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Helmet-mounted display (HMD) systems allow aircraft pilots to aim at targets by using head postures. However, the direct use of
helmet orientation to indicate the aiming direction ignores human eye movements, which are more flexible and efficient for
interaction. Since the opaqueness of the helmet goggle blocks the sight of external cameras to capture facial or eye images of
the pilots, and traditional eye feature extraction methods may fail when encountering conditions such as poor lighting,
occlusion, and shaking, which are common on fighter aircrafts. In this work, an eye gaze based aiming solution that adapts to
pilots wearing HMDs is proposed, and a deep learning-based method is proposed to extract eye features robustly. The
prototype experiments demonstrate the ability to pick and aim at targets in real-time (60FPS) and are capable to accurately
locate the target markers on a screen with an average error of fewer than 2 degrees. Conclusively, the proposed method
performs the tasks of eye feature extraction on real-person imagery and the estimation of the 3D aiming direction for users
with helmets, displaying competitive results with similar research.

1. Introduction

Helmet mounted display (HMD) systems provide versatile
functions and information for pilots of advanced fighter air-
crafts by assisting flight control and improving control effi-
ciency. A critical function of the HMD systems is to allow
pilots to use head posture as the control and guidance direc-
tion of weapon systems, thereby simplifying and accelerating
the progress of aiming [1–4]. Optical, electromagnetic, ultra-
sonic, and hybrid sensors are usually installed within the hel-
met to achieve accurate head aiming function by sensing the
orientation of the helmet [3, 5, 6]. The Joint Helmet-
Mounted Cueing System (JHMCS) refers to an integrated
product of Display and Sight Helmet (DASH) III and Kaiser
Agile Eye helmet displays, which uses helmet electromag-
netic position sensor to measure the posture of helmet
[7–9]. Scorpion, developed by the French company Thales,
has been available in the military aviation market since
2008. Its posture is initially measured by using alternating
current (AC) and electromagnetic sensors and later replaced
with a Hybrid Optical based Inertial Tracker (HObIT)
[10–12]. The Eurofighter Typhoon uses the Helmet-

Mounted Symbology System (HMSS) developed by the
British company BAE and the Japanese company Pilkington
Optronics. Similar to the DASH system, the HMSS system
uses an integrated helmet position sensor to measure and
indicate the aiming direction of the pilot under head move-
ments [13, 14].

Current existing HMDs directly use the posture of
helmets to indicate the direction of targeting. However, these
methods ignore the eye movements of pilots, which are more
flexible and offer a faster reaction rate. Using eye tracking
based direction for aiming may reduce pilot workload on
head rotations with a heavy helmet, and thus reduces
physical fatigue and improves the combat fitness. As the
deep learning advances by leaps and bounds, it is promis-
ingly possible to apply the eye-tracking algorithm to the
helmet aiming.

Conventional eye-tracking devices are usually placed
within a certain distance before the users for gaze estimation
[15, 16]. The opaque goggle of a flight helmet inevitably
blocks the view from such devices and therefore prevents
the direct use of external cameras in a cockpit that senses
the eye gaze of a pilot. Therefore, the camera that captures
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the image of the human eyes must be mounted inside the
helmet goggles, which leads to a very close distance between
the camera and eyes and the poor lighting condition.
Besides, the jitter of a fighter aircraft in a flight process can-
not be ignored. All these factors require an accurate and
robust eye feature extraction.

Generally, eye-tracking is divided into two steps: eye fea-
ture extraction and eye mapping model establishment
[16–19]. Usually, eye features with both unchanged (the cor-
ner of an eye, Purchin’s spot) and changed (the center of the
pupil and the edge of the iris) relative positions are extracted
[20, 21]. Then feature vectors are constructed based on the
relative position of these features and mapped to a 3D gaze
direction or a 2D fixation point. Robust eye tracking usually
depends on the accurate detection of the eye features such as
the iris center or eye corners. In previous eye-tracking
works, features are handcrafted by adopting image process-
ing techniques and model fitting [22, 23]. Since such
approaches assume the geometry and shape of the eyes, they
are sensitive to changes in appearance such as poor lighting
conditions, blurriness, and vibrations of the pilot’s head. By
leveraging advanced neural network architecture, we pro-
pose a deep learning-based method for accurate eye features
extraction. A preliminary study was done by the authors in a
previous preprint [24].

Driven by the aforementioned needs and difficulties, this
work attempts to extract eye features of a pilot equipped
with an HMD system, and combines eye movements with
the head posture of a pilot for aiming. The main contribu-
tions and novelties of this paper are as follows:

(1) An eye tracking solution that adapts to pilots wear-
ing HMDs is proposed. The method of space vector
transformation is used to combine the head pose
and the 3D gaze direction for aiming

(2) To improve the accuracy of eye feature extraction in
the eye-tracking based HMD aiming scenario, a deep
learning-based eye feature detector is trained, sup-
porting the 3D gaze estimation

(3) HMD prototype is developed and manufactured,
and the accuracy of the proposed HMD aiming sys-
tem is experimentally evaluated. Results show that
the system achieves real-time accurate HMD aiming
in the laboratory environment

The remainder of this work is arranged as follows:
Section 2 presents the eye feature extraction algorithm, and
Section 3 presents the design of the eye-tracking based
helmet-mounted display system. These are followed by lab
environment tests in Section 4, with detailed evaluation
and comparison of results with other counterpart researches.
Conclusive remarks are drawn in the last Section 5.

2. Eye Feature Extraction

2.1. Neural Network Architecture. Gaze estimation for pilots
requires real-time extraction of high-quality eye features.
The stacked hourglass network design [25, 26] is used in this

work to meet with the above requirement. The hourglass
network is initially proposed for human pose estimation,
where a key problem is the occlusion. This design of stacked
hourglass network attempts to capture long-range context
and to ensure a large receptive field. The stacked hourglass
network meets the needs of extracting information at differ-
ent sizes, so it is suitable for extracting eye features.
Although eye images contain fewer global structural ele-
ments than pose estimation, there are still important spatial
contexts that could be developed by large receptive field
models. We take advantage of this property to train an eye
feature extractor.

Figure 1 shows a single four level hourglass module. This
module does not change the input size, but the output fuses
features at different sizes. The output is the feature maps
extracted from a pilot’s eyes images. Feature maps from
human eye images are downscaled via pooling operations,
and then upscaled using bilinear interpolation. Before down-
sampling operation, it separates a single route to retain the
information in the current size. At every scale level, the
task-relevant features are preserved by the residual module
during deep network training. The hourglass module only
changes the depth of the data without changing the size of
data. The hourglass module performs repeated bottom-up,
top-down inference. Hence it is able to capture and consol-
idate information from different scales and resolutions and
allows the encoding of spatial relations between landmarks.
Leveraging with the hourglass module, high-quality latent
features contribute to accurate gaze estimation.

The heatmaps acquired from the hourglass module rep-
resent the probabilities of the eye landmarks at every pixel.
As for the last hourglass module, its output of heatmaps is
further processed via a soft-argmax layer to find the subpixel
coordinates of these landmarks. The eye landmarks are
utilized for gaze estimation. Finally, the three linear fully-
connected layers as well as one final regression layer are used
for predicting the eyeball radius.

In this work, three hourglass modules are stacked. Single
eye images (150× 90) are used as input, and 18 heatmaps are
generated (75× 45): 8 in the limbus region, 8 on the iris edge,
and 1 at the iris center as well as 1 at the eyeball center. The
proposed framework predicts 18 landmarks and an eye-
ball radius. Figure 2 shows the whole architecture of the
entire network. Accurate eye localization facilitates real-
time gaze targeting.

2.2. Training Data. UnityEyes, a high-quality synthetic eye
image dataset with rich annotation, is utilized for training
[27]. These synthesized data provide accurate eye feature
coordinates, which include the eyelid-sclera border, limbus
regions (iris-sclera border), and eye corners, as shown in
Figure 3. Besides, it additionally includes other information
such as pupil size, head posture, and gaze direction.
UnityEyes is efficient and infinite in size to present excellent
variations in iris color, eye region shape, and head pose as
well as illumination conditions. Yet, the appearance varia-
tions do not contain visual artifacts which are common in
webcam images or common eye decorations like eyeglasses
or make-up. To address this issue, this paper performs the
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training data augmentation so that a robust model can be
trained solely on synthetic eye images. The subsequent aug-
mentations are applied (range in brackets represents scaling
coefficients of the value sampled from N (0, 1)): translation
(2–10 pixels), rotation (0.1– 2.0 rad), intensity (0.5–20.0),
blur (0.1–1.0 std. dev. on 7× 7 Gaussian filter), scale (1.01–
1.1), downscale-then-upscale (1–5 times), and the addition

of artifact lines (0–2) for artificial occlusions. Image flip-
ping is not performed during training but easily guaran-
tees that the inner eye corner locates on the left side of
the input image.

2.3. Intermediate Supervision. Intermediate supervision is
performed to calculate the loss of output of the heatmaps
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Figure 1: The four-level hourglass module.
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Figure 2: The whole network architecture.

Figure 3: Synthetic eye images from UnityEyes with rich annotations.
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in each hourglass module. Three hourglass modules are
stacked so that the network can continue to repeat the
bottom-up and top-down processes through the intermedi-
ate supervision. The loss of each hourglass module is com-
puted independently, such that the subsequent hourglass
module can be reevaluated, and the higher-level spatial rela-
tionships can be reassessed. The network predicts heatmaps,
one per eye feature point, a total of eighteen. The heatmaps
encode the per-pixel confidence on a specific eye feature.
Two-dimensional Gaussian distributions are centered at
the subpixel positions of eye features with the peak value
of unity. The neural network minimizes the l2 distance
between the predicted and ground-truth heatmaps per eye
feature through the loss term as shown in

Lh = α〠
18

i=1
〠
p

~hi pð Þ − hi pð Þ
 2

2
, ð1Þ

where hðpÞ refers to the confidence at pixel p and ~hðpÞ rep-
resents the heatmap predicted by the network. Besides, the
weight coefficient α is empirically set to 1. The loss term
for predicting the radius of the eyeball is

Lr = β ~ruv − ruvk k22, ð2Þ

where ~ruv is the predicted eyeball radius and ruv is the
ground truth and β is set to 10−7.

2.4. Training Process. The training scheme implements cur-
riculum learning, which is imitates the learning process of
human beings, advocates that models start from easy sam-
ples, and gradually progress to difficult samples. To make
it easier to control, a difficulty measure with the range from
0 to 1 is implemented. In the training process, the difficulty
of the samples is related to eye rotation angles (pitch and
roll), head posture, data enhancement, and so on. For
instance, the greater the eye movement, the larger difficulty
of the sample. The process starts training with difficulty 0
and linearly enhances difficulty until 106 training steps have
passed. Afterward, the difficulty is maintained at 1. Training
according to the difficulty of samples from simple to difficult
can achieve better performance with fewer number of itera-
tion steps.

During the training process, the ADAM optimizer [28]
is used, with a learning rate of 5 × 10−4, batch size of 16, l2
regularization coefficient of 10−4, and ReLU activation. The
model is trained for 106 steps on an Nvidia GTX 1660 super
GPU, which consists of less than 1 million model parameters
and allows for a real-time implementation (60FPS). Figure 4
shows eye feature extraction results under very challenging
conditions.

3. HMD Aiming System

3.1. Gaze Direction Estimation. A simple model of the
human eyeball can be considered as a large sphere with a
small sphere intersecting each other [29], as shown in
Figure 5. Suppose the predicted pixel coordinates of the 8 iris

landmarks in a given eye image are ðui1, vi1Þ,⋯, ðui8, vi8Þ. In
addition, the eyeball center ðuc, vcÞ and the iris center ðui0, vi0Þ
are also detected. Furthermore, the network predicts the eyeball
radius in pixels, ruv. Having the eyeball and iris center coordi-
nates and eyeball radius in terms of pixels enables it to fit a
3D model without acquiring any camera intrinsic parameters.

In the case that the camera intrinsic parameters are
unknown, the coordinates can only be projected into 3D
space in pixel units. As a result, the radius remains rxy =
ruv in 3D model space and ðxc, ycÞ = ðuc, vcÞ. Assuming the
gaze direction is expressed by pitch and yaw angles gc =
ðθ, ϕÞ, the iris center coordinates can be represented as

ui0 = xi0 = xc − rxy cos θsinϕ,
vi0 = yi0 = yc + rxysinθ:

ð3Þ

To write similar expressions for the 8 iris edge feature
points, the angular iris radius δ and an angular offset γ
which equals to eye roll are jointly estimated. For the j
-th iris edge landmarks (with j = 1⋯ 8) is as follows:

uij = xij = xc − rxycosθj′sinϕj′,

vij = yij = yc + rxysinθj′,
ð4Þ

where

θj′= θ + δsin
π

4 j + γ
� �

,

ϕj′= ϕ + δcos
π

4 j + γ
� �

:

ð5Þ

For this model-based gaze estimation, θ, ϕ, γ, and δ
are unknown, while other variables are provided by the
eye region feature points localization step of the network.
The conjugate gradient method, serves as an iterative opti-
mization approach, is used to solve this problem, and the
minimized loss function can be written as follows:

Lopt = 〠
0≤j≤8

uij − uij′
� �2

+ vij − vij′
� �2

, ð6Þ

where ðuij′ , vij′ Þ refers to the estimated pixel coordinates of
the j-th iris landmarks at each iteration. The calculation of
person-specific parameters based on calibration samples
adopts the proposed model to a certain person. Gaze cor-

rection can be implemented with ðeθ, eϕÞ = ðθ +△eθ, ϕ +△eϕÞ,
in which ð△eθ,△eϕÞ refers to the person-specific angular
offset between optical and visual axes.

3.2. Aiming Direction Estimation. The gaze direction relative
to the camera that captures the eye image is so far acquired,
which is represented as pitches and yaw angles. The roll
angle ðφÞ can be regarded as 0 since the eyeball does not roll.
To prevent the interference of the helmet goggles, a custom-
made wide-angle camera that captures the image of the eyes
is installed inside the helmet goggles and is fixed with the
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helmet. Thus, the gaze direction is relative to the helmet
coordinate frame.

Assume the helmet attitude (denoted as h in subscript)
relative to the aircraft cockpit (denoted as c in superscript)
is pch = ðα, β, γÞ. The helmet attitude uniquely determines a
unit vector ech = ðcosα, cosβ, cosγÞ, and both pch and ech indi-
cate the direction of the helmet. Since the gaze direction is
relative to the camera mounted on the helmet, it can be con-
sidered an additional rotation of the helmet attitude. The
gaze direction can be converted into a rotation matrix from
eyes (denoted as e in subscript) to helmetRh

e ∈ SOð3Þ:

Rh
e =

1 0 0
0 cosθ −sinθ

0 sinθ cosθ

2
664

3
775

cosϕ 0 sinϕ

0 1 0
−sinϕ 0 cosϕ

2
664

3
775

cosφ −sinφ 0
sinφ cosφ 0
0 0 1

2
664

3
775:
ð7Þ

The unit vector for the final aiming direction can be fur-
ther expressed as vce = ech ⋅ R

h
e = ½xe ye ze� in the world coordi-

nate frame, and the aiming angle can be calculated as

gc
e = arccos

xeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3e + y2e + z2e

p yeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3e + y2e + z2e

p zeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3e + y2e + z2e

p
" #

= θce ϕ
c
e φ

c
e½ �,

ð8Þ

where gce indicates the final aiming direction of the pilot’s
eyes relative to the cockpit considering eye movements and
helmet posture.

3.3. System Implementation. The schematic diagram of the
system is shown in Figure 6. Unlike dataset-based algorithm
test, no ground truth of 3D aiming direction is available in

Figure 4: Eye features are extracted under dark condition and occlusion condition.
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Figure 5: 3D eyeball model.
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real applications. In practical applications, it is required to
know the intersection of the aiming direction and a certain
plane. To do this, we installed an additional camera above
the screen and put an ArUco marker [30] on the helmet.
The camera at the top of the screen detects the ArUco
marker to determine the position of the helmet in relation
to the screen. Other available methods such as depth cam-
eras can also be adopted to accomplish this job. Knowing
the relative position between the helmet and the screen
and the aiming direction, aiming points on the screen can
be calculated. Figure 7 shows how ArUco marker is detected.

Although optical or mixed sensor methods are used in
real aircrafts during heavy maneuvers, a 6-axis gyroscope is
used and installed inside the helmet to detect the helmet
posture since there is no acceleration in the lab environment.
In addition, to capture the image of the pilot’s eyes, a
monocular wide-angle camera is mounted inside the helmet.
Note that in order to detect ArUco marker and de-distort
images captured by the wide-angle camera, both the
wide-angle camera and the camera above the screen need
to be calibrated.

Nine marker points are stationarily set up on a computer
screen, covering most of the screen area. The screen is 54 cm
long and 30 cm wide, the left and right spacing of each point
is 18 cm, and the upper and lower spacing is 5 cm, as illus-
trated in Figure 6.

Since the relative position of the helmet to the cockpit
(environment) pch = ½xh yh zh� is acquired via detecting the
ArUco marker and the aiming direction ½θce ϕce 0� are known,
the aiming points on the screen can be calculated as

Xc = −zh × sin ϕceð Þ + xh,
Yc = zh × sin θceð Þ + yh,

ð9Þ

where zh, xh , and yh represent the coordinates of the helmet
in the screen coordinate above the screen; θce represents yaw
and ϕce represents pitch of the eyeball. The accuracy of the

eye gaze tracking system is quantitatively evaluated by calcu-
lating the angular value Edg as

Edg = arctan
Ed

Eg

 !
, ð10Þ

where Ed is the distance between the estimated gaze position
and the real aimed position, and Eg stands for the distance
between the subjects and the screen plane.

4. Experimental Evaluation

4.1. Gaze Estimation. The accuracy of the proposed gaze
estimation is experimentally evaluated via assessing the pre-
cision of gaze points landing on a screen as mentioned in the
previous section. To better analyze the performance of the
proposed method, experiments without and with helmets
are conducted successively. Resulting differences presented
below give the community a straightforward understanding
of the sources (eye gaze estimation, helmet pose estimation,
etc.) and magnitudes of estimation errors. The diagram of
the experiment setup is shown in Figure 8.

Note that an ArUco marker is attached to a subject’s
forehead or the front of the helmet’s goggle to determine
the relative position between the screen and the subject for
the sake of simplicity. Other methods such as depth camera
or optical sensors can be used in real applications. The web-
cam above the screen captures the ArUco images and the
orientation of the subject’s head is simultaneously calcu-
lated. The estimation of gaze points landing on the screen
is then calculated via equation (9), replacing the aim direc-
tion with gaze direction for no-helmet scenarios. Also, sub-
jects are allowed to move their heads while aiming at the
points on the screen since head posture is taken into account
when calculating aiming direction.

Twenty subjects, eight wearing glasses, voluntarily and
anonymously participate in the experimental evaluation
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Figure 6: System diagram.
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under diverse illumination situations. The subjects are asked
to focus on nine markers on the screen about 60 cm away
from them in turn. Same tests are requested for another
round except that the subjects wear the develop HMD pro-
totype helmet. The results from twenty subjects, without
and with helmets, are plotted in Figure 9.

The angular error of gaze landing estimationwithout helmet
from twenty subjects ranges from 0.94 to 1.94 degrees, with an
averageerrorof1.36degrees.Thevariationoriginates fromdiffer-
ent subjects’ physical characteristics, such as gender, glasses, eye-
lashes, andsittingposition.Withhelmet, theangularerrorofgaze
landing estimation is between 1.65 to 2.23 degrees, with an aver-
age error of 1.99 degrees. The slightly increased error is largely
caused by the helmet pose estimation and difficulty in detecting
theeye featuresat averyclosedistance.Since theHMDprototype
is head-mounted and has determined its relative position to the
world coordinate frame, subject’s head is theoretically free to
move spatially. In fact, the head movement is limited in a range
simplybecause theArUcomarker isused in thiswork tocalculate

the position of the helmet and to show the proof-of-concept.
Once the detection of ArUcomarker fails, it leads to wrong aim-
ing point estimation. Optical sensors can be used in real applica-
tions to overcome this limitation. From this point of view, the
HMDprototype achieves freemovement of the head.

Next, the same group of volunteers, without and with
helmets, is requested to sit at 40 cm, 60 cm, and 80 cm away
from the screen to study the impact of distance onto the gaze
estimation accuracy. Corresponding results are plotted in
Figures 10–12, respectively. The red crosses represent the
ground-truth positions of the nine markers on the screen.
The blue and red dots are estimated gaze marker landing
positions without and with helmets obtained within one sec-
ond. It is assumed that the coordinates of these estimated
gaze landing positions obey a 2D Gaussian distribution as

X ~ μx, σ2x
À Á

, Y ~ μy , σ2y
� �

, ð11Þ

Figure 7: ArUco detection in the lab environment. Left: the camera is about 20 cm away from the ArUco marker. Middle: after calibration,
the camera can accurately detect the posture of the ArUco marker. Right: an ArUco marker is detected to determine the head posture
relative to the screen.

Figure 8: Gaze estimation under lab environment. Upper left: nine markers on the screen. Upper right: a subject sat in front of a screen and
looked at a marker on the screen. Lower left: the eye feature points are extracted from the webcam and 3D gaze direction is estimated. Lower
right: the eye feature points are extracted from the proposed HMD helmet and 3D gaze direction combined with helmet orientation is estimated.
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where μx, σ
2
x, μy, and σ2y are sampling means and sampling

standard deviations for horizontal and vertical directions.
Straightforward results can be seen from the above figures.

The Euclidean distance error increases as the distance between
head and screen increases, but the angular error does not
change significantly. Although the results of each experiment
fluctuate, the angle error is below 2 degrees. Note that the error
in the y-direction is slightly greater than in the x-direction, and
the accuracy toward the screen edge is decreased slightly. With
the eyeball moving to the edge of the eye socket when subjects
focus on the screen edge markers, the iris could be overlapped
by the eyelids. Thereby, the detection accuracy of the gaze vec-
tor is slightly weakened.

Table 1 summarizes the mean error for the gaze marker
landing estimation for subjects without and with helmets. It

can be seen that the algorithm itself (without helmets) is
insensitive to the distance between the camera and head, and
reaches an average accuracy of 1.35 degrees in the person-
independent evaluation, which demonstrates the robustness
of the eye-tracking algorithm. Integrating the eye-tracking
algorithm with the helmet, the accuracy is slightly decreased
due to the error of measuring the helmet pose estimation
and detecting the eye features at a very close distance, leading
to a slightly inferior accuracy of 2.00 degrees.

4.2. Comparison. To verify the performance of the eye track-
ing based helmet, the system is compared with other eye
tracking algorithms/devices. Table 2 presents the perfor-
mance of the proposed method with the head movement
in comparison with Skodras et al. [31], Cheung et al. [32],
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Figure 9: The average error from 20 subjects, without (blue) and with (red) helmets, looking at 9 markers at 60 cm away from the screen.
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Figure 10: Visualized results of gaze marker landing estimation with subjects at 40 cm away from the screen.
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Arar et al. [33], Li et al. [34], and Wang et al. [29]. The
ranges of head motion in each method have been explicitly
shown and are compared under similar experimental condi-
tions for a fair comparison.

Advantageously speaking, the proposed work achieves
an average error of less than 2.0 degrees under free head
movement without any additional light source and measures
the 3D aiming direction. Skodras et al. and Cheung et al.

directly maps eye features to screen landing markers, rather
than estimating the 3D gaze direction. Therefore, the head’s
motion range of movement is limited, and the error will
become larger when the head deviates from the calibrated
position. Arar et al. also directly maps eye feature to gaze
point on the screen and achieve an accuracy of 1.15 degrees.
But 5 light sources are required which increase the complex-
ity of the system. Li et al. and Wang et al. estimate the gaze
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Figure 11: Visualized results of gaze marker landing estimation with subjects at 60 cm away from the screen.
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Figure 12: Visualized results of gaze marker landing estimation with subjects at 80 cm away from the screen.

Table 1: Mean error for the gaze marker landing estimation at different distances.

Distance/cm
Without helmet With helmet

Error/cm Error/degree Error/cm Error/degree

40 1.14 1.34 1.72 1.91

60 1.59 1.36 2.28 1.99

80 2.00 1.36 3.00 2.00
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direction in 3D and both achieve free head movement, where
Li et al. uses a Kinect depth camera instead of conventional
cheap cameras. While Wang et al. reaches 1.3 degrees of error
and free from calibration, 4 additional light sources are
needed. In contrast, the proposed gaze system utilizes a single
monocular camera capturing the face video without using
additional light sources, which reduces the system complexity.
By determining the position relationship between the head
and the screen, the system estimates the aiming point on the
screen with an accuracy of less than 2 degrees.

5. Conclusion

In this paper, an eye gaze estimation-based aircraft helmet
aiming methodology is proposed to allow pilots use the
more flexible and efficient eye movement for human-
machine interaction, other than the current method of rotat-
ing the heavy head-mounted helmet, which increases pilot’s
physical fatigue and decreases combat fitness. The proposed
eye gaze estimation method is achieved via a monocular
wide-angle camera installed inside a flight helmet to capture
real time eye images from a pilot. A stacked hourglass deep
learning network is designed to extract real-time high-
quality eye features under versatile illumination conditions
and to estimate the gaze direction. A proof-of-concept pro-
totype is developed and tested along with the eye gaze esti-
mation algorithm itself under lab environment, providing
the community with straightforward understanding of the
3D aiming error’s sources and magnitudes. The experiment
results have demonstrated the ability to pick and aim at tar-
gets in real-time (60FPS) and are capable to accurately locate
the target markers on a screen with an average error of fewer
than 2 degrees under versatile operating conditions. Com-
pared with relevant eye gaze estimation studies, the pro-
posed method stands out with advantages such as free
head movement and no additional light source requirement.

Conclusively, the proposed HMD aiming algorithm and
developed system achieves the eye-tracking based HMD
aiming function. System design and algorithm architecture
offer promising novelties and contribute to the current
HMD technology.
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