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In this paper, a fixed-time convergence-integrated guidance and control (IGC) method is proposed, which considers terminal line-
of-sight (LOS) angle constraint, full-state constraints, and input saturation. Firstly, an IGC design model considering the full
coupling of three channels is constructed, and a fixed-time convergence disturbance observer is used to estimate and
compensate the unknown disturbances in the model. Secondly, based on the fixed-time stability theory, sliding mode control,
and backstepping control, a novel IGC scheme is carried out, and the second-order instruction filter is used to restrict the
system states and control instructions. Furthermore, the fixed-time stability of the close-loop system is proved and the
expression of convergence time upper bound is given. Finally, comparison simulation and Monte Carlo simulation verify the
effectiveness and superiority of the proposed IGC algorithm.

1. Introduction

The guidance and control system (GCS) is the core system of
missile. The classical GCS is designed individually, which
includes guidance loop and control loop. In contrast, the
IGC design scheme takes guidance loop and control loop
as a whole. Since the IGC design method can take advantage
of the coupling relationship between guidance system and
control system, as well as the comprehensive information,
such as the information on the relative motion of the missile
and the target, the attitude angle, and overload of the missile,
it can significantly enhance the missile performance com-
pared with the classical scheme [1, 2].

There were many theories and methods for IGC scheme,
including small gain theory [3], predictive control [4], vari-
able structure control [5], adaptive control [6], and back-

stepping control [7]. Among them, backstepping control
method was used widely. However, backstepping control
had the problem that was called “exponential expansion,”
which was due to the need to differentiate the virtual control
quantity multiple times. To overcome this problem, dynamic
surface control was proposed and applied to IGC design [8].
The derivatives of virtual quantities were obtained by intro-
ducing a first-order filter. In [9], a 3D IGC scheme is pro-
posed by using sliding mode control and backstepping
control. The scheme used the Nussbaum function and an
auxiliary system to solve the problem of input saturation.
However, it was a three-channel independent design
method. In [10], the dynamic surface control and barrier
Lyapunov function were used in IGC design, and a neural
network disturbance observer was applied to estimate the
system interferences.
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Many missiles, such as antitank missiles and antiaircraft
missiles, can increase their warhead damage by controlling
the terminal impact angles when attacking the target [11].
Therefore, terminal angle constraint such as LOS angle con-
straint can be considered in IGC design to improve the com-
bat effectiveness of missile. In [12], a robust IGC design
method with terminal LOS angle constraint was obtained
based on dynamic inverse control, and the system uncer-
tainties were restrained by introducing sliding mode control.
The sign function was replaced by continuous high gain sat-
uration function to solve the chattering problem inherent in
sliding mode control. But it also changed the original struc-
ture of sliding mode control and reduced the robustness. In
[13], an IGC scheme with terminal LOS angle constraint was
designed based on dynamic surface control, and adaptive
control was adopted to compensate system disturbances.
However, dynamic surface control-based IGC design could
only ensure that the system states converge asymptotically,
but the missile attack time is limited.

Because of the aerodynamic structure limitation, the
missile system state variables, such as attack angle and Euler
angular rates, should change within certain ranges during
the flight. In the meanwhile, because of the actuator physical
limitation, the control ability generated by the actuator is
limited. Taking pneumatic rudder as an example, both pos-
itive and negative rudder deflection angles have upper
bounds. If rudder deflection angles and system state vari-
ables exceed the allowed ranges, the missile guidance and
control performance will be negatively affected. Even the
missile will be uncontrollable and unstable, leading to off-
target [14]. Therefore, state constraints and control con-
straint should be considered in the IGC design. In [15],
dynamic surface control was used to carry out an IGC sys-
tem, and the model uncertainty and disturbance were esti-
mated by a proposed finite-time convergence disturbance
observer. In addition, the Nussbaum function was used to
deal with the control constraint, which was also known as
input saturation. In [16], aiming at state constraints, an
IGC system was designed based on dynamic surface control
and barrier Lyapunov function. In order to solve the state
constraints, a saturation function was introduced into the
design to ensure that the state variables did not change
beyond the constraint ranges.

The above analysis shows that most of the literatures on
IGC design research aim to solve unitary constraint prob-
lem, such as terminal LOS angle constraint, input saturation,
state constraints, and finite-time convergence. However, the
missile GCS was faced with a variety of constraints. As far as
we know, there are few literatures dealing with the problems

of input saturation, full-state constraints, terminal LOS angle
constraint, and global finite-time convergence in 3D IGC
scheme. For this issue, a fixed-time IGC algorithm for STT
missile is proposed in this paper, which considers terminal
LOS angle constraint, input saturation, and full-state con-
straints. The main contributions are as follows:

(a) A 3D IGC design model with multiple constraints is
established rather than the single plane model estab-
lished in [5]

(b) A sliding mode surface which can strictly converge
in fixed-time is designed to solve terminal angle con-
straint rather than common asymptotic stability

(c) The second-order instruction filter is constructed to
estimate the derivative of the virtual commands,
which effectively relieve the computation burden in
backstepping design, and guarantee virtual com-
mands in prescribed ranges. Furthermore, an auxil-
iary system is designed to eliminate the tracking
error of the filter

(d) Different from the general asymptotic or finite-time
convergence IGC algorithms proposed in [15–17],
a 3D IGC algorithm is proposed to achieve global
fixed-time convergence in the presence of extern dis-
turbances, terminal angle constraint, full-state con-
straints, and input saturation

2. Problem Description and Preliminaries

2.1. Problem Description. Figure 1 establishes the relative
motion of missile and target in 3D inertial coordinate system
Oxyz, where Ox4y4z4 is the LOS coordinate system. M rep-
resent the missile and T represent target. ε is LOS elevation
angle and η is the azimuth angle. R is relative distance of
missile and target. Define am4

= ½amx4
amy4

amz4
�T and at4 =

½atx4 aty4 atz4 �
T which are acceleration vectors of missile and

target in Ox4y4z4, respectively.
The missile and target relative motion equations [18] are

2 _R_ε + R€ε + R _η2 sin ε cos ε = aty4 − amy4
,

−2 _R _η cos ε − R€η cos ε + 2R_ε _η sin ε = atz4 − amz4
:

8<
: ð1Þ

Define am2
= ½amx2

amy2
amz2

�T, which is missile accelera-
tion vector in ballistic coordinate system. It can be obtained
from the missile dynamic equations as

amy2
=

P sin α cos γV + cos α sin β sin γVð Þ + Y cos γV − Z sin γV −mg cos θm½ �
m

,

amz2
=

P sin α sin γV + cos α sin β cos γVð Þ + Y sin γV + Z cos γV½ �
m

,

8>><
>>: ð2Þ
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where m is missile mass, θm is fight path angle, α is attack
angle, β is sideslip angle, γV is bank angle, Y is aerodynamic
lift force, Z is lateral force, P is thrust force, and g is gravita-
tional acceleration.

From the coordinate transformation, we can get

am4
= L η, εð ÞL−1 ψVm, θmð Þam2

,

L η, εð Þ =
cos ε cos η sin ε −cos ε sin η

−sin ε cos η cos ε sin ε sin η

sin η 0 cos η

2
664

3
775,

L ψVm, θmð Þ =
cos θm cos ψVm sin θm −cos θm sin ψVm

−sin θm cos ψVm cos θm sin θm sin ψVm

sin ψVm 0 cos ψVm

2
664

3
775,
ð3Þ

where ψVm is the heading angle of missile.
The aerodynamic forces Y and Z are modeled as

Y = Cα
yαQS + Yδz + dY ,

Z = Cβ
zβQS + Zδy + dZ ,

(
ð4Þ

where Yδz and Zδy are lift force and lateral force produced by
the rudder angles, Cα

y and Cβ
z are aerodynamic coefficient

with respect to α and β, Q = ρV2
m/2 is dynamic pressure, S

stands for the reference area, ρ is atmospheric density, and
dY and dZ are the unknown bounded uncertainties including
modeling error and model uncertainties, here treated as dis-
turbance variables.

Since the rudder deflection angles contribute little to the
aerodynamic forces, Yδz and Zδy can be regarded as small
quantities [19].

In this paper, the IGC design applies only to the terminal
guidance stage. Therefore, assuming that the missile flies
without power and the flight speed is approximately invari-
ant, the velocity change rate is regarded as interference. For
STT missile, its required bank angle control is zero. So it can
be assumed to be a small quantity, and sin ðγVÞ ≈ 0 and

cos ðγVÞ ≈ 1. Define new state variables x1 = ½_ε _η�T and x#2

= ½α β�T. Combined with (1) to (4), the relative motion
equation in 3D space can be described as

_x1 = f1 x1ð Þ + g1 x1ð Þx#2 + d1 tð Þ, ð5Þ

with

f1 x1ð Þ =
−
2 _R
R

_ε − _η2 sin ε cos ε +
f θmð Þ
R

g cos θm

−
2 _R
R

_η + 2_ε _η tan ε +
sin θm sin η − ψVmð Þ

R cos ε
g cos θm

2
6664

3
7775,

g1 x1ð Þ =
−
f θmð Þ
mR

Cα
yQS −

sin ε sin η − ψVmð Þ
mR

Cβ
z QS

−
sin θm sin η − ψVmð Þ

mR cos ε
Cα
yQS

cos η − ψVmð Þ
mR cos ε

Cβ
z QS

2
664

3
775,

d1 =

aty4
R

−
dY f θmð Þ + dZ sin ε sin η − ψVmð Þ

mR

−
atz4

R cos ε
−
dY sin θm sin η − ψVmð Þ − dZ cos η − ψVmð Þ

mR cos ε

2
664

3
775,

f θmð Þ = cos θm cos ε + sin θm sin ε cos η − ψVmð Þ:
ð6Þ

As is well known that R is bounded, and target accelera-
tion and aerodynamic parameters (Yδz , Zδy , dY , and dZ) are
bounded, so d1ðtÞ is bounded.

According to missile dynamic equations [20], the missile
control model can be described as

_α = −ωx tan β cos α + ωy tan β sin α + ωz −
Cα
yαQS −mg cos θm

mVm cos β
+ Δα,

_β = ωx sin α + ωy cos α +
Cβ
zβQS
mVm

+ Δβ,

_γ = ωx − ωy tan ϑ cos γ + ωz tan ϑ sin γ + Δγ,

_ωx =
mα

xα +mβ
xβ +mδx

x δx
� �

QSL

Jx
+

Jy − Jz
Jx

ωyωz + Δωx
,

_ωy =
mβ

yβ +m
δy
y δy

� �
QSL

Jy
+

Jz − Jx
Jy

ωzωx + Δωy
,

_ωz =
mα

zα +mδz
z δz

� �
QSL

Jz
+

Jx − Jy
Jz

ωxωy + Δωz
,

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð7Þ

where γ is roll angle, Jx, Jy, and Jz are the inertia compo-

nents, ωx, ωy, and ωz are Euler angular rates, mα
x , m

α
z , m

β
x ,

mβ
y , m

δx
x , m

δy
y , and mδz

z are moment aerodynamic coefficients
with respect to α, β, δx, δy , and δz , which δx, δy , and δz are
rudder angles, Δα, Δβ, Δγ, Δωx

, Δωy
, and Δωz

are external dis-

turbances and modeling errors, and ϑ is missile pitch angle.
The missile terminal LOS angle constraint [21] can be

described as

ε tfð Þ = εd, η tfð Þ = ηd, ð8Þ

Vm

Vt

r ε

x

y

z

x4(T)

y4

z4

O(M)

η R

Figure 1: Relative motion of missile and target.
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where tf is the guidance final moment and εd and ηd are
expected terminal LOS angles.

Define new state variables x0 = ½ε − εd η − ηd�T, x2 =
½α β γ�T, x3 = ½ωx ωy ωz�T, and u = ½δx δy δz�T. Combining
with (5) and (7), the IGC design model with terminal LOS
angle constraint is established as

_x0 = x1,

_x1 = f1 x1ð Þ + g1 x1ð Þx#2 + d1 tð Þ,
_x2 = f2 x2ð Þ + g2 ϑ, x2ð Þx3 + d2 tð Þ,
_x3 = f3 x2, x3ð Þ + g3u + d3 tð Þ,

8>>>>><
>>>>>:

ð9Þ

with

f2 x2ð Þ =

−
Cα
yαQS −mg cos θm

mVm cos β

Cβ
zβQS
mVm

0

2
6666664

3
7777775
,

g2 ϑ, x2ð Þ =
−tan β cos α tan β sin α 1

sin α cos α 0

1 −tan ϑ cos γ tan ϑ sin γ

2
664

3
775,

f3 x2, x3ð Þ =

mα
xα +mβ

xβ
� �

QSL

Jx
+
Jy − Jz
Jx

ωyωz

mβ
yβQSL
Jy

+
Jz − Jx
Jy

ωzωx

mα
zαQSL
Jz

+
Jx − Jy
Jz

ωxωy

2
66666666664

3
77777777775
,

g3 =

mδx
x QSL
Jx

0 0

0
m

δy
y QSL
Jy

0

0 0
mδz

z QSL
Jz

2
66666666664

3
77777777775
,

d2 tð Þ =
Δα

Δβ

Δγ

2
664

3
775,

d3 tð Þ =
Δωx

Δωy

Δωz

2
664

3
775:

ð10Þ

Due to the existence of factors such as large target
maneuvers, unsatisfactory initial states in the shift phase of
middle and final guidance, external interference, and system
uncertainty, the state variables such as α, β, γ, ωx, ωy, and ωz

may exceed the allowable ranges, which will worsen the
dynamic quality of the system, affect the control perfor-
mance, and even lead to control divergence.

In this paper, the research goal is to design an IGC algo-
rithm that makes the missile system state variables and rud-
der angles not exceed the allowed ranges and the LOS angles
and angular rates converge in fixed-time.

2.2. Preliminaries. The following definitions and lemmas are
given for analysis convenience.

Definition 1. Define y = ½y1, y2,⋯,yn�T, sgn ð⋅Þ is sign func-
tion and sgn ð0Þ = 0, sgnaðyÞ = jyja sgn ðyÞ, and jyja = diag ð
jy1ja,⋯,jynjaÞ.

Definition 2. For a nonlinear system _xðtÞ = f ðxðtÞÞ, xð0Þ = x0
, if there is a moment Tmax > 0, for any x0 ∈ R, t > Tmax, sat-
isfying xðtÞ = 0, the system is fixed-time stable.

Lemma 3 (see [22, 23]). For the system _y = −a1 sgnb1ðyÞ − a2
sgnb2ðyÞ, and a1 > 0, a2 > 0, 0 < b1 < 1, and b2 > 1, then the sys-
tem is stable in fixed-time and the convergence time satisfies

T1 <
1

a1 1 − b1ð Þ +
1

a2 b2 − 1ð Þ : ð11Þ

In addition, if the system has a small disturbance, that is _y
= −a1 sgnb1ðyÞ − a2 sgnb2ðyÞ + ς, ς is a small positive number,
then the system can converge to the neighborhood of the origin
Ω = fjyj ≤ 2ϑja1ϑb1 + a2b1ϑ

b2 = ςg in fixed-time, and the con-
vergence time satisfies

T2 <
1

a1 2b1 − 1
� �

1 − b1ð Þ +
1

a2 b2 − 1ð Þ : ð12Þ

Lemma 4 (see [24]). Assuming that the Lyapunov function Vð
xÞ satisfies _VðxÞ ≤ −a1Vb1ðxÞ − a2V

b2ðxÞ, and a1 > 0, a2 > 0,
0 < b1 < 1, and b2 > 1, then the system is stable in fixed-time
and the convergence time satisfies

T3 <
1

a1 1 − b1ð Þ +
1

a2 b2 − 1ð Þ : ð13Þ

Lemma 5 (see [25]). For any real number xi, i = 1, 2,⋯, n,
there are real numbers 0 < a < 1 and b > 1, such that the follow-
ing equations are true

〠
n

i=1
xij j

 !a

≤ 〠
n

i=1
xij ja,

〠
n

i=1
xij j

 !b

≤ nb−1 〠
n

i=1
xij jb:

ð14Þ
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According to Lemma 5, the following equations hold

xT sgna xð Þ = 〠
n

i=1
x2i
�� �� a+1ð Þ/2 ≥ 〠

n

i=1
x2i
�� �� ! a+1ð Þ/2

= xk ka+1,

xT sgnb xð Þ ≥ n1− b+1ð Þ/2 〠
n

i=1
x2i
�� �� ! b+1ð Þ/2

= n 1−bð Þ/2 xk kb+1:

8>>>>>><
>>>>>>:

ð15Þ

3. IGC Design and Stability Analysis

The IGC model (9) established in this paper is a strict-
feedback nonlinear system with uncertainty, so the backstep-
ping control design method is used to accomplish the IGC
scheme. The backstepping control is improved based on
fixed-time stability theory to let the system states fixed-time
convergence. A second-order instruction filter is introduced
into backstepping control to overcome “differential expan-
sion.”On the one hand, the derivatives of virtual control quan-
tities are realized through integration, and the noise influence
on the system is effectively reduced. On the other hand, the
system states and actual control instructions are constrained
to ensure that they do not exceed the allowable ranges.

3.1. Novel IGC Law Design. For the missile attacking the tar-
get accurately with desired terminal LOS angle, that is, the
system states x0 and x1 fixed-time converge to zero, based
on Lemma 5 and piecewise sliding mode surface idea, a
fixed-time convergence sliding mode is designed as

s1 = x1 + k1 sgna1 x0ð Þ + k2φ x0ð Þ, ð16Þ

where φðx0Þ = ½φðx01Þ, φðx02Þ�T,

φ x0ið Þ =
xa20i , x0ij j ≥ δ,

λ1x0i + λ2x
3
1i, x1ij j < δ,

(
ð17Þ

where a1 > 1, 0 < a2 = p1/p2 < 1, ki = diag ðki1, ki2Þ is the pos-
itive definite matrix to be designed, i = 1, 2, δ > 0, p1, and p2
are odd numbers, λ1 = ð3 − a2Þδα2−1/2, and λ2 = ða2 − 1Þ
δα2−3/2.

The time derivative of (16) is given by

_s1 = _x1 + k1a1 x0j ja1−1x1 + k2φ′ x0ð Þx1, ð18Þ

with

φ′ x0ið Þ =
a2 x0ij ja2−1, x0ij j ≥ δ,

λ1 + 3λ2x20i, x0ij j < δ,

i = 1, 2:

8>><
>>: ð19Þ

Based on fixed-time stability theory, backstepping con-
trol, and the above sliding mode surface, the design process
of the novel IGC scheme with multiple constraints are as
follows:

Step 1. Define the tracking error as

s1 = x1 + k1 sgna1 x0ð Þ + k2φ x0ð Þ: ð20Þ

The time derivative of s1 is given by

_s1 = _x1 + k1a1 x0j ja1−1x1 + k2φ′ x0ð Þx1
= f1 + g1x

#
2 + d1 + k1a1 x0j ja1−1x1 + k2φ′ x0ð Þx1:

ð21Þ

Design the virtual control law of x#2 as

x#2c = −g−11 f1 + d̂1 + k1a1 x0j ja1−1x1 + k2φ′ x0ð Þx1
h

+ k3 sgnb1 s1ð Þ + k4 sgnb2 s1ð Þ + v1
i
,

ð22Þ

where b1 > 1, 0 < b2 = p3/p4 < 1, p3 and p4 are odd numbers,
k3 and k4 are positive definite diagonal matrixes to be
designed, and v1 is filter tracking error compensation, which
is used to compensate the influence of instruction filter on
virtual control law, and its definition will be given later. d̂1
is the estimation of d1. Here, the observer proposed in [26]
is used to estimate the disturbances, and the specific expres-
sion is

_̂x1 = f1 x1ð Þ + g1 x1ð Þx#2 + d̂1,

d̂1 = λ11 sgnγ1 ~x1ð Þ + λ12 sgnγ2 ~x1ð Þ + λ13

ðt
0
sgn ~x1 τð Þð Þdτ,

8><
>:

ð23Þ

where λ1i > 0 ði = 1, 2, 3Þ, ~x1 = x1 − x̂1, and x̂1 is the estima-
tion of x1.

In order to avoid “differential expansion” and consider-
ing the limitation of virtual control variables, a new virtual
control law was introduced by referring to the dynamic sur-
face design method. x#2d and its derivative _x#2d are obtained
by passing through a second-order instruction filter. The
state space expression of the filter is

_q1

_q2

" #
=

q2

2ζωn
ω2
n

2ζωn
SM xcð Þ − q1½ � − q2

� �
2
64

3
75, ð24Þ

xd

_xd

" #
=

q1

q2

" #
, ð25Þ

where SMð⋅Þ is the saturation function, which is defined as

SM xð Þ =
M sgn xð Þ, xj j ≥M,

x, xj j <M:

(
ð26Þ

It can be seen from (24) and (25) that the calculation of
_xd does not need a differentiator, thus avoiding the problem
of “differential expansion.” If xc is bounded, then both xd
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and _xd are continuously bounded. By selecting a larger nat-
ural frequency ωn, jxd − xcj can be made small. However, if
it is too large, it will bring high frequency noise to the sys-
tem, so compromise should be considered when selecting
parameters.

The expression of v1 is

_ν1 =
−l1 sgnb1 v1ð Þ + sgnb2 v1ð Þ
� �

+
v1s

T
1g1 x#2d − x#2c
� �
v1k k2 , v1k k > μ1,

0, v1k k ≤ μ1,

8><
>:

ð27Þ

where l1 is the positive definite diagonal matrix to be
designed and μ1 is a smaller positive number.

Step 2. Define the tracking error as s2 = x2 − x2d and x2d = ½
x#2d ; 0�. The time derivative of s2 is given by

_s2 = _x2 − _x2d = f2 + g2x3 + d2 − _x2d: ð28Þ

The virtual control quantity of x3 is designed as

x3c = −g−1
2 f2 + _x2d + d̂2 + k5 sgnb1 s2ð Þ + k6 sgnb2 s2ð Þ + v2 + χ
h i

,

ð29Þ

where k5 and k6 are positive definite diagonal matrixes to be

designed, χ = ½gT
1 s1 0�T.

Let x3c pass through the second-order filter to get x3d
and _x3d. The expression of v2 is

_ν2 =
−l2 sgnb1 v2ð Þ + sgnb2 v2ð Þ
� �

+
v2s

T
2g2 x3d − x3cð Þ

v2k k2 , v2k k > μ2,

0, v2k k ≤ μ2:

8><
>:

ð30Þ

Step 3. The tracking error is defined as s3 = x3 − x3d. The
time derivative of s3 is given by

_s3 = _x3 − _x3d = f3 + g3u + d3 − _x3d: ð31Þ

The virtual control law of u is designed as

uc = −g−1
3 f3 + _x3d + d̂3 + k7 sgnb1 s2ð Þ + k8 sgnb2 s2ð Þ + v3 + gT

2 s2
h i

:

ð32Þ

Let uc pass through the second-order filter to get the
actual IGC law u. The expression of v3 is

_ν3 =
−l3 sgnb1 v3ð Þ + sgnb2 v3ð Þ
� �

−
v3s

T
3g3 u − ucð Þ

v3k k2 , v3k k > μ3,

0, v3k k ≤ μ3:

8><
>:

ð33Þ

The IGC algorithm structure is illustrated in Figure 2.

3.2. Stability Analysis

Theorem 6. For the system (9), the proposed novel IGC law
from (20) to (33) can guarantee that the system states x0
and x1 converge to the origin neighborhood in fixed-time,
and the closed-loop IGC system is stable in spite of
disturbances.

Proof. From (21) to (32), we can obtain

_s1 = f1 + g1 s#2 + x#2d − x#2c + x#2c
� �

+ d1

+ k1a1 x0j ja1−1x1 + k2φ′ x0ð Þx1
= g1 s#2 + x#2d − x#2c

� �
− k3 sgnb1 s1ð Þ

− k4 sgnb2 s1ð Þ − v1 + ~d1,

_s2 = f2 + g2 s3 + x3d − x3c + x3cð Þ + d2 − _x2d

= g2 s3 + x3d − x3cð Þ − k5 sgnb1 s2ð Þ
− k6 sgnb2 s2ð Þ − v2 − χ + ~d2,

_s3 = f3 + g3 u − uc + ucð Þ + d3 − _x3d

= g3 u − ucð Þ − gT2 s2 − k7 sgnb1 s3ð Þ
− k8 sgnb2 s3ð Þ − v3 + ~d3,

ð34Þ

where ~di = di − d̂iði = 1, 2, 3Þ and s#2 = ½s21 s22�T.
Construct the Lyapunov function

V =
1
2
〠
3

i=1
sTi si + vTi vi
� �

: ð35Þ

The time derivative of V is obtained as

_V = 〠
3

i=1
sTi _si + vTi vi
� �

= sT1 g1 s#2 + x#2d − x#2c
� �

+ ~d1 − k3 sgnb1 s1ð Þ − k4 sgnb2 s1ð Þ − v1
h i

+ sT2 g2 s3 + x3d − x3cð Þ + ~d2 − k5 sgnb1 s2ð Þ − k6 sgnb2 s2ð Þ − v2 − χ
h i

+ sT3 g3 u − ucð Þ + ~d3 − k7 sgnb1 s3ð Þ − k8 sgnb2 s3ð Þ − v3 − gT2 s2
h i

− vT1 l1 sgnb1 v1ð Þ + sgnb2 v1ð Þ
� �

− sT1g1 x#2d − x#2c
� �

− vT2 l2 sgnb1 v2ð Þ + sgnb2 v2ð Þ
� �

− sT2g2 x3d − x3cð Þ
− vT3 l3 sgnb1 v3ð Þ + sgnb2 v3ð Þ

� �
− sT3g3 u − ucð Þ

= sT1 ~d1 − sT1 k3 sgn
b1 s1ð Þ − sT1 k4 sgn

b2 s1ð Þ − sT1 v1 + sT2 ~d2

− sT2 k5 sgn
b1 s2ð Þ − sT2 k6 sgn

b2 s2ð Þ − sT2 v2 + sT3 ~d3 − sT3 k7 sgn
b1 s3ð Þ

− sT3 k8 sgn
b2 s3ð Þ − sT3 v3 − vT1 l1 sgnb1 v1ð Þ + sgnb2 v1ð Þ

� �
− vT2 l2 sgnb1 v2ð Þ + sgnb2 v2ð Þ

� �
− vT3 l3 sgnb1 v3ð Þ + sgnb2 v3ð Þ

� �
:

ð36Þ
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According to (15), it can be obtained as

_V ≤ −3 1−b1ð Þ/2 〠
3

i=1
λmin k2i+1ð Þ sik kb1+1 + λmin lið Þ vik kb1+1
� �

− 〠
3

i=1
λmin k2i+2ð Þ sik kb2+1 + λmin lið Þ vik kb2+1
� �

+ 〠
3

i=1
sTi ~di − sTi vi
� �

:

ð37Þ

Based on the Young inequality, we can get

sTi ~di ≤
1
2
sTi si +

1
2
~d
T
i
~di, ð38Þ

−sTi vi ≤
1
2
sTi si +

1
2
vTi vi: ð39Þ
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Figure 2: Multiple constraint fixed-time IGC algorithm structure.

Table 1: The initial condition for missile and target.

Symbol Value Symbol Value Symbol Value

xm 0m xt 5000m α 8 deg

ym 5000m yt 1000m β 4 deg

zm 0m zt 2000m γ 8 deg

Vm 600m/s V t 50m/s ωx 20 deg/s

θm 15 deg θt 0 deg ωy -20 deg/s

ψm -5 deg ψt 0 deg ωz -30 deg/s

Table 2: Missile dynamic parameters.

Symbol Value Symbol Value Symbol Value

m 1200 kg mα
x 0.45 Cα

y 57.15

S 0.42m2 mβ
x -0.38 Cβ

y -0.081

L 0.69m mδx
x 2.13 Cδz

y 5.75

Jx 100 kg·m2 mβ
y -27.30 Cα

z 0.09

Jy 5800 kg·m2 m
δy
y -26.60 Cβ

z -56.32

Jz 5700 kg·m2 mα
z -28.15 C

δy
z -5.6

g 9.8m/s2 mδz
z -27.90

Table 3: Constraints of states and actuators.

Symbol Range Symbol Range

α [-10, 10] deg ωx , ωz [-40, 40] deg/s

β [-5, 5] deg ωy [-30, 30] deg/s

γ [-10, 10] deg δx , δy , δz [-12, 12] deg
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Consider the following inequality:

p ≤ pm1 + pm2 , ð40Þ

where p ≥ 0, m1 > 1, and 0 <m2 < 1. Then, the following
inequality holds

−n1p
m1 − n2p

m2 + n3p ≤ − n1 − n3ð Þpm1 − n2 − n3ð Þpm2 , ð41Þ

where n1 > 0, n2 > 0, and n3 > 0.

Combining with (38), (39), and (41), equation (37) can
be written as

_V ≤ −3 1−b1ð Þ/2 〠
3

i=1
λmin k2i+1ð Þ − 1ð Þ sik kb1+1 + λmin lið Þ − 1

2

	 

vik kb1+1

� �

− 〠
3

i=1
λmin k2i+2ð Þ − 1ð Þ sik kb2+1 + λmin lið Þ − 1

2

	 

vik kb2+1

� �

+
1
2
〠
3

i=1

~d
T
i
~di:

ð42Þ
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Figure 5: LOS elevation and azimuth angles in case 1.

Table 4: Simulation results of three IGC laws.

IGC law NDIGC RIGC PIGC

Intercept time (s) 14.87 14.91 14.77

Miss distance (m) 1.33 2.31 0.71

LOS elevation angle error (deg) 0.28 0.34 0.05

LOS azimuth angle error (deg) 0.12 0.21 0.04
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Select appropriate parameters satisfying

λmin k2i+1ð Þ − 1 ≥ 18 b1−1ð Þ/2k,

λmin lið Þ − 1
2
≥ 18 b1−1ð Þ/2k,

λmin k2i+2ð Þ − 1 ≥ k,

σ =
1
2

~d
T
1
~d1 + ~d

T
2
~d2 + ~d

T
3
~d3

� �
,

i = 1, 2, 3,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð43Þ

where k > 0.
Then, equation (42) can be written as

V ≤ −6 b1−1ð Þ/2k〠
3

i=1
sik k2� � b1+1ð Þ/2 + vik k2� � b1+1ð Þ/2h i

− k〠
3

i=1
sik k2� � b2+1ð Þ/2 + vik k2� � b2+1ð Þ/2h i

+ σ: ð44Þ

By Lemma 5 and (44), one can obtain

_V ≤ −k 〠
3

i=1
sik k2 + vik k2� � ! b1+1ð Þ/2

+ σ − k 〠
3

i=1
sik k2 + vik k2� � ! b2+1ð Þ/2

= −kV b1+1ð Þ/2 − kV b2+1ð Þ/2 + σ:

ð45Þ

Since ðb1 + 1Þ/2 > 1 and 1/2 < ðb2 + 1Þ/2 < 1, according
to Lemma 4, V can fixed-time converge to a small neighbor-
hood as

Ω1 = V ≤ 2ϑ1 kϑ
b1+1ð Þ/2
1 + kϑ b2+1ð Þ/2

1 = σ
���n o

: ð46Þ
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And the convergence time satisfies

t1 <
1

k b1 − 1ð Þ +
1

k 2 b2+1ð Þ/2 − 1
� �

1 − b2ð Þ : ð47Þ

Combining with (46) and (35), s1 can converge in fixed-
time t1 to the region s1 ≤

ffiffiffiffiffiffiffi
2ϑ1

p
. Define Δ =

ffiffiffiffiffiffiffi
2ϑ1

p
, then js1i

j ≤ Δ, i = 1, 2. According to the region where the value of
x0i is located, the convergence region of x0i and x1i can be
obtained as follows.

(a) When jx0ij > δ, it can be obtained from (16) that

_x0i = −k1i sgna1 x0ið Þ − k2i sgna2 x0ið Þ + ϕi, ϕij j ≤ Δ ð48Þ

According to Lemma 4, x0i can converge to the region
Ω2i = fjx0ij ≤ 2ϑ2ijk1iϑa12i + k2iϑ

a2
2i ≤ Δg, x1i can converge to

the region

x1ij j ≤ k1i x0ij ja1 + k2i x0ij ja2 + ϕij j ≤ k1i 2ϑ2ið Þa1 + k2i 2ϑ2ið Þa2 + Δ,
ð49Þ

and convergence time satisfies

t2 <
1

k1i a1 − 1ð Þ +
1

k2i 2a2 − 1ð Þ 1 − a2ð Þ : ð50Þ

(b) When jx0ij < δ, it can be obtained from (16) that

x1ij j ≤ k1i x0ij ja1 + k2i λ1x0i + λ2x
3
1i

�� �� + ϕij j < k1iδ
a1 + k2iδ

a2 + Δ

ð51Þ

Based on the above analyses, x0i and x1i can converge to
the neighborhood
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x0ij j ≤ κi =max 2ϑ2i, δf g, k1iϑ2ia1 + k2iϑ2i
a2 ≤ Δ,

x1ij j ≤ k1κi
a1 + k2κi

a2 + Δ,

(
ð52Þ

with fixed-time. In addition, we can get the convergence
time which satisfies

t ≤ t1 + t2 < tm =
1

k b1 − 1ð Þ +
1

k 2 b2+1ð Þ/2 − 1
� �

1 − b2ð Þ
+

1
k1i a1 − 1ð Þ +

1
k2i 2a2 − 1ð Þ 1 − a2ð Þ :

ð53Þ

It can be seen from (53) that the upper bound of conver-
gence time tm increases with the increase of k, k1i, k2i, a1, and
b1 and increases with the decrease of a2 and b2. According to
(43), k is related to the control parameter matrices kiði = 3,
4,⋯, 8Þ and l jðj = 1, 2, 3Þ. Therefore, tm only depends on
the control parameters, independent of the system states.

Although the convergence speed of the IGC system
states will increase as the parameters a1, b1, kiði = 1, 2,⋯, 8

Þ, and l jðj = 1, 2, 3Þ increase and decrease as the parameters
a2 and b2 increase, excessive pursuit of convergence speed
will produce large control instructions, requiring the missile
to provide a large overload, and the missile available over-
load is limited, so compromise should be considered in
parameter selection.

This completes the proof.

4. Numerical Simulation Results and Analysis

The missile 6-DOF simulation is implemented to illustrate the
performance of the proposed IGC (PIGC) design method.
Table 1 shows the initial conditions of missile and target.
Table 2 shows the missile dynamic parameters. The states
and actuator constraints are described in Table 3. The lateral
acceleration of the target is set as atz2 = 10 sin ðπt/2Þ m/s2.
Set the desired terminal LOS angles εd = −70° and ηd = 0°.

There is an uncertainty 0.1sin (0.2πt) for the missile
inertia components and 0.2sin (0.2πt) for aerodynamic coef-
ficients. Set Δα = Δβ = Δγ = 0:2 sin ðtÞrad/s and Δωx = Δωy

= Δωz = sin ðtÞrad/s2.
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The design parameters for PIGC are set as k1 = diag ð
0:6, 1Þ, k2 = diag ð1, 1Þ, a1 = 3, a2 = 3/5, b1 = 2, b2 = 0:5
,μ1 = μ2 = μ3 = 0:01, δ = 0:01, k3 = k4 = diag ð3, 4Þ, k5 = k6 =
diag ð8, 12, 12Þ, k7 = k8 = diag ð20, 10, 10Þ, ζ = diag ð0:6, 0:7,
0:6Þ, ωn = diag ð10, 20, 10Þ, l1 = diag ð3, 2, 5Þ, l2 = diag ð10, 8
, 3Þ, and l3 = diag ð10, 10, 5Þ. According to (53), it can be cal-
culated that tm ≈ 13:44 s.

4.1. Case 1: Comparison Simulation with Existing Methods.
The robust IGC design method (RIGC) proposed in [12]
and the new dynamic surface control based IGC design
method (NDIGC) proposed in [15] are introduced for com-
parative simulation analysis.

Missile and target trajectories, LOS angular rates, and
relative distances are shown in Figures 3 and 4. The missile
trajectories are relatively smooth under the three IGC laws.

PIGC can make the LOS angular rates converge stably to
near zero within fixed-time tm and has a significant advan-
tage in zeroing angular rates, thus leading to a small miss
distance (see Table 4).

LOS angles are presented in Figure 5. It can be seen that
the LOS angles can gradually converge to the expected value
under the three IGC laws. The LOS angles of PIGC converge
fastest. RIGC adopts sliding mode control to suppress distur-
bances such as model uncertainty and target maneuver. When
there are large model uncertainties and disturbances, the con-
vergence performance of RIGC is greatly affected. NDIGC
selects linear sliding mode surface, which can only ensure
the states convergent asymptotically. Therefore, PIGC is supe-
rior in terms of angle constraints and convergence.

The attack angles, sideslip angles, and roll angles curves
are given in Figure 6. The three Euler angular rates are
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presented in Figure 7. The angles and angular rates can con-
verge to near zero under three IGC algorithms. Compared
with PIGC scheme, larger attack angle, sideslip angle, and roll
angle result in larger pitch, yaw, and roll angular rates under
RIGC and NDIGC. Moreover, the PCIGC can ensure that
the system states do not exceed the constraint ranges.

The rudder angle curves are shown in Figure 8. Compared
with RIGC, NDIGC and PIGC can restrict the rudder angles
within the constraints. PIGC, in particular, can ensure that
the rudder angles converge steadily to near zero in finite-time.

The simulation results in Figures 3, 5, and 6 seem diver-
gent at the intercept time. This is because the relative motions
of the missile and target change dramatically at the end, so the
LOS angular rate changes dramatically and diverges at the last
moment of the simulation. At the same time, as the system
state constraints such as attack angle are not considered and

corresponding virtual control instructions are not restricted,
system states of RIGC and NDIGC cannot converge stably
and diverge at the end of simulation.

Table 4 shows the simulation results of three IGC laws in
terms of intercept times, miss distances, and LOS angle
errors. It can be seen that PIGC has the smallest intercept
time, miss distance, and angle errors. PIGC can impact the
target accurately with shorter time, smaller miss distance,
and higher angle constraint accuracy.

From the simulation results, it can be concluded that
PIGC can effectively solve terminal angle constraints, state
constraints, and control constraints and has fixed-time con-
vergence, which is superior to NDIGC and RIGC.

4.2. Case 2: Monte Carlo Simulation. In this case, a missile
intercepts a ground target. In case 1, it is assumed that
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the missile velocity is constant. But in a real scenario, the
missile’s speed would certainly change because of aerody-
namic drag and gravity. Therefore, in order to be closer
to engineering practice, the simulation under time-
varying missile velocity will be considered in this case.
At the same time, In order to further verify the robustness
of PIGC algorithm, Monte Carlo simulation was carried
out with 100 simulation times. Simulation conditions are
as follows:

(1) The aerodynamic coefficients vary from -10% to
+10% of the nominal value and follow normal
distribution

(2) The mass and moment of inertia vary from -10% to
+10% of the nominal value and follow normal
distribution

(3) The initial position coordinates ym and zm of the
missile vary randomly between 4500m~5500m and
0m~500m, respectively, subjected to normal distri-
bution. The target position is (5000m, 0m, 1000m)

(4) The missile initial fight path angle θm and heading
angle ψVm vary randomly between 0deg~10 deg
and -5 deg~0 deg, respectively, subjected to normal
distribution

(5) The mathematical expression of aerodynamic resis-
tance is

X = Cx0 + Cα
x αj j + Cβ

x βj j + Cδx
x δxj j + C

δy
x δy
�� �� + Cδz

x δzj j
� �

Qs

ð54Þ
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The relevant aerodynamic coefficients are set as Cx0 = 0:32
, Cα

x = 0:21, Cβ
x = 0:19, Cδx

x = 0:05, Cδy
x = 0:07, and Cδz

x = 0:06.
The Monte Carlo simulation results are exhibited in

Figures 9–22.
As shown in Figures 9 and 10, perfect attacking target

with small miss distance is achieved in each scenario. The
mean and standard deviation of miss distance are found as
1.2639m and 0.5019m, respectively. It can be seen in
Figure 11 that the missile’s speed is reduced by air resistance.

In Figures 12 and 13, the LOS angles finite-time con-
verge to the desired angles, and the convergence time is all
less than tm that embodies the fixed-time convergence char-
acteristic of PIGC. In Figures 14–22, the system states and
rudder angles are all finite-time converge to near zero and
never violate the constraints. In addition, there are problems
of nonsmoothness at about 10 to 11 seconds in Figures 14,
19, and 22 and at about 7 to 8 seconds in Figures 15, 16,
17, 18, 20, and 21. These were because the nonsingular ter-
minal surface (20) proposed in this paper is a piecewise
function with switching term, so when the sliding mode sur-
face is in the switching position, the control instructions
have small fluctuations; thus, the curves of the system states
will appear not smooth.

It can be seen from these figures that PIGC achieves
satisfactory performance under different initial fight condi-
tions and uncertainties of the missile-related parameters.
Monte Carlo simulation shows that the proposed IGC
algorithm is robust.

5. Conclusion

In this paper, a novel fixed-time IGC algorithm has been
proposed for terminal angle constraint, full-state constraints,
and control constraint. The IGC design model considering
multiple constraints is established, and the disturbance
observer is used to estimate and compensate the model dis-

turbance. The second-order instruction filter is introduced
to overcome the “differential expansion,” system state con-
straints, and control constraint. The fixed-time convergence
and the stability of the IGC scheme are strictly proved. Sim-
ulation results verify the effectiveness and superiority of the
proposed IGC algorithm.

The IGC algorithm proposed in this paper contains
many design parameters, which can be further studied on
parameter optimization.
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