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With a series of complex lunar exploration missions carried out, reliable autonomous navigation approaches for lunar probes are
in demand. In this paper, aiming to obtain the position of the probes with high accuracy and computational efficiency, a novel
passive positioning scheme for lunar probes is presented. We first designed a reference system including four beacons with
known positions. Then, we proposed arctangent temporal interferometry (ATI) method for ambiguity resolution in
displacement measurement. Moreover, the quad-beacon displacement search (QBDS) algorithm is proposed for 2-dimension
(2D) position search, which enables accurate and computational-efficient 2D positioning for lunar probes. The simulation
validations show the effectiveness of the proposed positioning scheme and algorithms.

1. Introduction

In recent years, with the development of aerospace science
and technology, there are increasing space probes launched
for lunar, planetary, and interplanetary research, including
Chang’e-5, InSight, and Tianwen-1 [1–4]. The moon is the
closest celestial body to the earth, and it is also the first stop
for humans to carry out deep-space exploration activities. In
the past 60 years, more than a hundred spacecrafts have
been launched for lunar exploration [5]. The probe naviga-
tion system has always been an important part of a lunar
exploration mission [6, 7]. At present, lunar probes mainly
rely on ground stations to provide telemetry and navigation
services. However, as the moon exploration missions expand
from the near to the far side of the moon, the ground telem-
etry is no longer available. Under such circumstance, reliable
autonomous navigation approaches must be applied to
ensure the probe has the ability to survive and explore dur-
ing the mission cycle [8].

A number of autonomous navigation schemes have been
proposed for lunar exploration missions. The inertial navi-
gation is a commonly used method of autonomous naviga-
tion [9, 10]. It does not require any external information.
However, its cumulative error leads to poor long-term accu-

racy. The stellar navigation method is another autonomous
navigation method which can be used for lunar probes
[11–13]. It obtains the absolute position of the probe by
measuring the angular differences between the earth and
the navigation stars from the probe. Whereas the positioning
accuracy using this method is limited by the accuracy of the
sensors, which is not sufficiently high. A third method is to
use relay satellites for radio navigation, which measures the
distance and Doppler frequency to obtain the relative posi-
tion and velocity information of the probe [14]. But unlike
global navigation satellite system (GNSS) which is available
all day, the visible time of lunar orbiting satellites is usually
short as the number of satellites is very limited. Therefore,
stable and continuous positioning services for lunar probes
using relay satellites are infeasible at present. GNSS is also
applied for lunar probe positioning, but the geometry of
the visible satellites deteriorates greatly as the receiver leaves
the earth [15]. There are attempts to build a GNSS-like sys-
tem orbiting moon; however, the orbit accuracy and cost
limits the application of such systems [16].

As a commonly used ranging method, carrier phase
measurement has been utilized in various fields. For GNSS
applications, the carrier phase can be measured to obtain
the pseudo-range from the satellite to the receiver [17, 18].
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The pseudorange has a very high precision but with an
ambiguity due to the whole number of cycles between satel-
lite and receiver is unknown. By resolving the integer ambi-
guity, the pseudorange with high precision can be utilized in
high-precision positioning. Similar method is utilized for
micromotion measurements using Doppler radar [19–21].
By measuring the phase of the signal reflected and modu-
lated by the moving target, the displacement of the target
referring to the radar sensor is obtained. As the range differ-
ence exceeds the wavelength of the carrier, the phase differ-
ence is greater than 2π, resulting the phase ambiguity. To
solve this problem, a number of phase unwrapping
approaches have been proposed, including conventional arc-
tangent demodulation (CAD), extended differentiate and
cross-multiplying (DACM), and arcsine demodulation
[20–23]. However, the disadvantages of these approaches

include (1) high computational complexity and (2) signifi-
cant accumulation error for fast-moving targets after
approximation. These disadvantages limit the application
of real-time high-precision ranging using carrier phase.

To solve the aforementioned problems, in this paper, a
novel passive positioning scheme for lunar probes is pro-
posed and investigated. A reference system including four
beacons with known positions is designed which transmits
continuous waves in a series of subbands from each beacon.
Then, an accurate and computational-efficient algorithm for
ambiguity resolution, which is called arctangent temporal
interferometry (ATI), is presented for displacement mea-
surement. After that, a target function for 2-dimension
(2D) positioning based on the displacements referring to
the beacons is constructed. A parallel 2D position search
algorithm for lunar probes called quad-beacon displacement
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Figure 1: Illustration of original wrapped phase and unwrapped phase.
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Figure 2: Positioning scene for lunar probe positioning.
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search (QBDS) was proposed, which enables accurate and
computational-efficient 2D positioning results for lunar
probes. The simulation results validate the effectiveness of
the proposed scheme.

The remainder of this paper is organized as follows. The
principle of displacement measurements using carrier phase
and ATI algorithm is introduced in Section 2. The system
configuration and proposed QBDS positioning algorithm
of lunar probes is explained in Section 3. Section 4 gives
the simulation results and analyzes the positioning perfor-
mance. The conclusion is drawn in Section 5.

2. Displacement Measurement Using
Carrier Phase

2.1. Signal Model. Consider a beacon transmitting a contin-
uous wave (CW), neglecting the amplitude vibration, we can
normalize the amplitude of the transmit signal to 1. Hence,
the beacon transmits the signal with the following form,

T tð Þ = cos 2πf t + φt½ �, ð1Þ

where f and t denote the carrier frequency of the signal and
time, respectively. And ϕ denotes the arbitrary initial phase
of the transmitter.

After transmission in the free space, the signal is received
by the receiver on the lunar probe. The transmission induces
a delay τðtÞ with respect to the transmit signal, that is,

R tð Þ = Ar cos 2πf t − τ tð Þð Þ + φt½ � + ε tð Þ, ð2Þ

where Ar is the amplitude of the received signal, εðtÞ is the
noise term, and delay τðtÞ is determined by

τ tð Þ = r tð Þ
c

, ð3Þ

where rðtÞ denotes the instantaneous range from the beacon
to the probe, and c is the speed of light.

Then, the received signal is quadrature demodulated to
baseband. Combining Equation (2) and Equation (3), the
in-phase (I) and quadrature (Q) outputs are represented by

I tð Þ = Ar cos φt − φr −
2πf r tð Þ

c

� �
+ εI tð Þ, = AI cos φ −

2πr tð Þ
λ

� �
+ εI tð Þ,

Q tð Þ =Ar sin φt − φr −
2πf r tð Þ

c

� �
++εQ tð Þ, = AI sin φ −

2πr tð Þ
λ

� �
+ εQ tð Þ,

ð4Þ

where φr is the arbitrary phase of the receiver, λ = c/f is the
carrier wavelength, and +εIðtÞ, +εQðtÞ denote the noise
terms in I/Q channels. We can observe from Equation (4)
that the range rðtÞ can be resolved by extracting the phase
of the received signal ΦðtÞ, that is,

Φ tð Þ = φ −
2πr tð Þ

λ
: ð5Þ

Theoretically, we can obtain the range from the beacon

to the probe with high accuracy via carrier phase measure-
ment. And with these range information, the precise posi-
tion of the receiver can be resolved as long as there are
sufficient beacons. In this case, only two beacons are
required at least for 2D positioning, and three beacons are
required at least for 3D positioning (regardless of finite mul-
tiple solutions). Therefore, by placing several reference bea-
cons with known exact coordinates on the moon face, the
position of the lunar probes can be resolved by measuring
the ranges from the beacons to the probe.

However, there are two practical problems for direct
range measurement. First, the arbitrary initial phase of the
transmitter and receiver is difficult to obtain. Meanwhile,
the moving area of the probe is usually far larger than the
scale of the microwave wavelength, which leads to 2π phase
ambiguity. In this scenario, the unambiguous range cannot
be obtained directly.

In order to solve this problem, we apply range difference
measurement instead of direct range measurement.
Although we do not have the actual range, we can still
resolve the variation of the range by continuously calculating
the instantaneous phase of the received signal. The wrapped
phase ΦwðtÞ can be calculated by taking the arctangent of
the received signal, that is,

Φw tð Þ =mod2π φ −
2πr tð Þ

λ

� �
: ð6Þ

To obtain unambiguous phase without 2π jumping,
unwrapping procedure is required, which is illustrated in
Figure 1. A conventional unwrapping method is to perform
direct phase shift, which is called conventional arctangent
demodulation. Whenever the difference between consecutive
phases is greater than or equal to 2π, the following phases
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Beacon 2
(D,0)

Beacon 4
(0,D)

Beacon 3
(D,D)

rpi rpt

θ

Feasible region

Figure 3: The geometry of the beacons and the probe of Group A.
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are shifted by adding multiples of ±2π until the difference is
smaller than π. Taking the first sampled phase as a reference,
we have the unwrapped phase

Φu tð Þ = unwrap Φw tð Þ½ �: ð7Þ

Therefore, we can calculate the pseudorange rpðtÞ from
the beacon to the probe.

rp tð Þ = −
Φu tð Þλ
2π : ð8Þ

It is called pseudorange as the measurement has an
unknown offset. However, this offset is not important as it
is subtracted when calculating the range difference. There-
fore, the range difference δrðt1, t2Þ between the beacon and
the probe from t1 to t2 can be determined by the following
equation

δr t1, t2ð Þ = rp t2ð Þ − rp t1ð Þ�
: ð9Þ

The position of the probe at time t1 and t2 can then be
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Figure 4: Positioning scene for lunar probe positioning.

Table 1: Initial position solution process using Newton-Raphson method.

Step 1 Generate an initial solution r 0ð Þ
pi .

Step 2 Calculate the target function δ r kð Þ
pi

� �
according to Equation (27).

Step 3 Verify the solution has converged according to Equation (32) (k ≥ 1).
Abort iteration and output r kð Þ

pi if the difference between the

two iterates is smaller than the threshold.

Step 4 Calculate r k+1ð Þ
pi according to Equation (29).

Step 5 Return to step 2 and start next iteration.
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resolved using the range differences from the probe to differ-
ent beacons.

2.2. ATI Demodulation. As is shown above, the key to
resolve range difference is to perform phase unwrapping.
However, the aforementioned conventional arctangent
demodulation algorithm has a series of drawbacks. First,
the computational complexity is high as the entire data block
from the current time to the end needs to be frequently
shifted with period 2π, which might be computational costly
for the embedded system on the probe, as the computing
resources are very limited. Also, this algorithm leads to seri-
ous accumulative error for a single wrong unwrapping point,
where the latter data will have an entire phase offset.

In order to reduce the impact of wrong unwrapping,
extended DACM algorithm is proposed. This algorithm cal-
culates the phase increment between two adjacent samples
and then accumulates the phase increments. Extended
DACM algorithm greatly improves the performance facing
the wrong unwrapping problem. The basic procedure of
the extended DACM algorithm is as follows.

To obtain the phase increment, the continuous form is
considered first. The angular frequency is the time derivative

of the instantaneous phase, that is,

ω tð Þ = d
dt arctan Q tð Þ

I tð Þ
� �

= I tð Þ _Q tð Þ − _I tð ÞQ tð Þ
I tð Þ2 +Q tð Þ2 , ð10Þ

where _IðtÞ and _QðtÞ denote the time derivative of IðtÞ and
QðtÞ. The angular frequency can then be approximated in
a discrete form, which is,

ω k½ � = I k½ � Q k½ � −Q k − 1½ �ð Þ/Δt −Q k½ � I k½ � − I k − 1½ �ð Þ/Δt
I k½ �2 +Q k½ �2 ,

= I k − 1½ �Q k½ � − I k½ �Q k − 1½ �
I k½ �2 +Q k½ �2� �

Δt
,

ð11Þ

where Δt is the sampling interval. Here, we approximate the
time derivative by the slope of adjacent samples. Then, we
can derive the unambiguous phase increment ΔΦ½k� =Φ½k�

Table 2: Simulation parameters for lunar probe positioning.

Parameter Value Parameter Value

Beacon spacing D 100m Frequency interval Δf 1MHz

Location of Beacon 1 rb1 (0m, 0m) Carrier frequency of Beacon 1 f1 1000MHz

Location of Beacon 2 rb2 (0m, 100m) Carrier frequency of Beacon 2 f2 1001MHz

Location of Beacon 3 rb3 (100m, 100m) Carrier frequency of Beacon 3 f3 1002MHz

Location of Beacon 4 rb4 (100m, 0m) Carrier frequency of Beacon 4 f4 1003MHz

(0 m, 0 m) (100 m, 0 m)

(0 m,100 m) (100 m, 100 m)

rpi
(50 m, 50 m)

rpt 
(70 m, 50 m)

(a) Straight line

(0 m, 0 m) (100 m, 0 m)

(0 m,100 m) (100 m, 100 m)

rpi
(50 m, 50 m)

rpt
(70 m, 50 m)

(b) Semicircle

(0 m, 0 m) (100 m, 0 m)

(0 m,100 m) (100 m, 100 m)

rpi
(50 m, 50 m)

rpt
(70 m, 60 m)

(c) Polyline

Figure 6: Three typical trajectories investigated in the simulation.

Table 3: Detailed parameters of the three trajectories.

Trajectory Initial position rpi (m) Terminal position rpt (m) Velocity

(a) Straight line (50.50) (70.50) 2m/s

(b) Semicircle (50.50) (70.50) πm/s

(c) Polyline (50.50) (70.50) 4m/s (1st segment) 2m/s (2nd segment)
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Figure 7: Continued.
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−Φ½k − 1�, which has the expression

ΔΦ k½ � = ω k½ �Δt = I k − 1½ �Q k½ � − I k½ �Q k − 1½ �
I k½ �2 +Q k½ �2

: ð12Þ

Taking Φu½n� = 0, the unambiguous phase is represented
as follows

Φu n½ � = 〠
n

k=2
ΔΦ k½ �, = 〠

n

k=2
ω k½ �Δt, = 〠

n

k=2

I k − 1½ �Q k½ � − I k½ �Q k − 1½ �
I k½ �2 +Q k½ �2 ,

ð13Þ

where n ≥ 2:
In the extended DACM algorithm, the time derivative of

IðtÞ and QðtÞ is approximated by the difference between two
samples. Then, the phase increment is calculated by multi-
plying the instantaneous angular frequency ω½k� and the
time interval Δt. These approximations may introduce addi-
tional error to the measurement, especially in low signal-to-
noise ratio (SNR) scenarios.

In order to solve this problem, herein we propose an
algorithm which calculates the phase increment between
two adjacent samples regardless of the aforementioned
assumptions, namely, ATI algorithm.

To simplify the phase calculation, we rewrite the base-
band signal in complex form,

X tð Þ = I tð Þ + jQ tð Þ, ð14Þ

where j is the imaginary unit. In discrete domain, it has
the form

X k½ � = I k½ � + jQ k½ �: ð15Þ

The phase increment ΔΦ½k� can be resolved by taking the

difference of Φ½k� and Φ½k − 1�. Assuming that the sampling
rate is high enough that the absolute value of phase incre-
ment is smaller than π, the phase increment ΔΦ½k� can be
derived as the following equation:

ΔΦ k½ � =Φ k½ � −Φ k − 1½ �
= arg X k½ � − arg X k − 1½ �
= arg X k½ �X∗ k − 1½ �
= arg I k½ � + jQ k½ �ð Þ I k − 1½ � + jQ k − 1½ �ð Þ∗

= arg I k½ � + jQ k½ �ð Þ I k − 1½ � − jQ k − 1½ �ð Þ
= arg I k − 1½ �I k½ � +Q k − 1½ �Q k½ �ð Þ

+j I k − 1½ �Q k½ � − I k½ �Q k − 1½ �ð Þ

= arctan I k − 1½ �Q k½ � − I k½ �Q k − 1½ �
I k − 1½ �I k½ � +Q k − 1½ �Q k½ � :

ð16Þ

Comparing Equation (16) with Equation (11), we can
observe that the extended DACM does not consider the var-
iation of signal amplitude over samples. If we assume I½k�
≈ I½k − 1�,Q½k� ≈Q½k − 1�, and the phase increment satisfies
small angle assumption, i.e., ΔΦ½k� ≈ ΔΦ½k� when ΔΦ½k� is
sufficiently small, Equation (16) and Equation (11) can have
a uniform form.

Then, similar to Equation (13), taking Φu½n� = 0, the
unambiguous phase can be represented by

Φu n½ � = 〠
n

k=2
ΔΦ k½ �, = 〠

n

k=2
arctan I k − 1½ �Q k½ � − I k½ �Q k − 1½ �

I k − 1½ �I k½ � +Q k − 1½ �Q k½ � ,

ð17Þ

where n ≥ 2:
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As we already have the unambiguous phase, we can cal-
culate the range difference according to Equation (9), that is,

Δr m, n½ � = rp n½ � − rp m½ �, = −
λ

2π Φu n½ � −Φu m½ �ð Þ: ð18Þ

3. 2D Positioning Scheme for Lunar Probes

3.1. System Configuration. As mentioned in Section II, the
position of the probe at time t1 and t2 can be resolved using
the range differences from the probe to different beacons as
long as there are sufficient number of beacons.

Suppose the probe moves on a 2D plane, the trajectory
starts from rðt1Þ = ½xðt1Þ, yðt1Þ� and ends at rðt2Þ = ½xðt2Þ, y
ðt2Þ�. As we can see, different from direct range positioning
where only one coordinate needs to be resolved, there are
two unknown coordinates, comprising four parameters xð
t1Þ, yðt1Þ, xðt2Þ, yðt2Þ. Therefore, if we can obtain at least
four range differences, it is possible to determine the posi-
tion of the probe.

In order to obtain a fine geometric dilution of precision
(GDOP) and simplify the configuration, we set four beacons
on the four vertices of a square, and the moving range of the
probe is limited inside that square area. The positioning
scene for lunar probe positioning is illustrated in Figure 2.

3.2. The Description of the Positioning Problem. Suppose the
four beacons are distributed on the four vertices of a square
with side-length D, we can establish a Cartesian coordinate
system referring to the beacons. The locations of the beacons
rbk = ðxbk, ybkÞ are as follows: rb1 = ð0, 0Þ, rb2 = ðD, 0Þ, rb3 = ð
D,DÞ, rb4 = ð0,DÞ. The probe moves from the initial position
ri = ðxi, yiÞ to the terminal position rt = ðxt , ytÞ, and the
range difference from the initial position to the terminal
position with respect to the four beacons is δrk, k = 1,2,3,4.

We can locate the probe by solving the following equations

rpt − rbk
�� ��

2 − rpi − rbk
�� ��

2 = Δrk,
where k = 1,2,3,4:

ð19Þ

Equation (19) can be further written in a scalar form.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xt − 0ð Þ2 + yt − 0ð Þ2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − 0ð Þ2 + yi − 0ð Þ2

q
= δr1,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xt −Dð Þ2 + yt − 0ð Þ2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi −Dð Þ2 + yi − 0ð Þ2

q
= δr2,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xt −Dð Þ2 + yt −Dð Þ2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi −Dð Þ2 + yi −Dð Þ2

q
= δr3,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xt − 0ð Þ2 + yt −Dð Þ2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − 0ð Þ2 + yi −Dð Þ2

q
= δr4:

8>>>>>>>>>><
>>>>>>>>>>:

ð20Þ

As we can see, by solving the four equations in Equation
(20), the initial position rpi = ðxi, yiÞ and the terminal posi-
tion rpt = ðxt , ytÞ can be estimated. However, Equation (20)
is a set of nonlinear equations, which are difficult to solve
the initial and terminal positions of the probe directly. In
order to solve the initial and terminal positions of the probe,
the following algorithm can be adapted.

Consider the probe is originally located at the initial
position ri. For the four beacons k = 1,2,3,4, we can obtain
the initial range rk from the probe to the beacons.

rk =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xt − xbkð Þ2 + yt − ybkð Þ2

q
: ð21Þ

Then, we can then obtain the terminal range from the
probe to the beacons, which can be calculated by

rk′ = rk + δrk, ð22Þ
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Figure 8: Range difference δrk and distribution of target function τ of semicircle.
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where the range difference δrk can be measured by applying
ATI algorithm. Given two fixed reference points on the
plane and the range from the third point to the two points,
we can easily solve for the coordinates of the third point

using law of cosines and we can divide the beacons into
two separate groups to solve for the terminal position rt ,
respectively. For instance, Group A consists of beacons 1
and 2, and Group B consists of beacons 3 and 4.
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Figure 9: Range difference δrk and distribution of target function τ of polyline.
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Here, we derive the expression of terminal position cal-
culated by beacons Group A. The geometry of the beacons
and the probe is illustrated in Figure 3. The terminal angle
of the probe with respect to Beacon 1 can be calculated by

cos θ =
D2 + r21′ − r22′

2Dr1′
: ð23Þ

Then, we derive the coordinates of terminal position
rptA = ðxtA, ytAÞ. Theoretically, there are two solutions of
the terminal position. The solution inside the feasible region
is as follows.

xtA = r1′ cos θ, =
D2 + r21′ − r22′

2D ,

ytA =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21′ − x2tA

q
, = r21′ −

D2 + r21′ − r22′

� �2

4Dr21′
,

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D2r21′ + 2D2r22′ + 2r21′r

2
2′ −D4 − r41′ − r42′

q
2D :

ð24Þ

Similarly, the coordinates of terminal position solved
using beacons Group B rptB = ðxtB, ytBÞ are

xtB =
D2 − r23′ + r24′

2D ,

ytB =D −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D2r23′ + 2D2r24′ + 2r23′r

2
4′ −D4 − r43′ − r44′

q
2D :

ð25Þ

If the initial position rpi is correct, the terminal position
calculated by two groups should be identical. Therefore, the
problem is transformed into finding an initial position rpi in
the feasible region, so that the terminal positions rptA and
rptB overlap. In other words, the distance between rptA and

rptB can be used to measure the accuracy of the given initial
position rpi. Here, we define a target function δp, which is
defined by the following equation

δp = rptA − rptB
�� ��2

2, = xtA − xtBð Þ2 + ytA − ytBð Þ2: ð26Þ

Combining Equations (21), (22), (24), (25), and (26), the
cost function δp can be represented by a function of rpi. As
the specific form of the equation is very complicated, here,
the cost function is simply denoted by

δp = δ rpi
� �

: ð27Þ

And the problem becomes an optimization problem,
that is,

min
rpi

δp rpi
� �

subject to rpi, rptA, rptB ∈ S
ð28Þ

where S is the feasible region, which is the area enclosed by
four beacons.

3.3. Newton-Raphson Method Based Algorithm. We can
apply Newton-Raphson method to solve this optimization
problem. Finding the minimum of the function δðrpiÞ
requires finding the critical point which satisfies ∇δðrpiÞ = 0
. After setting an initial solution rð0Þpi , we can use the follow-
ing formula for iteration. Each step generates a new iterate

rðk+1Þpi from the previous iterate rðkÞpi according to

r k+1ð Þ
pi = r kð Þ

pi − Hδ r kð Þ
pi

� �h i−1
∇δ r kð Þ

pi

� �
, ð29Þ

where HδðrðkÞpi Þ is the Hessian matrix defined by

Hδ rpi
� �

=

∂2δ rpi
� �
∂x2

∂2δ rpi
� �

∂x∂y

∂2δ rpi
� �

∂y∂x
∂2δ rpi

� �
∂y2

2
66664

3
77775, ð30Þ

and ∇ð⋅Þ is the gradient of δðrpiÞ defined by,

∇δ rpi
� �

= ∂δ rpi
� �
∂x

∂δ rpi
� �
∂y

� �
: ð31Þ

After each iteration, judge whether the difference
between the two iterates is smaller than the threshold, i.e.,

∣δ r k+1ð Þ
pi

� �
− δ r kð Þ

pi

� �
∣ < ε0: ð32Þ

If Equation (32) stands, output δðrðk+1Þpi Þ as the final solu-
tion of the initial position. Otherwise, continue the iteration.

Table 4: The positioning result of the terminal position rpt .

Trajectory
SNR
(dB)

Terminal position
(m)

Position error
(m)

(a)
Straight
line

10 (69.47) 3.2

(a)
Straight
line

15 (70.50) 0

(a)
Straight
line

20 (70.50) 0

(b) Semicircle 10 (69.48) 1.6

(b) Semicircle 15 (70.50) 0

(b) Semicircle 20 (70.50) 0

(c) Polyline 10 (69.64) 4.1

(c) Polyline 15 (70.60) 0

(c) Polyline 20 (70.60) 0
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The whole process of initial position solution process is illus-
trated in Table 1.

3.4. QBDS Algorithm. Despite the initial position of the
probe can be solved quickly by applying Newton-Raphson
method, the calculation of the Hessian function is quite dif-
ficult. Also, Newton-Raphson method may not be able to
obtain the global optimal solution of rpi. Within the allow-
able range of accuracy, we can use a method based on grid
search to solve the optimization problem in Equation (28),
namely, QBDS.

As a simple but effective method, we can perform grid
search to the initial position rpi, and calculate the target
function δp corresponding to each on-grid rpi. By finding
the minimum δp, we can solve the true initial position rpi.
Figure 4 gives an intuitive explanation of the QBDS process.

For convenience in presenting the figures, here, we
define another target function τðrpiÞ = 1/δpðrpiÞ. The prob-
lem becomes

max
rpi

τ rpi
� �

subject to rpi, rptA, rptB ∈ S
ð33Þ

Then, we can locate the probe in 2D plane when τ
reaches its maximum.

We can observe from the QBDS algorithm that after cal-
culating the range differences δrk, the searching procedure
can be run in a parallel form. This feature enables fast posi-
tion resolution for real-time positioning, which helps the
probe to survive in complex lunar environment.

4. Simulation Results and Analysis

In order to verify the feasibility and effectiveness of the the-
oretical part in this paper, a series of simulation is presented
in this section.

4.1. Phase Unwrapping. To evaluate the phase unwrapping
performance of ATI method, a scenario with linear range
increment is considered. Suppose the lunar probe is origi-
nally located at the position of a beacon and moves away
from the beacon with constant velocity v = 1m/s. The carrier
frequency is set f = 1000MHz. Three phase unwrapping
algorithms including extended DACM, arcsine demodula-
tion, and ATI are compared in the simulation. The curves
of the mean square error (MSE) of the final position versus
SNR are plotted in Figure 5, where the SNR is changing from
10dB to 40dB and each point is obtained utilizing 104

Monte-Carlo simulations.
As shown in Figure 5, the performance of ATI deterio-

rates for SNR lower than 12dB. For SNR higher than
14 dB, ATI performs best among the three algorithms. All
three algorithms approach similar SNR in phase unwrapping
as the SNR approaches 40 dB. In this scenario, the algorithm
for phase unwrapping has little effect on the result. The sim-
ulation validates the performance of the presented ATI algo-
rithm for SNR higher than 14 dB.

4.2. Positioning. Suppose the lunar probe is restricted in a
square area with length D = 100m. We set four beacons on
the four vertices of that area. Therefore, the locations of
the beacons are, rb1 = ð0, 0Þ, rb2 = ð100,0Þ, rb3 = ð100,100Þ,
rb4 = ð0,100Þ (m). In order to prevent signals from different
beacons from interfering with each other, we adopt a fre-
quency division multiplexing mode to manage the signals.
We set the carrier frequency near 1000MHz and a frequency
interval of 1MHz, so we can separate signals from four bea-
cons with different band-pass filters. The carrier frequency
of the beacons is set as follows: f1 = 1000MHz, f2 = 1001
MHz, f3 = 1002MHz, and f4 = 1003MHz. As the Doppler
frequency of the lunar probe is far smaller than the fre-
quency interval, we can recover the received signal from
each beacon without overlapping. The simulation parame-
ters are shown in Table 2.

Three typical trajectories of the probe are investigated,
those are (a) straight line; (b) semicircle; and (c) polyline,
which are illustrated in Figure 6. The simulation time is
10 s, and the detailed parameters of the three trajectories
are listed in Table 3.

To illustrate the influence of the SNR on range difference
estimation and positioning, the SNR is set to 10 dB, 15 dB,
and 20 dB, respectively. The range difference δrk resolved
by phase unwrapping and the distribution of the target func-
tion τ are presented in Figures 7–9. The positioning result of
the terminal position rpt indicated by the maximum point of
the distribution of τ is shown in Table 4.

It can be observed that QBDS method works for all three
trajectories. For SNR = 10 dB, the large noise induces wrong
unwrapping results, hence reduce positioning accuracy sig-
nificantly. For SNR = 15 dB and SNR = 20 dB, no wrong
unwrapping results, and the error of range difference is only
induced by the phase noise within the 2π period. As the SNR
increases, the distribution map of τ becomes more concen-
trated, which may provide higher positioning accuracy for
smaller search grids.

5. Conclusion

In conclusion, we proposed a positioning method and sys-
tem for lunar probes. A novel phase unwrapping algorithm
named ATI algorithm was presented, which calculates the
unambiguous phase with higher precision and lower compu-
tational complexity. Then, a 2D positioning scheme for
lunar probes is proposed, where we configure a set of square
distributed beacons and apply QBDS algorithm for lunar
probe positioning. Finally, the positioning method was eval-
uated by simulation. The feasibility and effectiveness of the
method was validated by the simulation results.
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