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The increasing amount of space debris in recent years has greatly threatened space operation. In order to ensure the safety level of
spacecraft, space debris perception via on-orbit visual sensors has become a promising solution. However, the perception
capability of visual sensors largely depends on illumination, which tends to be insufficient in dark environments. Since the
images captured by visible and infrared sensors are highly complementary in dark environments, a convolutional sparse
representation-based visible and infrared image fusion algorithm is proposed in this paper to expand the applicability of visual
sensors. In particular, the local contrast measure is applied to obtain the refined weight map for fusing the base layers, which is
more robust in a dark space environment. The algorithm can settle two significant problems in space debris surveillance,
namely, improving the signal-noise ratio in a noise space environment and preserving more detailed information in a dark
space environment. A space debris dataset containing registered visible and infrared images has been purposely created and
used for algorithm evaluation. Experimental results demonstrate that the proposed method in this paper is effective for
enhancing image qualities and can achieve favorable effects compared to other state-of-the-art algorithms.

1. Introduction

Space debris are fragments or elements of invalid man-made
space object including spacecrafts and satellites, which are
typically generated by space objects’ self-explosion, colli-
sions, or end of operational lifetime. According to the statis-
tical data gathered by the Orbital Debris Program Office,
most of the observed space debris exists in the low Earth
orbit (LEO), which is the region of the most frequent human
space operation [1]. Since the existing space debris may
cause collision with other operational space objects, the sur-
veillance of existing space debris is crucial for ensuring the
safety of human space operation.

Generally, the existing space debris surveillance systems
can be classified into two categories, namely, the space-
based space surveillance system and ground-based surveil-
lance system. The ground-based surveillance system utilizes
a large telescope or radar installed on the ground for space

debris detection and recognition. Different from the
ground-based surveillance system, the space-based surveil-
lance system utilizes on-board sensing devices to detect
space debris. The advantages of the space-based surveillance
system compared to the ground-based surveillance system
can be concluded as follows. (1) It is not affected by weather
and the circadian rhythm. (2) It could avoid the limits of sta-
tionary observation sites. (3) It could detect millimeter-sized
small objects, while the latter is aimed at the centimeter-
sized objects [2].

Therefore, the development of a space-based surveillance
system is effective for enhancing the safety level of a space
object. For the application of space debris surveillance, the
on-board sensing devices generally contain visible sensors,
infrared sensors, and radars. Among all the sensing devices,
visible sensors have become a promising solution for the fol-
lowing reasons. (1) Visible sensor can significantly increase
the autonomous level of space object observation. (2) It

Hindawi
International Journal of Aerospace Engineering
Volume 2022, Article ID 6300437, 21 pages
https://doi.org/10.1155/2022/6300437

https://orcid.org/0000-0001-5179-4574
https://orcid.org/0000-0001-9534-6773
https://orcid.org/0000-0002-6664-9350
https://orcid.org/0000-0001-8047-7746
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6300437


can provide highly accurate orbital data and detailed texture
and edge information of space objects, with precision of up
to a millimeter level.

However, the surveillance capability of visible sensors
largely depends on the image quality, which can be seriously
affected by illumination conditions. Therefore, the effective-
ness of visible sensor-based surveillance is largely restricted
by illumination. The poor illumination conditions mainly
caused by the following two reasons. (1) Space debris's self-
obstruction. (2) Chaser's shadow due to the phase angle [3,
4]. Particularly, space debris with insufficient sun irradiation
would be observed by visible sensors when they move near
the dawn and dusk region. This is defined as weak illumina-
tion condition in this paper. As illustrated in Figure 1, the
visible parts of the space debris in Figure 1(a) can only reveal
platforms apart from the solar panel, while the solar panel is
very easy to be ignored in this case. Thus, visible image-
based space debris surveillance is insufficient for dealing
with the abovementioned challenges. On the other hand,
the solar panel of space debris can be captured from the
infrared image in Figure 1(b); however, the details within
the infrared image including edges and textures are not rich
enough compared with the visible image. The fused image in
Figure 1(c) takes advantages of infrared and visible images
through combining them into a synthetic image.

In order to overcome the abovementioned challenges,
infrared sensors are introduced in space perception missions
considering the images captured by infrared sensors and vis-
ible sensors are highly complementary in weak illumination
conditions. Palmerini [5] combined the infrared images and
visible images to attain a continuous tracking of the relative
position during space proximity operations. Frank et al. [6]
used infrared sensors to provide complementary visual
information for state estimation during relative navigation.
However, these approaches regard the visible images and
infrared images as two separate measurements and process
them, respectively, which could not make full use of the
primitive visual information. In this paper, we proposed a
pixel-level infrared and visible image fusion method to
enhance image qualities for space debris on-board surveil-
lance. The method could blend the source images sufficiently
and retain the primitive information to the utmost extent to
expand the applicability of visual sensors in poor illumina-
tion conditions of the space perception missions. The algo-
rithm contains three major parts, namely, decomposition,

transformation, and reconstruction. Firstly, both visible
and infrared images are decomposed into high-frequency
and low-frequency layers. Secondly, the initial weight map
is constructed by local contrast measure (LCM) and the
refined weight map is further obtained by a guided filter.
Then, the low-frequency layers are fused based on the
refined weight map. The high-frequency layers are trans-
formed into the sparse domain by utilizing the prelearned
convolutional sparse dictionary, and a decision map is gen-
erated by evaluating the activity level of transformed sparse
coefficients. Then, the high-frequency layers are fused on
the basis of the decision map. Finally, the fused image is
obtained by synthesizing the high-frequency and low-
frequency layers. A dataset containing registered visible
and infrared images of space debris is created for algorithm
evaluation. Experimental results demonstrate that the algo-
rithm proposed in this paper is effective for enhancing image
qualities and can achieve favorable effects compared to other
state-of-the-art algorithms.

The rest of the paper is organized as follows. In Section
2, some relevant research is introduced. Section 3 describes
the visible and infrared image fusion algorithm in detail.
Section 4 presents the evaluation setup. Section 5 shows
experimental results for verifying the proposed algorithm.
Section 6 concludes the paper.

2. Related Works

2.1. Space-Based Optical Surveillance Techniques for Space
Debris. In this section, the state-of-the-art techniques for
space debris surveillance using on-board visible sensors are
discussed. In general, according to the size of the space
debris image pattern, existing space-based optical surveil-
lance strategies can be classified into two modes: large space
debris identification and small space debris detection. The
former mode is the application scenario of this paper. Dur-
ing space proximity operations (like space debris removal),
the debris is tracked by visible sensors in close range, typi-
cally tens of meters to a few centimeters, to identify the
object or component’s categories (antenna, solar wings,
engine nozzle, etc.) and states (attitude, position, spin rate,
etc.). Then, different removal strategies are planned based
on the space debris categories [7]. Meanwhile, the estimated
states are fed into the navigation filter for executing uncoop-
erative rendezvous maneuver during the space debris

(a) Visible image (b) Infrared image (c) Fused image

Figure 1: Illustration for infrared and visible space debris image fusion.
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capture. According to different applications, the correspond-
ing methods about large space debris identification are
grouped in Table 1, including category identification, state
estimation, object or its component detection, and 3D struc-
ture construction.

2.1.1. Category Identification. Recently, more and more
methods concentrate on extracting robust and efficient fea-
tures, such as handcrafted features and deep learning-based
features, to improve the space debris identification perfor-
mance. Pan et al. [9] proposed invariant moment fusion of
the infrared and visible image to recognise the satellite in dif-
ferent sunlight and attitude. Gang et al. [8] combined
shaped-based features and appearance-based features to rec-
ognise full-viewpoint 3D space objects. Ding et al. [10] char-
acterize the space objects with normalized affine moment
invariants (AMI) and the illumination invariant multiscale
autoconvolution (MSA) feature descriptor for space object
identification with the consideration of viewpoint change,
illumination change, and scale change. Shi et al. [11]
achieved space object recognition by the bag-of-feature
model based on elastic net sparse coding with variation of
viewpoints. Zhao et al. [15] applied the sparse coding-
based latent semantic feature to recognise the satellite and
evaluate it by adding Gaussian white noise. In addition,
other machine learning-based space object recognition
methods have also been studied. Zhang et al. [13, 14] further
used a homeomorphic manifold to represent satellite objects
and evaluated the recognition performance in a different
lighting phase. Because of the advantages of deep learning
in object recognition, convolutional neural network-based
space object identification has also been studied recently.
Yong et al. [16] and Tao et al. [17] achieved space object rec-
ognition using a multilayer convolutional neural network
based on LeNet and AlexNet separately. Dhamani et al.
[18] selected the MobileNet V1 Single Shot Detector (SSD)
architecture for space object detection.

2.1.2. State Estimation. Zhang et al. [12] proposed a kernel
regression-based method for space object recognition and
pose estimation and tested it in different lighting conditions
and Gaussian white noise. Grompone [19] detected Harris
corner features of the space object for estimating relative lin-
ear velocities, angular velocities, and range during docking.
Sharma et al. [20] proposed a spacecraft pose network
(SPN) method based on the convolutional neural network
to estimate the relative position and attitude. Chen et al.

[21] applied High-Resolution Net (HRNet) to obtain a
bounding box for estimating the 6DOF pose of a satellite.
Sonawani et al. [23] proposed a space object pose estimation
method leveraging branch VGG-19 model. Jongh et al. [22]
also detected SIFT features of the space debris for pose esti-
mation. Volpe et al. [24] used the KAZE method to detect
and describe the features of a tumbling unknown orbital tar-
get for determining the relative state. However, the above-
mentioned low-level features may ignore the local property
or high-level semantic information.

2.1.3. Object or Its Component Detection.Wei et al. [27] used
shape-based features to detect the spacecraft’s components.
Kanani et al. [25] and Petit et al. [26] extracted the edge fea-
tures of debris using bilayer segmentation techniques to dis-
tinguish it from the background.

2.1.4. 3D Structure Construction. Haopeng et al. [28] pro-
posed a new structure-form motion method to estimate the
3D structure of the space object to avoid the reconstruction
error. Zhang et al. [29] extracted scale-invariant feature
transform (SIFT) features to recover a 3D structural model
of a space object from multiview images.

However, as discussed in the literature, all the aforemen-
tioned methods are based on the fact that the illumination
condition of space debris is good enough for extracting effec-
tive features [30]. Such objects typically have to be large, and
the high-resolution image shall be obtained such that they
provide abundant details at visible wavelengths, limiting
tracking observations to the shadowed regions.

2.2. Infrared and Visible Image Fusion for Image Quality
Enhancement. Generally, algorithms designed for infrared
and visible image fusion include the following three steps:
image transformation, image fusion, and image reconstruc-
tion. Among the three steps, the method for image transfor-
mation is the foundation of the whole algorithm [31]. For
this reason, the research of the image fusion algorithm dur-
ing the past decade mainly focuses on developing a more
concise and effective transformation method. The most
widely used transformation methods for image fusion are
sparse representation (SR), convolutional sparse representa-
tion (CSR), and convolutional neural network (CNN).

The application of SR to image fusion has achieved great
success in the past few years. However, due to the local rep-
resentation nature of SR, the drawbacks of the SR-based
fusion algorithm are also obvious, which can be concluded

Table 1: Existing large space debris identification techniques.

Applications Methods

Category identification
Gang et al. [8], Pan et al. [9], Ding et al. [10], Shi et al. [11], Zhang et al. [12–14], Zhao et al. [15], Yong et al.

[16], Tao et al. [17], Dhamani et al. [18]

State estimation Grompone [19], Sharma et al. [20], Chen et al. [21], Jongh et al. [22], Sonawani et al. [23], Volpe et al. [24]

Object or its component
detection

Kanani et al. [25], Petit et al. [26], Wei et al. [27]

D structure construction Haopeng et al. [28], Zhang et al. [29]
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as two manifolds [32, 33]. (1) The context information loss:
since SR-based fusion needs to firstly decompose the source
image into local patches, the context information within the
source image is neglected. It is worth noting that the context
information is essential for vision understanding and analy-
sis. (2) The high sensitivity to registration errors: as SR fuses
all the image patches, all the image patches need to be accu-
rately registered. However, image registration itself is also a
difficult task and the registration error may exist all the time.
To overcome this issue, the fusion framework designed on
the basis of global representation algorithms is proposed in
recent years and the most representative algorithms are the
CNN and CSR [31, 34].

The CNN has revealed powerful potential for various
computer vision tasks recently. As a supervised learning
approach, the framework of the CNN can be classified into
two main categories, namely, the regression CNN and classi-
fication CNN [35]. Both the regression CNN and classifica-
tion CNN have been successfully applied to image fusion
[36–38]. However, the restriction of CNN-based image
fusion may come from the high demand for labeled training
samples. CSR is originated from the deconvolutional net-
works designed for unsupervised image feature analysis.
With applications to image fusion, CSR can be treated as
an global image transformation approach. The advantages
of CSR-based image fusion over SR and the CNN can be
concluded as follows [39]. (1) The global modelling capabil-
ity of CSR makes it free from image decomposition when
applied to image fusion. For this reason, the abovemen-
tioned deficiencies of SR-based fusion including context
information loss and high sensitivity to misregistration
caused by local transformation are easy to overcome. (2)
The unsupervised learning nature of CSR makes it free from
a large amount of labeled ground truth images. Therefore,
CSR has revealed great potential for image fusion.

For this reason, the CSR-based method is adopted for
image fusion in this paper. Instead of fusing source images
directly, both infrared and visible images are decomposed
into high-frequency layers and low-frequency layers. The
low-frequency layers are fused by the guided filtering-based
weighted averaging strategy. The high-frequency layers after
decomposition are then transformed into the convolutional
sparse domain for image fusion, and the transformed convo-
lutional sparse coefficient maps corresponding to infrared
and visible images are fused by activity level assessment.
Finally, the fused image is obtained by image reconstruction.

2.3. The Simulation of Infrared and Visible Space Debris
Images. Due to the dearth of real images of space debris, var-
ious methods of image simulation are proposed. Kanani
et al. [25] simulated visible images of space debris using
Astrium’s in-house tool called Surrender! which is based
on rendering functions (rasterization, ray tracing, etc.). Gang
et al. [8] created a 3D satellite full-viewpoint visible image
dataset by 3ds Max, including a gray image and correspond-
ing binary image. Dhamani et al. [18] created a synthetically
generated visible image dataset of the Cygnus vehicle. The
model of Cygnus developed in Blender and real images
taken from the low Earth orbit are merged into a video game

engine called Unreal Engine 7, to render images with various
orientations, lighting conditions, and backgrounds. Volpe
et al. [24] used Blender to output the tumbling orbital target
with richer textures and more realistic illuminations. Grom-
pone [19] also used open-source software Blender to simu-
late the visible image of the rendezvous and docking
scenario in different lighting conditions, reflections, and
background. Sharma et al. [40] used their own camera emu-
lator software of the optical stimulator to render visible
images of the Tango spacecraft from the Prototype Research
Instruments and Space Mission technology Advancement
(PRISMA) mission [41], but the synthesized images all are
single-channel grayscale images. Aviles et al. [42] produced
both visible and infrared images of the satellite using an
ASTOS camera simulator, to study the performance of pose
estimation algorithms at a different range of spectrum. Nev-
ertheless, the data is not open source and simulation param-
eters are not open to public.

As far as we know, there are no public dataset containing
registered infrared and visible images of the space debris
presently. To assess the quantitative performance of image
fusion algorithms, a public space debris dataset with regis-
tered infrared and visible images has been created and used
for performance evaluation in this paper.

2.4. Our Contributions. The contributions of this paper can
be divided into three aspects. Firstly, an image quality
enhancement framework is proposed for its applications in
space debris on-orbit surveillance, which could work in weak
illumination condition. Secondly, we propose a colorful vis-
ible and infrared image pixel-level fusion method. The
method has strong and many desirable properties which
are suitable for space debris identification. The local contrast
measure-based guided filter is introduced to improve the
performance of the original CSR method. Comparing with
previous CSR image fusion strategy, our image fusion model
can obviously improve the capability of preserving details in
faint lighting conditions and enhancing object information
in a noise environment. Thirdly, we build a public space
debris image dataset named space debris dataset (SDD),
which includes registered infrared and visible images. To
the author’s best knowledge, it is the first publicly infrared
and visible space debris image dataset.

3. Infrared and Visible Image Fusion for
Space Debris

Figure 2 shows the main process of the proposed infrared
and visible image fusion method for space debris surveil-
lance. First, an averaging filter is applied to get the two-
scale representations of the source images. Then, the decom-
posed base layers are fused using a guided filtering-based
weighted average method. The guided filter is an edge-
preserving smoothing filter which could make full use of
the strong correlations between neighborhood pixels for
weight optimization [43]. Meanwhile, the decomposed detail
layers are fused through convolutional sparse representation
models. Finally, the fused image is obtained by combining
base layers and detail layers.
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3.1. Two-Scale Image Decomposition. As shown in Figure 2,
both the visible image and the infrared image are decom-
posed into two-scale representations by an average filter
firstly. This step is aimed at splitting the source image into
the base layer retaining a low-frequency large-scale image
features and detail layer containing small-scale detail fea-
tures. Suppose that In denotes the nth source image, n ∈ f1
,⋯,Ng. A represents the averaging filter, and the base layer
Bn of each source image In can be obtained by

Bn = InA, ð1Þ

where the size of the averaging filter is determined by the
scale of noise features and desired objects. For example, if
the noise features that appeared in the star background are
basically less than WN , then, the size of averaging filter can
be set as k ≥ 2 ×WN + 1 to reduce the noise. On the con-
trary, if the objects with diameterWO, or above, are expected
to be reserved, then, k ≤ 2 ×WO − 1 is appropriate. The
detail layers Dn can be obtained by

Dn = In − Bn: ð2Þ

3.2. Fusion of Base Layers. An improved guided filtering
method is proposed to fuse base layers. The local contrast
measure is introduced to enhance the space debris and sup-
press the background clutters (like stars) that existed in the
cosmos. Moreover, this method could preserve color features
through applying the guided filtering to the three color
channels. As shown in Figure 2, the initial weight map is
constructed with local contrast measure firstly. The local
contrast value Cn of the nth pixel can be calculated by

Cn =min
i
Ln ×

Ln
1/Nc∑

Nc
j=1I

i
j

, ð3Þ

where i means one of the nine cells in an image patch
obtained by moving a sliding window with size w on a whole
image. Iij represents the gray value of the jth pixel in the ith
(i = 1, 2,⋯, 8) cell except the central cell. Nc denotes the
number of the pixels in the ith cell. Ln is the maximum of
the gray value within the central cell when the sliding win-
dow moves on the nth pixel. The denominator represents
the mean gray value of the ith cell. The fraction term means
the contrast value between the central cell and the

Visible image I1
Base layer B1

–

Detail layer D1 Detail layer D2

Base layer B2

Infrared image I2 Fused detail layer D

Fused base layer B

Fused image F

Average filtering

Guided filtering

Initial weight map Initial weight map Refined weight map Refined weight map

Local contrast measure

Sparse coefficient maps

Convolutional sparse representation

Activity level
measure

A. Two-scale image decomposition D. Two-scale image reconstruction

B. Fusion of base layers

W1

X1

Sparse coefficient maps
X2

Activity level map
A1

Activity level map
A2

W2 W1
B B

W2

C. Fusion of detail layers

Guidance images

Weighted average

Convolution

D

Figure 2: Overall pipeline of infrared and visible image fusion model.
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surrounding cell. The obtained local contrast map formed
with local contrast values of all the source image pixels is
the required initial weight map.

Then, the input image and corresponding guidance
image are fed into the guided filter to output the refined
weight map. The input image will keep the similar edge
characteristics with the guided image by the guided filter,
which could also avoid the ringing artifacts in the image
decomposition process [43]. Consider the initial weight
map Wn as the input image and color source image In as
the guidance image, and the output Oi of the guided filter
can be represented by

Oi = aTk Ii + bk, ∀i ∈ ωk, ð4Þ

where i means the ith pixel located in the local window ωk
of the guidance image. The local window ωk with size ð2
α + 1Þ × ð2α + 1Þ is centered at pixel k. In other words,
the premise of linear equation (4) is that the pixel i must
be located in window ωk and the distance between pixel i
and pixel k should be less than

ffiffiffi

2
p

α. α represents the filter
size of the guided filter. The constants ak and bk are the
linear coefficients of equation (4) when the local window
ωk is centered at the kth pixel. Since the guidance image
is a color image, Ii is a 3 × 1 vector denoting the pixel
values of red, green, and blue channels and ak is also a
3 × 1 vector. ak and bk can be calculated by solving the fol-
lowing optimization problem:

argmin
ak ,bk

〠
i∈ωk

aTk Ii + bk −Wi

� �2 + βa2k
� �

, ð5Þ

where β indicates the blur level of the guided filter. It
could blur the image details while preserving strong edges
of the image. Wi denotes the pixel value of the ith pixel of
the input image. On the basis of the linear regression the-
ory, ak and bk can be given by equations (6) and (7),
respectively.

ak = 〠
ωk

+ βU

 !

1
ωj j 〠i∈ωk

IiWi − μk �Wk

 !

, ð6Þ

bk = �Wk − aTk μk, ð7Þ

where μk is a 3 × 1 vector denoting a mean gray value of
every channel of the guidance image in the local window
ωk, and ∑ωk

is a 3 × 3 covariance matrix of the guidance
image in the local window ωk. �Wk refers to the mean gray
value of the input image in the local window ωk. U is a
3 × 3 identity matrix, and jωj represents the number of
pixels in the local window ωk. Considering the fact that
many filtered output Oi will be obtained according to dif-
ferent windows ωk covering the ith pixel, the average

values of ak and bk are used to compute the output value
of the ith pixel.

Oi = �aTi Ii + �bi,

�ai =
1
ωj j 〠k∈ωi

ak,

�bi =
1
ωj j 〠k∈ωi

bk,

ð8Þ

where ωi is a local window of the guidance image centered
at pixel i with the same size of ωk. Then, refined weight
map WB

n composed of filtered output Oi of every pixel
in the guidance image can be obtained. Finally, the fused
layer B can be obtained by weighted averaging as shown
in equation (9)

B = 〠
N

n=1
WB

nBn: ð9Þ

3.3. Fusion of Detail Layers. Due to the superior detail
preservation ability of the CSR model [33], it is introduced
to fuse the detail layers. Provided that M dictionary filters
dm have been learned by the K-SVD method [44], the cor-
responding sparse coefficient maps Cn,m of each detail
layers Dn can be obtained by solving the following optimi-
zation problem as shown in equation (10) with the
method presented in [45]:

argmin
Cn,mf g

1
2 〠

M

m=1
dm ∗Cn,m −Dn

�

�

�

�

�

�

�

�

�

�

2

2

+ λ 〠
M

m=1
Cn,m
�

�

�

�

1, ð10Þ

where dm is a d × d matrix, d is the size of dictionary fil-
ters. Dn is a p × q × 3 tensor, and p and q are the height
and width of detail layer Dn, respectively. Cn,m has the
same dimensions as Dn. λ is a preset regularization
parameter. By utilizing CSR to obtain the sparse coefficient
maps, the activity level measurement fusion strategy based
on the l1 norm is applied to fuse the detail layers. Define
Anðx, yÞ as the activity level map of the nth source image
at the corresponding pixel position ðx, yÞ, and the initial
activity level map Anðx, yÞ can be obtained by

An x, yð Þ = Cn,1:M x, yð Þ�

�

�

�

1, ð11Þ

where Cn,1:Mðx, yÞ is an M dimensional vector denoting
the value of M sparse coefficient maps of the nth source
image at pixel position ðx, yÞ. Activity level map An
reflects the local energy of sparse coefficient maps of the
corresponding source image, which provides quantitative
information for assigning the weight to the different
source image. It is noteworthy that the fused image would
involve unexpected visual artifacts if the source images
were misaligned or contain noise. To address these prob-
lems, window-based activity (WBA) measurement is
employed via fully utilizing the strong correlation among
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adjacent pixels. Then, the final activity level map �Anðx, yÞ
can be obtained by

�An x, yð Þ = ∑r
a=−r∑

r
b=−rAn x + a, y + bð Þ
2r + 1ð Þ2 , ð12Þ

where r is the size of the window. The larger the r is, the
more details will be eliminated. For the space debris sur-
veillance scenario, stars or cosmic noise with several pixels
mainly exists in the background of the space debris image,
so a smaller window size might be suitable, and r is set to
3 in this paper. Next, the appropriate fusion rule is applied
for allocating the weight of each source image to the fused
image. Averaging and absolute maximum are two most
widely used fusion rules; the former could not only retain
contrast information but also make the line and edge
details more smoother. By contrast, the latter will preserve
the most important information of the source images.
Thus, the absolute maximum rule is adopted to fuse the
detail layers. The fused sparse coefficient maps Cf ,mðx, yÞ
can be calculated by equation (13).

Cf ,m x, yð Þ =Cn∗ ,m x, yð Þ,
n∗ = argmin

n

�An x, yð Þ, ð13Þ

where n∗ means the nth source image corresponding to
the max activity level map. At last, the fused detail layer
is computed by

D = 〠
M

m=1
dm ∗Cf ,m: ð14Þ

3.4. Two-Scale Image Reconstruction. The fused image F is
reconstructed by combining fused base layer B and fused
detail layer D as shown in equation (15).

F = B +D: ð15Þ

4. Evaluation Setup

4.1. SDD Dataset. SDD (https://github.com/taojianggit/
SDD) is the proposed public available space debris dataset,
including 49 pairs of registered visible and infrared images.
Each pair of the images is created by using the same camera
properties of a close range (CR) camera of the visual based

system (VBS) observing from MANGO spacecraft, which
had been demonstrated in Prototype Research Instruments
and Space Mission Technology Advancement (PRISMA)-
COntactless deBRis Action (COBRA) experiment [46]. The
camera properties are provided in Table 2.

The visible images of space debris are generated by
three-dimensional animation software 3Ds-Max Studio.
The software uses the raytracer and radiosity technology of
Vray engine to render verisimilitude scenes with global illu-
mination. The infrared images are synthesized by Vega
Prime software, which utilizes the MOSART Atmospheric
Tool to generate time-of-day-dependent atmospheric and
material temperature databases for different spectral bands,
geographic locations, times of the year, and material lists.
It also employs the Texture Material Mapping Tool to create
material maps for textures. Although far-infrared bands (8–
14) are widely applied for space surveillance due to cost, size,
and power consumption of infrared sensors [47], the near-
infrared (0.78–3) and mid-infrared (3–8) bands are also con-
sidered in SDD to achieve a more comprehensive dataset. In
order to generate the weak illumination scene, all the visible
images and infrared images are synthesised at the time of
twilight, which is set to 05:50 in this work.

As for space debris that resided in the low Earth orbit,
the Earth may well occur in the background of space debris
images. Therefore, the real Earth images are mixed with syn-
thesised debris images with various spectra, viewpoints, illu-
mination conditions, and ranges to create the dataset. Both
real Earth visible and infrared images with different spectra
can be obtained from the Himawari-8 geostationary weather
satellite (https://himawari8.nict.go.jp/himawari8-image
.htm). The earth images should be captured from the same
illumination viewpoint and altitude as space debris. The alti-
tude of space debris and the surveillance platform are set as
450 km to 500 km in this paper, because many valuable
asserts, such as the Chinese Space Station and International
Space Station, dwell on there. Besides, the solar glare may
appear in the camera of the surveillance platform when
space debris is located in an intermediate position. There-
fore, it is also considered as one of the backgrounds in the
space debris dataset. The visible image of solar glare can be
rendered with 3DsMAX Studio. However, according to the
characteristic of the solar spectrum, 99 percent of solar radi-
ation concentrates on the wavelength from 0.3 to 3 (https://
www.eia.gov/tools/glossary/index.php?id=Solar%
20spectrum); the infrared images of the sun are ignored in
this paper when the discussed spectrum is beyond the range.
Besides, stars are not considered to be shown in the back-
ground for that they would be swallowed by strong stray
light, such as sunlight and Earth and atmosphere radiation
(EAR) in the low Earth orbit. The following six typical
scenes of space debris surveillance are set in this paper,
including ocean, clouds, ocean and clouds, land and clouds,
solar glare, and cosmic background.

The SDD includes three categories of space debris: inac-
tive satellite, defunct spacecraft, and rocket body. The inac-
tive satellite model consists of the Tango satellite and
Jason-1 satellite. The defunct spacecraft comprises the
Tiangong-1 prototype space station. The rocket body is

Table 2: Camera properties.

Property Value

Resolution 752 × 582
Focal length 16.4

Field of view 22° × 16°

F number 0.7

Pixel dimensions 8:6μm× 8:3μm
Spectrum range 380 nm–850 nm
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composed of the Agena-c rocket upper stage. Thus, 4 kinds
of space debris are included in SDD in total. The examples
of synthetic visible and infrared images of space debris with
different backgrounds are shown in Figure 3.

4.2. Metrics. The objective evaluation metrics can be divided
into four types in the aspect of image fusion, including infor-
mation theory-based, image feature-based, image structural
similarity-based, and human perception-based metrics
[48]. Several typical metrics for each category are selected
for evaluating the proposed method comprehensively.
Entropy (EN), cross-entropy (CE), mutual information
(MI), and peak signal-to-noise ratio (PNSR) of the informa-
tion theory-based metrics, average gradient (AG), edge
intensity (EI), standard deviation (SD), and gradient-based

fusion performance ðQAB/FÞ of the image feature-based met-
rics, root mean squared error (RMSE) of the image struc-
tural similarity-based metric, and Chen-Blum metric ðQCBÞ
of the human perception-based metric are adopted. A higher
value of the metric shows a better performance of the image
fusion method except for CE and RMSE. Apart from the
metrics for visible-infrared image fusion, the image quality
assessment (IQA) methods are also introduced to suffi-
ciently evaluate the performance of the proposed method.
There are three kinds of IQA methods, including full-
reference IQA (FR-IQA), reduced-reference IQA (RR-
IQA), and no-reference IQA (NR-IQA). Because the refer-
ence image of space debris could be synthesised in this work,
the FR-IQA metrics are adopted to assess the performance
of the proposed method in different datasets. The other

(a) VI_sp1_bg1 (b) IR_sp1_bg1 (c) VI_sp2_bg2

(d) IR_sp2_bg2 (e) VI_sp3_bg3 (f) IR_sp3_bg3

(g) VI_sp4_bg4 (h) IR_sp4_bg4 (i) VI_sp4_bg5

(j) IR_sp4_bg5 (k) VI_sp4_bg6 (l) IR_sp4_bg6]

Figure 3: Examples of the SDD dataset. “VI” means the visible image, “IR” means the infrared image, “spi”{i = 1,2,3,4} means the ith space
debris of SDD, and “bgi”{i = 1, 2,⋯, 6} means the ith type of the background of SDD.
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two IQA methods are not applied because they are less cred-
ible than FR-IQA. Consequently, the visual saliency-induced
index (VSI), sparse feature fidelity (SFF), and gradient simi-
larity (GS) are adopted to assess the proposed method. A
large assessment score indicates good performance for these

FR-IQA methods. The details of the abovementioned 13
metrics can be found in [48, 49].

4.3. Methods for Comparison. The proposed method is com-
pared with five representative methods, which are the guided
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Figure 4: Performance of the proposed method with different settings of parameter k for different backgrounds.
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filtering-based fusion (GFF) [43], multiscale GFF (MGFF)
[50], convolutional sparse representation (CSR) [33], ResNet
[51], and RFN-Nest [34]. Among them, GFF, CSR, and
MGFF are three traditional visible-infrared fusion methods.
The ResNet and RFN-Nest are representative deep

learning-based visible-infrared fusion methods in the last
three years intending to achieve state-of-the-art perfor-
mance. The implementation of the CSR-based method is
available at Liu’s website (https://github.com/yuliu316316/
CSR-Fusion). The implementation of the RFN-Nest method
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Figure 5: Performance of the proposed method with different settings of parameter α for different backgrounds.
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Figure 6: Continued.
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is available in Li’s website (https://github.com/hli1221/
imagefusion-rfn-nest). All the other methods are imple-
mented by the visible and infrared image fusion benchmark
[52]. All the related parameters are set to default values
described by the original publications. With regard to the
deep learning-based methods, the pretrained models pro-
vided by the corresponding authors are adopted.

5. Experimental Results and Analysis

This section describes the experimental results on the SDD
dataset. Section 5.1 analyses the influence of key parameters.
Section 5.2 and Section 5.3 describe the qualitative and
quantitative comparison results, respectively. Section 5.4
analyses the comparison results of computational time. All
experiments were performed using a computer equipped
with an i7-10875H CPU and NVIDIA RTX2060 GPU.
Additionally, to verify the robustness of the proposed
method, the noise, spectrum, viewpoint, and range are con-
sidered to evaluate the performance of different methods in
Section 5.5.

5.1. Parameter Analysis. In this section, the influence of free
parameters of the proposed method are analysed on SDD.
The parameters mainly include the size of average filters k,
the size of guided filter α, and the blur degree β of the guided
filter. The evaluation metrics of fusion performance are VSI,
SFF, and GSM. To begin with, k varies from 1 to 101 to test
the proposed method. As shown in Figure 4, FR-IQA
methods tend to rise at first and then drop. According to
the experimental results, k is set to 11 which is the most
appropriate choice to enhance the object and filter the noise
for all the six typical backgrounds.

Afterwards, α and β are analysed in the same way. The
fusion metric results are shown in Figures 5 and 6, where
α varies from 1 to 290 and β varies from 0.00001 to 1. As
illustrated in Figures 5 and 6, the size of guided filter α has
a similar trend with the size of average filter k. The blur
degree β are analysed on the 1st, 3rd, and 5th kind of back-
ground. From the results shown in Figure 6, bigger β is pre-
ferred when the base layers are fused. Based on the
evaluation metric results, the default parameters are set as

α = 101, β = 0:5. In this case, a good performance can be
obtained for all the six typical scenes.

5.2. Qualitative Comparison Results. Figure 7 shows fusion
results of different methods on the weak illumination scene.
Weak light shone on the surface of the solar panel while
strong light shone on the lateral side of space debris in the
visible image. The infrared image well captures the front side
of space debris, which is not observed in the visible image,
but the rich texture information of the solar panel and heat
insulating material are mostly observed in the visible image.
In this image pair, the desired fusion result is simultaneously
preserving the rich textures from the visible image and the
details of the front side to enhance the space debris. The
fused images of the ResNet method are rather blurry com-
paring with those of the other method. The RFN-Nest
method produces color distortion. Although the GFF
method can well preserve the brightness of the solar panel,
the contrast of which is not uniform. The CSR method and
MGFF method obtain high fusion quality on the whole,
but it preserves lower brightness in the front side of space
debris than the proposed method.

Based on the abovementioned fusion results, the ResNet
method, RFN-Nest method, and GFF method all suffer from
drawbacks, like color and contrast distortions, and detail
loss. The CSR method and MGFF method obtain competi-
tive performance with the proposed method, but inferior to
the proposed method in image brightness. The key factors
for the superiority of the proposed method can be sum-
marised as follows: (1) the local contrast measure can
enhance the object and suppress the background based on
the conspicuousness of object in a local region, and (2) the
convolutional sparse representation model can optimize
over the entire image which contributes to the good perfor-
mance of detail preservation.

5.3. Quantitative Comparison Results. Table 3 presents the
average value of 13 quantitative metrics over 6 source image
pairs on SDD in the weak illumination scene. From the
results presented in Table 3, the proposed method obtains
the best overall performance by giving 4 best values and 2
second best values. The MGFF method obtains the second
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Figure 6: Performance of proposed method with different settings of parameter β for different backgrounds.
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overall performance by giving the 3 best values, 1 second
best value, and 3 third best values. The ResNet method ranks
the third place by giving the 3 best values, 1 second best
value, and 1 third best value. Table 3 reveals that the pro-
posed method obtains the largest value for VSI, SFF, and
GS, which all are FR-IQA methods. It means that the fusion
results of the proposed method are more closer to the

(a) Visible (b) Infrared (c) Reference

(d) GFF (e) CSR (f) MGFF

(g) ResNet (h) RFN-Nest (i) Proposed

Figure 7: Fusion results of different methods in the weak illumination scene.

Table 3: Average evaluation metric values of all methods for local illumination scene of the SDD dataset. The best three values of each
metric are marked as bold, italic, and underlined.

Method AG CE EI EN MI PSNR QAB/F QCB RMSE SD VSI SFF GS

Proposed 1.7466 0.4988 18.0099 2.8169 1.5896 61.4582 0.5001 0.8434 0.0466 74.7263 0.9372 0.8947 0.99

MGFF 2.0491 0.3948 20.948 2.892 1.4816 61.5836 0.4747 0.833 0.0453 60.3331 0.8858 0.7799 0.9815

CSR 1.5921 0.566 16.2231 2.8255 1.5848 61.7869 0.4823 0.8297 0.0433 56.4709 0.8913 0.7846 0.9844

ResNet 1.1787 0.6066 12.44 2.8287 1.6248 61.81 0.3788 0.8162 0.043 56.2595 0.9359 0.768 0.9828

GFF 1.812 0.4756 18.1636 2.9647 1.5476 61.5493 0.4991 0.8229 0.0457 69.5289 0.8951 0.7384 0.9805

RFN-Nest 1.8898 1.0541 19.1197 4.5598 1.5663 61.3688 0.5057 0.4841 0.0479 72.2098 0.8937 0.6916 0.9794

Table 4: Average running time of all methods on a pair of images
of size 52 × 582 pixels.

Method GFF CSR MGFF ResNet RFN-Nest Proposed

Time (s) 0.67 5.46 1.77 9.61 4.65 2.62
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reference image in spatial details. The MGFF method shows
the largest value in AG and EI, which are feature-based met-
rics. This indicates that the MGFF method can well preserve
the texture and edge information from the source images.
The ResNet method gives the best performance in MI and
PSNR, which denotes that it can well preserve the original
information from source images. But it does not prove that
the ResNet method can well combine the complementary
information from the source images. Moreover, it is note-
worthy that the deep learning-based method is not better
than the traditional-based method.

5.4. Computational Efficiency Comparison. The computa-
tional efficiency of different image fusion methods over the
image size of 752 × 582 pixels is listed in Table 4. The pro-
posed method and the CSR method are implemented in
MATLAB integrated with Python. The Python part mainly
computes the sparse coefficient maps for the convolutional
basis pursuit denoising problem. This can be realized by
the GPU-accelerated SPORCO package [53]. The dictionary
filters adopted in the CSR method and the proposed method
have the same settings. Both of them are learned from 50
natural image patches. The number of dictionary filter is

set as 32 and the size is set as 8 × 8. All the other methods
are implemented in MATLAB. For the deep learning-based
methods, the GPU is also utilized to generate the fused
image. In Table 4, the conventional image fusion methods
are faster than the deep-learning based methods. Although
the proposed method is not as efficient as the GFF method
and MGFF method, it is still feasible for space debris identi-
fication during space proximity operation missions. For
example, it will take five to tens of minutes for the chaser
to track the docking port during the station-keeping phase
and final approach phase [54].

5.5. Robustness Analysis

5.5.1. Noise. The noise existing in the space surveillance plat-
form mainly includes thermal noise, shot noise, dark current
noise, and stray light noise. The former three noises are
caused by the statistic nature of photodetection or photodi-
ode in sensor systems [55], which can be represented as
the Gaussian white noise model generally. In this paper,
the noise with Gaussian blurring (σ = 1) and zero-mean,
Gaussian white noise (var = 0:0022) are added to the source
images referred to the SPEED datasets [56]. The stray light

(a) Visible image with Gaussian noise (b) Infrared image with Gaussian noise

(c) Visible image with stray light noise (d) Infrared image with stray light noise

Figure 8: Example source images with Gaussian white noise and stray light noise.

Table 5: Average evaluation metric values of the MGFF method and the proposed method on Gaussian white noise of the SDD dataset. The
best values of each metric are marked as bold.

Method AG CE EI EN MI PSNR QAB/F QCB RMSE SD VSI SFF GS

Proposed 3.6143 0.8873 33.0336 6.1675 2.0178 59.1441 0.4269 0.4353 0.0793 90.5489 0.9319 0.8425 0.9782

MGFF 4.6667 1.2223 42.6365 6.1277 1.8367 59.3035 0.3709 0.4949 0.0764 59.8589 0.9059 0.7881 0.9714

Table 6: Average evaluation metric values of the MGFF method and the proposed method on stray light noise of the SDD dataset. The best
values of each metric are marked as bold.

Method AG CE EI EN MI PSNR QAB/F QCB RMSE SD VSI SFF GS

Proposed 1.9729 0.5474 19.969 7.7421 6.0232 59.5247 0.6264 0.626 0.0727 78.043 0.9211 0.6845 0.9668

MGFF 2.4464 0.9434 24.7903 7.5938 5.2711 59.7492 0.6345 0.6425 0.069 59.861 0.9113 0.3591 0.9655
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noise results from the accidental perturbance of diffuse
reflection from the Earth, moon, and other nebulas [57].
In particular, it will be even worse during Earth watching
in LEO. It also can be modeled using two-dimension
Gaussian function. The maximum gray value is set as
300, and the standard deviation is set as 300. The example
visible images of space debris with Gaussian white noise
and stray light noise are shown in Figure 8. The fusion
results of the MGFF method and the proposed method
are shown in Tables 5 and 6. As can be seen in Tables 5
and 6, the proposed method still outperforms the MGFF
method within the same Gaussian white noise and stray
light noise.

5.5.2. Spectrum. Six spectra of infrared images are synthe-
sised, and these spectra distribute from near-infrared bands
to far-infrared bands. The materials of the space debris are
set by the material database in Vega software to reach the
realistic infrared effects. Figure 9 shows the infrared images
of different spectra. In Figure 9, the details drop drastically
in higher bands and the second spectrum reserves the richest
detail information. For excluding the influence of back-
ground, the source images of different spectra with a pure
black background are analysed and the fusion results are
listed in Table 7. We can see that the relationship between
the spectrum and the fusion performance is not linear.
Although the first spectrum reveals the best performance
in almost all the fusion metrics, the second spectrum is
thought to be the best fusion performance for it achieves

the best values in all the FR-IQA metrics. In conclusion,
the second spectrum is suggested to be fused for space debris
surveillance.

5.5.3. Pose. Owning to the characteristic of space debris tum-
bling, the pose of which varies greatly. Therefore, an investi-
gation of the influence to the robust of different methods in
different poses of space debris is meaningful in real space
applications. Five pairs of source images with different pose
are analysed, and the visible images are shown in Figure 10.
The FR-IQA metrics of the proposed method and the MGFF
method are shown in Figure 11. It can be seen that these two
methods have the similar stability.

5.5.4. Scale. The scale of space debris in the image varies
from the homing phase to the final approaching phase dur-
ing typical scenes of space debris surveillance. Figure 12
shows five visible images in a different imaging range.
Figure 13 shows the FR-IQA values of the proposed method
and the MGFF method with the increase of the imaging
range. Figure 13 still indicates similar stability of the two
methods except for the VSI metrics.

5.5.5. Feature extraction. As described in Section 2.1, feature
extraction is the key step of space debris identification tech-
niques. In this section, we tested the robustness of feature
extraction on the fused images in different illumination con-
ditions. The KAZE [58] method is selected as the feature
detector and feature descriptor for its superior performance.
The different illumination conditions are considered as the

(a) 1:6 μm (b) 3:9 μm (c) 6:9 μm

(d) 8:6 μm (e) 9:6 μm (f) 12:4 μm

Figure 9: Example infrared images of different spectra.

Table 7: Average evaluation metric values of the proposed method of different spectra on the SDD dataset. The best three values of each
metric are marked as bold, italic, and underlined.

Band AG CE EI EN MI PSNR QAB/F QCB RMSE SD VSI SFF GS

1:6 μm 1.2217 7.0108 12.394 2.508 0.589 55.2469 0.7137 0.0637 0.1943 49.4808 0.8542 0.8699 0.8955

3:9 μm 1.0079 6.1274 10.2168 2.433 0.5266 55.2148 0.672 0.0552 0.1957 32.8769 0.8717 0.8745 0.8968

6:9 μm 0.7747 0.173 7.9118 2.0605 0.2379 55.1923 0.6392 0.0451 0.1967 16.2434 0.8255 0.8651 0.8954

8:6 μm 0.7413 0.1678 7.5526 2.0542 0.2277 55.1908 0.6338 0.0459 0.1968 15.5699 0.8236 0.8658 0.8952

9:6 μm 0.7354 0.1464 7.495 2.055 0.2273 55.1903 0.6321 0.0462 0.1968 15.4693 0.8236 0.8667 0.8953

12:4 μm 0.7201 0.1397 7.3307 2.0498 0.2205 55.1891 0.6297 0.0472 0.1969 15.0549 0.8222 0.8668 0.8952
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test scenarios. The illumination parameters are set based on
the combination of linear and gamma transformation
referred to [59]. The Y channel in the YCbCr color space
is used as the metric of illumination intensity. The matching

score and recall versus 1-precision curves are adopted as the
robust evaluation of feature extraction. The matching score
is defined as the ration between the number of correct
matches and the smaller number of detected regions in the

(a) (0,0,0) (b) (0,0,30)

(c) (0,30,0) (d) (40,−30,110) (e) (60,0,0)

Figure 10: Visible images of different pose—unit (°).
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Figure 11: Fusion performance in different pose of space debris.
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pair of images. The explicit definition of recall versus 1-pre-
cision curves can be seen in [60]. The efficient approximate
nearest neighbor search [61] is chosen as the matching
method. The tested visible images with different illumination

parameters are shown in Figure 14, and the matching score
and recall versus 1-precision curves of the corresponding
fused images are shown in Figures 15(a) and 15(b), respec-
tively. As can be seen, the matching score and recall versus

(a) 2 m (b) 4m

(c) 6m (d) 8m (e) 12m

Figure 12: Visible images of different imaging range.
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Figure 13: Fusion performance in different imaging range.
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1-precision will decrease with lower illumination intensity.
However, it still preserves a sufficient number of matches
for the following object identification. Figure 15(c) depicted
the feature extraction performance of fused images and

source images. It can be seen that the proposed fusion
method possesses better robustness than the MGFF method.
Both the fused images reveal higher feature extraction per-
formance than the source images.

(a) Y = 20:84 (b) Y = 20:12

(c) Y = 19:57 (d) Y = 19:12 (e) Y = 18:76

Figure 14: Fused images with different illumination conditions.
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Figure 15: Robustness in different imaging range.
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6. Conclusion

In this paper, we present an image quality enhancement
framework for improving the on-orbit perception capability
of the space debris surveillance platform, which is applicable
for the weak illumination scene.

First, an improved guided filter is proposed to further
enhance the space object and suppress the space noise. The
improved guided filter utilizes local contrast measure based
on the fact that the space object has a signature of disconti-
nuity with its neighboring regions and can be considered as
a homogeneous region.

Second, we propose a convolutional sparse
representation-based image fusion method. The proposed
method fuses the base layer by the guided filtering-based
weighted strategy which makes full use of the strong correla-
tions between neighborhood pixels, besides the detail layers
fused by convolutional sparse representation-based method
which can well preserve the details of the object.

More importantly, a public image fusion dataset for
space debris surveillance is presented. To the best of our
knowledge, this is the first public visible and infrared image
fusion dataset in the field of space debris surveillance. The
dataset contains six kinds of typical low Earth orbit scenes
and four types of space debris.

We also test the robustness of the proposed method in
different space noise, spectrum, pose, and imaging range.
The experimental results demonstrate the advantages of
the proposed method over other methods. The most appro-
priate spectrum of the infrared band for image quality
enhancement is recommended. In the end, how to improve
the fusion efficiency of the proposed method by accelerating
the calculation of the CBPDN problem could be further
investigated.
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