disturbance estima-
tion and estimation error responses under DO-TSMC.

4.2.1. Comparison between the TSMC, BSC, and ISMC
Methods. The proposed TSMCmethod as a finite-time sliding
mode control method is compared with the traditional BSC
and ISMC methods for the NSV system. Viewing from

Figures 3 and 9, the attitude angle outputs cannot satisfactorily
track the desired commands with large tracking errors and
even cannot be stable by using the BSC method. Although
the ISMC can make the system outputs track the desired com-
mands, it needs a longer settling time than the TSMCmethod.
As shown in Figure 9, affected by the disturbance, all control
surfaces of the BSC system are in a large range of changes,
which will cause a lot of energy loss. Due to the limited output
of the actuator, it can be seen from the response of u3 that the
right body flaps have been at the minimum deflection angle
(−15 deg) for about 0.2 seconds. After the adjustment of the
TSMC controller, the output of the actuator has been in a rea-
sonable small range. As shown in Figure 9, the left body flap u4
of BSC system is always at the minimum deflection angle
(−15 deg) at 0.25-0.4 second, resulting in actuator saturation.
In all, the TSMC scheme obviously has the best performance
than the BSC scheme and ISMC scheme, for the attitude con-
trol problem with model uncertainties, external disturbances,
and actuator saturations.

4.2.2. Comparison between the ATMC and TSMC Methods.
The ATMC applies an adaptive mechanism to relax the
bounded lumped disturbance information of the basic TSMC.
Figure 4 shows that the ATMC scheme can stabilize the atti-
tude angles and angular rates in the finite time. For the TSMC,
when the system lacks the upper bound information, a larger
switching gain will be chosen that may lead to large chattering
on the control surface. For the ATMC, the control chattering
problem is effectively attenuated due to the adaptive mecha-
nism. As shown in Figure 5, the predicted value of the gain
kd + kT can converge to the constant 0.7 in a very short time.
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Therefore, the ATSMC scheme achieves a good performance
even though the system uncertainty bounds are unknown in
advance.

4.2.3. Comparison between the DO-TMC and TSMC Methods.
The DO-TMC applies a nonlinear disturbance observer to relax
the restrictions of lumped disturbance and attenuate chattering
phenomenon of the basic TSMC. For the DO-TMC, the HFV
attitude system smoothly achieves stabilization with a settling
time less than 1.5 s and a high accuracy, as shown in Figure 6.
By selecting the appropriate values of the disturbance observer
parameters, it can be seen from Figure 7 that the observer error
ωe can converge to a very small interval, i.e., jωeij ≤ 2 × 10−3.
The estimated information of the observer is transmitted to
the controller to adjust the output of the actuator in real time,
so that each control surface can deflect in a small range.
Figure 8 shows the estimated response curve and estimation
error curve under the proposed disturbance observer. Figure 8
exhibits that the proposed observer has good performance on
the estimated slow time varying, fast time varying, and periodic
disturbance. Above all, the DO-TSMC scheme can significantly
achieve a satisfied performance without any prior knowledge of
the compound uncertainties of the HFV control system.

5. Conclusion

In this study, three finite-time attitude tracking control schemes
(TSMC, ATSMC, and DO-TSMC) have been designed for the

attitude control problem of nonlinear HFV with model uncer-
tainties, external disturbances, and actuator saturations. The
ATSMC scheme is based on combination of the TSMC and
an adaptation law, while the DO-TSMC scheme is based on
the combination of the TSMC and a nonlinear disturbance
observer. Meanwhile, the stability of the closed-loop attitude
system is analyzed using the Lyapunov function theory. The
simulation results of a nonlinear X-33 HFV model show that
the TSMC scheme has a better performance than the traditional
BSC and ISMC schemes, the ATSMC scheme achieves a satis-
fied performance in case of unknown bounds of the compound
uncertainties, and the DO-TSMC scheme improves the robust-
ness and disturbance rejection performance of the attitude
control system.

This work considers the uncertainties, disturbances, and
actuator saturations of the HFV system, which will contribute
to the practical applications and better control performance.
However, the actuator faults such as stuck or loss of effective-
ness are not considered, which will be one of the subjects for
future research.
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