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This paper presents a dynamic surface fixed-time fault-tolerant control strategy for the longitudinal dynamic model of fixed-wing
unmanned aerial vehicles (UAVs). Firstly, a novel disturbance observer is constructed to precisely estimate the lumped
disturbance. Secondly, without fractional power terms in the designed fixed-time fault-tolerant controller, the potential singular
value problem is tactfully avoided, which often exists in the stability analysis of the traditional fixed-time controller design.
Thirdly, a novel fixed-time filter is proposed to overcome the phenomenon of “differential explosion” in the backstepping
control scheme. Lyapunov stability analysis guarantees that the tracking errors can converge to the neighborhood of the origin
in the fixed time. The simulation results verify the effectiveness of the proposed control scheme.

1. Introduction

Fixed-wing UAVs have played an essential role in high-risk
and complex missions due to their flexibility and maneuver-
ability [1]. The complex flight conditions make the UAVs
subject to actuator fault during operation, which may
degrade the stability and robustness of flight control systems,
and even lead to a catastrophic accident, thus requiring to
explore the fault-tolerant control (FTC) of UAVs. Many
researchers have concentrated on addressing the control
problem of fixed-wing UAVs subject to actuator fault,
thereby publishing numerous results regarding passive or
active FTC. Active FTC identifies faults through fault detec-
tion and diagnosis block in real time, while passive FTC uses
a single fixed controller through the robust control strategy
[2–5].

An adaptive control approach consisting of a radial base
function neural network (RBFNN) was proposed for coaxial
octorotor UAV subject to actuator faults [6]. By introducing
a prescribed performance function on the synchronized
tracking errors, the decentralized finite-time adaptive fault-
tolerant synchronization tracking control scheme is pro-
posed for multi-UAVs in the presence of actuator faults

[7]. A distributed adaptive FTC scheme is proposed in vir-
tual of a distributed sliding mode estimator and disturbance
observers [8]. In the presence of actuator fault, the distrib-
uted fault-tolerant output regulation for heterogeneous lin-
ear multiagent systems is proposed using the distributed
fixed-time observer and adaptive fault-tolerant controller
[9]. A constrained control scheme based on model reference
adaptive control is investigated for the longitudinal motion
of a commercial aircraft with actuator faults and saturation
nonlinearities [10]. By using the extended Kalman filter
(EKF) to update the weighting parameters of the neural net-
work (NN), a new online detection strategy is developed to
detect faults in sensors and actuators of UAVs [11].

The external disturbance may degrade the flight perfor-
mance of fixed-wing UAVs directly. Therefore, it is essential
to construct a disturbance observer against its adverse effect.
A disturbance observer combined with a time delay estima-
tion is designed to weaken the influence caused by the
unknown dynamic parameters in the actuator of the rehabil-
itation robot [12]. A novel fixed-time extended state
observer is presented to estimate the state errors and the
total disturbances in the presence of nonlinear couplings,
uncertain parameters, and external disturbances [13]. A
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disturbance observer is incorporated into the control struc-
ture to efficiently estimate the lumped disturbances, includ-
ing modeling inaccuracies and external perturbations [14].
A fixed-time adaptive fast super-twisting disturbance
observer is built to estimate the external disturbance, in
which two tunable gains are adjusted in real time by an
adaptive law [15]. The disturbance observers, as mentioned
above, need to know the upper bound of the external distur-
bance, which may hinder its practical engineering
applications.

Backstepping control schemes have been widely used
in the control system design of fixed-wing UAVs. How-
ever, the repeated derivation of the virtual control law
in the backstepping designs will largely increase the com-
putational complexity, called the “differential explosion”
phenomenon. By introducing a first-order filter to esti-
mate the derivative of the virtual control laws, the
dynamic surface control (DSC) scheme is first proposed
in [16]. An observer-based fuzzy neural dynamic surface
control is presented for a flexible-joint manipulator sys-
tem with input saturation and unknown disturbance
[17]. Moreover, a composite learning fixed-time DSC
scheme is proposed for nonlinear strict feedback systems
with parameter uncertainties [18]. A constrained adaptive
DSC approach is presented for uncertain nonlinear sys-
tems subject to full-state constraints [19].

Unlike the traditional finite-time control schemes, the
upper bound of convergence time is irrelevant to the initial
conditions in the fixed-time control scheme, leading to its
extensive applications in UAVs. By introducing a continu-
ously differentiable switching function, an adaptive fixed-
time control strategy is proposed for autonomous ship land-
ing operations of UAVs [20]. Moreover, a fixed-time con-
troller combined with the obstacle Lyapunov function is
designed for a class of surface ship systems with output con-
straints [21]. Motivated by the practical requirements of
high precision and faster convergence rate for an automatic
carrier landing, a fixed-time nonlinear flight controller is
presented [22]. Anti-saturation coordinated controller is
designed [23], which can guarantee the safe distance con-
straint of each spacecraft in the process of completing the
configuration reconstruction task in a specified time. Using
a distributed fixed-time observer to estimate the states of
the virtual leader, a fixed-time attitude coordinated control
is investigated for multispacecraft systems with unknown
external disturbance [24]. However, those mentioned above
backstepping fixed-time controllers contain fractional power
terms, which may encounter the singular problem caused by
the repeated derivation of the virtual control law.

Inspired by recent results [25–27], a fixed-time fault-
tolerant controller without fractional power terms is pro-
posed for fixed-wing UAVs subject to actuator fault and
external disturbances. The main contributions of this work
are threefold:

(1) Different from the conventional fixed-time algo-
rithm, a simple fixed-time fault-tolerant controller
scheme without fractional power terms is proposed,
which overcomes the potential singularity problem

often encountered in fixed-time backstepping
designs

(2) Unlike the traditional DSC schemes, this paper pro-
poses a simple and smooth fixed-time filter in the
control design, reducing the complexity of the con-
trol system and ensuring dynamic surface filter error
to satisfy fixed-time convergence

(3) A new type of disturbance observer, with an adaptive
term to estimate the upper bound of the lumped dis-
turbance, is proposed, thus leading to an accurate
estimation of the lumped disturbance

The layout of this paper is organized as follows. The
problem formulation and preliminaries are introduced in
Section 2. The construction of the new type of disturbance
observer is described in Section 3. The fixed-time fault-
tolerant controller and a new fixed-time dynamic surface fil-
ter are presented in Section 4. In Section 5, the numerical
simulation indicates the effectiveness of the proposed con-
trol scheme, followed by the conclusions in Section 6.

2. Problem Formulation and Preliminaries

2.1. Model Description. The nonlinear longitudinal dynamic
model of fixed-wing UAV is given as follows:

_γ = L + T sin α

mV −
g
V

cos γ + Δγ,

_α = q − _γ + Δα,

_q = M
Iyy

+ Δq,

ð1Þ

where γ, α and q are the flight-path angle, angle of attack,
and pitch rate, respectively. m represents the mass of the
UAV. g is the gravity acceleration, Iyy denotes the moment
of inertia, Δα, Δγ, Δq represent unknown external distur-
bances, and T = TmaxδT is the engine thrust.

The aerodynamic force and moment of the UAV are
expressed as

L = 0:5ρV2SCL,
M = 0:5ρV2ScCm,

ð2Þ

where ρ denotes the air density and S represents the wing
platform area. CL and Cm are the aerodynamic coefficients
for drag force and pitch moment, respectively. The aerody-
namic force and moment coefficients can be expressed as

CL = CLαα + CL0,

Cm = Cmαα + Cm0 +
cq
2V Cmq + Cmδe

δe,
ð3Þ

where CLα, CL0, Cmα, Cm0, Cmq, Cmδe
represent the aerody-

namic coefficients. δe is the actual elevator deflection.
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2.2. Actuator Faults Model. To account for the actuator
faults, the actual elevator deflection δe can be modeled as

δe = p1δe0 + bf 1, ð4Þ

where δe0 denotes the designed elevator deflection and p1 is
the remaining control effectiveness factor with 0 < p1 ≤ 1. bf 1
is the fault-bias factor.

2.3. System Transformation and Preparation. By substituting
(2)–(4) into (1) and defining the state vector ½x1 x2 x3�T
= ½γ α q�T , u0 = δe0, the longitudinal dynamics can be
rewritten as

_x1 = f1 + g1x2 + d1,
_x2 = f2 + g2x3 + d2

_x3 = f3 + g3u0 + d3,
, ð5Þ

where

f1 =
0:5ρV2SCL0

mV −
g
V

cos γ, f2 = − _γ, g2 = 1,

g1 =
0:5ρV2SCLα + T

mV , g3 =
0:5ρV2ScCmδe

Iyy
,

f3 =
0:5ρV2Sc Cmαα + Cm0 + cq/2Vð ÞCmq

À Á
Iyy

,

d1 = Δγ, d2 = Δα, d3 = Δq + g3 p1 − 1ð Þδe0 + g3bf 1:

ð6Þ

2.3.1. Control Objective. The control objective is to design a
fixed-time fault-tolerant control scheme for the longitudinal
dynamic model of fixed-wing UAVs subject to actuator fault
and external disturbances, such that all the signals in the
closed-loop system are bounded, and the reference signal
tracking error converges to a small neighborhood of the ori-
gin in a fixed time.

Assumption 1. All states of the system (1) are measurable.
Meanwhile, the reference trajectory γd is smoothly bounded
and known.

Assumption 2. There exist unknown positive constants pi
such that jdij ≤ pi with i = 1, 2, 3.

Lemma 3. [28] For a common dynamical system, _xðtÞ = f ðt
, xÞ with xð0Þ = 0 and the origin be an equilibrium point,
where x ∈ Rn and f : R+ × Rn ⟶ Rn. Defining a Lyapunov
candidate, VðxÞ ≥ 0. If we can get that

_V xð Þ ≤ −μ1V xð Þα − μ2V xð Þβ + C, ð7Þ

where μ1, μ2, α, and β are positive real numbers with α ∈ ð0
, 1Þ, β ∈ ð1,∞Þ, then the origin x = 0 of the system is practical
fixed-time stable, and the settling time function Ts can be esti-

mated by

Ts ≤
1

μ1 1 − αð Þ +
1

μ2 β − 1ð Þ : ð8Þ

Lemma 4. [29] For any constant ε > 0 and any variable x ∈ R,
the following inequality holds

xj j − x2ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + ε2

p ≤ ε: ð9Þ

Lemma 5. [26] For any positive real numbers x1, x2,⋯, xn
and α ∈ ð0, 1Þ, one has

〠
n

i=1
xi

 !α

≤ 〠
n

i=1
xαi : ð10Þ

Lemma 6. [30] If xi ≥ 0, i = 1,⋯, n, then, the following
inequality holds

〠
n

i=1
xi

 !2

≤ n〠
n

i=1
x2i : ð11Þ

Lemma 7. [21] For x, y ∈ R, Young’s inequality holds

xy ≤
κp

p
xj jp + 1

qκq
yj jq, ð12Þ

where κ > 0, p > 1, q > 1, and ðp − 1Þðq − 1Þ = 1.

Lemma 8. [19] For any constant δ > 0 and any variable x ∈ R
, the following inequality holds

xj j − x tanh x
δ

� �
≤ kδ, ð13Þ

where k is a positive constant satisfying k = e−ðk+1Þ.

3. Disturbance Observer Design

In this section, a new type disturbance observer is proposed
to eliminate the influence of the lumped disturbances.

3.1. Disturbance Observer Design. The disturbance observer
is given as follows

d̂i = λi1πi + λi2
πiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2 + εi/λi2ð Þ2
q + λi3π

3
i + p̂i tanh

p̂iπi

δi

� �
,

ð14Þ

where d̂i is the estimation of di and λi1, λi2, λi3, δi, εi are pos-
itive constants, i = 1, 2, 3. p̂i denotes the estimated value of
the upper bound of the external unmatched disturbance sig-
nal. πi is the auxiliary state of the disturbance observer,
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which is governed by

πi = xi − si,

_si = λi1πi + λi2
πiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2 + εi/λi2ð Þ2
q + λi3π

3
i

+ p̂i tanh
p̂iπi

δi

� �
+ gixi+1 + f i:

ð15Þ

p̂i can be calculated as

_̂pi = πij j − σ1i
ni

p̂i −
σ2i
n2i

p̂3i , ð16Þ

where σ1i, σ2i, ni are positive constants, ~pi = pi − p̂i.
Defining the disturbance observer estimation error, ~di

= di − d̂i. Then, the derivative of πi with respect to time
can be written as

_πi = di − d̂i = ~di: ð17Þ

Remark 9. The disturbance observer design presented in [31]
requires the upper bound of the external unmatched distur-
bance in advance, while the proposed disturbance observer
releases this restrictive condition. Instead of using the sign
function in the disturbance observer design [31], an adaptive
term p̂i tanh ðp̂iπi/δiÞ is introducing in the proposed novel
disturbance observer, which successfully eliminates the chat-
tering phenomenon.

3.2. Stability Analysis

Theorem 10. Consider system (5), and assume that Assump-
tions 1 and 2 hold. If the disturbance observer is designed as
(14) and there exist positive constants λi1, λi2, λi3, δi, εi, σ1i,
σ2i, ni for i = 1, 2, 3, then the estimated error ~pi and auxiliary

state πi converge to sets Ω~pi
= f~pi ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffiffiffiffiffiffi
M/μ2

pq
g,Ωπi

= fπi

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffiffiffiffiffiffi
M/μ2

pq
g in a fixed time Td ≤ 2/μ1 + 1/μ2, respectively.

Proof. Consider the Lyapunov function candidate as

Vd = 〠
3

i=1

1
2π

2
i +

1
2
~p2i

� �
: ð18Þ

Then, it can be found that

_Vd = 〠
3

i=1
πi _πi + ~pi

_~pi,

= 〠
3

i=1
πidi − λi1π

2
i − λi2

π2
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2 + εi/λi2ð Þ2
q − λi3π

4
i

2
64

− p̂iπi tanh
p̂iπi

δi

� �
+ p̂i πij j − pi πij j

+ σ1i
ni

~pip̂i +
σ2i
n2i

~pip̂
3
i

3
75:

ð19Þ

According to Lemma 4, we have

−λi2
π2
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2 + εi/λi2ð Þ2
q ≤ −λi2 πij j + εi: ð20Þ

Relying on Lemma 7, one gets

πidi ≤ λi1π
2
i +

1
4λi1

d2i : ð21Þ

From Lemma 8, we get

p̂i πij j − p̂iπi tanh
p̂iπi

δi

� �
≤ p̂iπij j − p̂iπi tanh

p̂iπi

δi

� �
≤ kδi:

ð22Þ

With regard to the terms ðσ1i/niÞ~pip̂i and ðσ2i/n2i Þ~pip̂3i in
(19), one can find that

σ1i
ni

~pip̂i =
σ1i
ni

~pipi − ~p2i
� �

+ σ1iγiffiffiffiffiffiffi2ni
p ~pi −

σ1iγiffiffiffiffiffiffi2ni
p ~pi

≤
σ1i
ni

1
2
~p2i +

1
2 p

2
i − ~p2i

� �
+ σ1i
2ni

~p2i +
σ1iγ

2
i

4 −
σ1iγiffiffiffiffiffiffi2ni
p ~pi,

ð23Þ

σ2i
n2i

~pip̂
3
i =

σ2i
n2i

−~p4i − 3~p2i p2i + ~pip
3
i + 3pi~p

3
i

� �

≤
σ2i
n2i

−~p4i − 3~p2i p2i +
3θ4/3i

4 p3i
�� ��4/3 

+ 1
4θ4i

~p4i + 3p2i ~p
2
i +

3
4
~p4i

!
,

ð24Þ

where γiθi are two positive constants.
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Substituting (20), (21), (22), (23), and (24) into the
derivative of Vd results in

_Vd ≤ 〠
3

i=1

"
−
ffiffiffi
2

p
λi2

1
2π

2
i

� �1/2
− 4λi3

1
2π

2
i

� �2

−
σ2i θ

4
i − 1

À Á
θ4i n

2
i

1
2
~p2i

� �2
−
σ1iγiffiffiffiffi
ni

p 1
2
~p2i

� �1/2
#
+M,

ð25Þ

where M =∑3
i=1½εi + kδi + ð3σ2iθ4/3i /4n2i Þjp3i j4/3 + ðσ1iγ2i /4Þ +

ððσ1i/2niÞ + ð1/4λi1ÞÞp2i �.
Then, one has

_Vd ≤ −μ1V
1/2
d − μ2V

2
d +M ≤ 0: ð26Þ

According to the above analysis, if Vd ≥
ffiffiffiffiffiffiffiffiffiffiffi
M/μ2

p
, then

_Vd ≤ −μ1Vd
1/2 ≤ 0, we can have that Vd will converge to

the set fVd : Vd ≤
ffiffiffiffiffiffiffiffiffiffiffi
M/μ2

p g in a fixed-time Td ≤ 2/μ1 + 1/
μ2, and thus, estimated error ~pi and auxiliary states πi are
uniformly ultimately bounded in a fixed time Td ≤ 2/μ1 + 1
/μ2.

4. Controller Design

In this section, a fixed-time fault-tolerant controller without
fractional power terms scheme is proposed to eliminate the
singular value problem for a fixed-wing UAV against actua-
tor fault. To prevent the phenomenon of “differential explo-
sion,” a new fixed-time dynamic surface filter is added in the
backstepping design.

4.1. Fixed-Time Controller and Filter Design. The tracking
errors are defined as

z1 = x1 − x1c,
z2 = x2 − x2c,
z3 = x3 − x3c,

ð27Þ

where zi is the tracking error, and xic is the fixed-time filter
output signal, i = 1, 2, 3, γd = x1c.

The filter errors are defined as

y2 = x2c − x2d ,
y3 = x3c − x3d ,

ð28Þ

where xid is the virtual control signal and yi is the error of xic
, xid with yið0Þ = 0, i = 2, 3.

Step 1. According to (27) and (28), we have

_z1 = g1 z2 + y2 + x2dð Þ + f1 + d1 − _x1c: ð29Þ

The virtual control signal is designed as

x2d =
1
g1

−f1 − d̂1 − k11
z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z21 + εz1/k11ð Þ2
q − k12z

3
1

2
64

−
k13
2 + g2

1
2kf 23

 !
z1 + _x1c

3
75,

ð30Þ

where k11, k12, k13, kf 23, εz1 are positive constants.

Remark 11. Different from the conventional fixed-time algo-
rithm with fractional power terms presented in [22], the
proposed fixed-time controllers do not contain fractional
power terms, which overcome the potential singularity prob-
lem often caused by the repeated derivation of the virtual
control law in fixed-time backstepping designs.

The Lyapunov function candidate is considered to be

V1 =
1
2 z

2
1: ð31Þ

The time derivative of V1 can be represented as

_V1 = z1~d1 − k11
z21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z21 + εz1/k11ð Þ2
q − k12z

4
1

−
k13
2 + g2

1
2kf 23

 !
z21 + z1z2g1 + z1g1y2:

ð32Þ

By applying Young’s inequality and Lemma 4, one has

z1~d1 ≤
k13z

2
1

2 + 1
2k13

~d
2
1,

−k11
z21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z21 + εz1/k11ð Þ2
q ≤−k11 z1j j + εz1,

z1g1y2 ≤
g21

2kf 23
z21 +

kf 23
2 y22:

ð33Þ

Then, one has

_V1 ≤
1

2k13
~d
2
1 − k11 z1j j + εz1 − k12z

4
1 + z1z2g1 +

kf 23
2 y22: ð34Þ

Step 2. Using (27) and (28), we have

_z2 = g2 z3 + y3 + x3dð Þ + f2 + d2 − _x2c: ð35Þ
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Figure 1: The curves of wind disturbance.
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The virtual control signal is designed as

x3d =
1
g2

−f2 − d̂2 − k21
z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z22 + εz2/k21ð Þ2
q − k22z

3
2

2
64

−
k23
2 + g22

2kf 33

 !
z2 + _x2c − g1z1

3
75,

ð36Þ

where k21, k22, k23, kf 33, εz2 are positive constants.
The fixed-time filter is designed as

_x2c = −kf 21
y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y22 + εy2/kf 21
À Á2q − kf 22y

3
2 − kf 23y2, ð37Þ

where kf 21, kf 22, kf 23, εy2 are positive constants.

The Lyapunov function candidate is considered as

V2 =
1
2 z

2
2 +

1
2 y

2
2: ð38Þ

The time derivative of V2 can be represented as

_V2 = z2~d2 − k21
z22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z22 + εz2/k21ð Þ2
q − k22z

4
2

−
k23
2 + g22

2kf 33

 !
z22 − z1z2g1 + z2z3g2

+ z2g2y3 − kf 21
y22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y22 + εy2/kf 21
À Á2q

− kf 22y
4
2 − kf 23y

2
2 − _x2dy2:

ð39Þ
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Figure 3: Estimation of d3 and control input.
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By applying Young’s inequality and Lemma 4, we have

z2~d2 ≤
k23
2 z22 +

1
2k23

~d
2
2,−k21

z22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z22 + εz2/k21ð Þ2

q
≤ −k21 z2j j + εz2,−kf 21

y22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y22 + εy2/kf 21

À Á2q
≤ −kf 21 y2j j + εy2,

z2g2y3 ≤
g22

2kf 33
z22 +

kf 33
2 y23:

ð40Þ

Then, one has

_V2 ≤
1

2k23
~d
2
2 − k21 z2j j + εz2 − k22z

4
2 − z1z2g1

+ z2z3g2 − kf 21 y2j j + εy2 − kf 22y
4
2 − kf 23y

2
2

+
kf 33
2 y23 − _x2dy2:

ð41Þ

Step 3. According to (27) and (28), we have

_z3 = g3u0 + f3 + d3 − _x3c: ð42Þ

The virtual control signal is designed as

u0 =
1
g3

−f3 − d̂3 − k31
z3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z23 + εz3/k31ð Þ2
q

2
64

− k32z
3
3 − k33z3 + _x3c − g2z2

3
75,

ð43Þ

where k31, k32, k33, εz3 are positive constants.
The fixed-time filter is designed as

_x3c = −kf 31
y3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y23 + εy3/kf 31
À Á2q − kf 32y

3
3 − kf 33y3, ð44Þ

where kf 31, kf 32, kf 33, εy3 are positive constants.
Consider the following Lyapunov function candidate

V3 =
1
2 z

2
3 +

1
2 y

2
3: ð45Þ
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Figure 4: Tracking error e1 and the trajectory of γ.
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The time derivative of V3 can be represented as

_V3 = z3~d3 − k31
z23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z23 + εz3/k31ð Þ2
q − k32z

4
3 − k33z

2
3

− z2z3g2 − kf 31
y23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y23 + εy3/kf 31
À Á2q − kf 32y

4
3

− kf 33y
2
3 − _x3dy3:

ð46Þ

Similar to the analysis of (33), (40), one has

_V3 ≤
1

4k33
~d
2
3 − k31 z3j j + εz3 − k32z

4
3 − z2z3g2

− kf 31 y3j j + εy3 − kf 32y
4
3 − kf 33y

2
3 − _x3dy3:

ð47Þ

4.2. Stability Analysis

Theorem 12. Consider system (5), and assume that Assump-
tions 1 and 2 hold. The disturbance observer is designed as
(14). The fixed-time controller is built as (30), (36), and
(43), and dynamic filter is constructed as (37) and (44). For
a given constant P1 > 0, if Vð0Þ ≤ P1 and there exist the fol-
lowing positive constants ki1, ki2, ki3, εzi, σ1i, σ2i, ni, λi1, λi2,
λi3, δi, εi, θi, γi for i = 1, 2, 3 and kf i1, kf i2, kf i3, εyi for i = 2, 3,

then, reference signal tracking errors zi and fixed-time filter

errors yi converge to the neighborhood near the origin Ωzi
=

fzi ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffiffiffiffiffi
C/μ4

pq
g,Ωyi

= fyi ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffiffiffiffiffi
C/μ4

pq
g in a fixed time

Ts ≤ 2/μ3 + 1/μ4.

Remark 13. By differentiating x2d , x3d , one can obtain

_x2d = −
∂x2d
∂f1

_f 1 −
∂x2d
∂d̂1

_̂d1 −
∂x2d
∂z1

_z1 −
∂x2d
∂y2

_y2

+ ∂x2d
∂g1

_g1 +
∂x2d
∂ _x1c

€x1c,

_x3d = −
∂x3d
∂f2

_f 2 −
∂x3d
∂d̂2

_̂d2 −
∂x3d
∂z2

_z2 −
∂x2d
∂z1

_z1

−
∂x3d
∂y3

_y3 +
∂x2d
∂g1

_g1 +
∂x2d
∂g2

_g2 +
∂x3d
∂ _x2c

€x2c:

ð48Þ

Because each partial of _x2d and _x3d is a continuous on a com-
pact set ΩV ×ΩVd

, it has

− _xidyi ≤ _xidyij j ≤ kfi3y
2
i

2 +
�M2

id
2kfi3

, ð49Þ

2, 3.

Proof. The Lyapunov function candidate is considered to be

V = 〠
3

i=1
Vi: ð50Þ

The time derivative of V can be represented as

_V = 〠
3

i=1
zi _zi + 〠

3

i=2
yi _yi

≤ 〠
3

i=1
−
ffiffiffi
2

p
ki1

1
2 z

2
i

� �1/2
− 4ki2

1
2 z

2
i

� �2
 !

+ 〠
3

i=2
−
ffiffiffi
2

p
kf i1

1
2 y

2
i

� �1/2
− 4kf i2

1
2 y

2
i

� �2
 !

+ C

ð51Þ

where C =∑3
i=1ðð1/2ki3Þ~d

2
i − ð1/4k33Þ~d

2
3 + εziÞ +∑3

i=2ðεyi + ð
�M2

id/2kfi3ÞÞ.
Equation (51) can be further transformed as

_V ≤ −μ3V
1/2 − μ4V

2 + C, ð52Þ

where μ3 and μ4 can be expressed as μ3 = min f ffiffiffi
2

p
k11,

ffiffiffi
2

p

ki1,
ffiffiffi
2

p
kf i1g, μ4 = min f4k12, 4ki2, 4kf i2g, i = 2, 3.

Note that, from (52), ifV ≥
ffiffiffiffiffiffiffiffiffiffi
C/μ4

p
, then _V ≤ −μ3V

1/2 ≤ 0,
which validates the boundedness of V . The boundedness of V
means the boundedness of zi for i = 1, 2, 3 and yi for i = 2, 3.
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Figure 5: Tracking errors e2 and e3.
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Naturally, it can be shown that the derivative of fixed-time fil-
ter output signal _xic is bounded because of the boundedness of
yi. Then, we can get that the virtual control signal xid is
bounded because yi, z1, and _xic are both bounded.

According to above analysis, one can get that V will con-
verge to the set fV : V ≤

ffiffiffiffiffiffiffiffiffiffi
C/μ4

p g in fixed-time Ts ≤ 2/μ3
+ 1/μ4. Moreover, we have that the tracking errors zi and
the filter errors yii = 1, 2, 3 will converge to the sets

Ωzi
= zi ≤

ffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffi
C
μ4

svuut
8<
:

9=
;,

Ωyi
= yi ≤

ffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffi
C
μ4

svuut
8<
:

9=
;:

ð53Þ

5. Numerical Simulations

In this section, comparative method [21] is used to verify the
effectiveness of the proposed composite control scheme. The
detailed parameters of the longitudinal model can refer to [27].

The controller parameters are designed as

k11 = k21 = k31 = 0:1, k12 = k22 = k32 = 0:1, εz1
= εz2 = εz3 = 0:01, k13 = 0:2, k23 = 0:7, k33 = 0:4,

kf 21 = 10, kf 22 = 1, kf 23 = 10, kf 31 = 1, kf 32
= 0:001, kf 33 = 10, εy2 = 0:1, εy3 = 0:0001, θ1
= θ2 = θ3 = 1:1,

λ11 = 10, λ12 = 0:5, λ13 = 0:5, λ21 = 10, λ22
= 0:5, λ23 = 0:5, λ31 = 10, λ32 = 0:5, γ1
= γ2 = γ3 = 0:1,

λ33 = 0:5, ε1 = ε2 = ε3 = 0:5, δ1 = δ2 = δ3

= 0:5, σ11
n1

= σ12
n2

= σ13
n3

= 10, σ21
n21

= σ22
n22

= σ23
n23

= 0:01:

ð54Þ
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The reference signal xd is generated through the follow-
ing filter:

γd sð Þ = 5
s + 5 yd sð Þ: ð55Þ

The initial state of the system is that x1ð0Þ = 0, x2ð0Þ =
0, x3ð0Þ = 0 and the disturbance signal including wind dis-
turbance [32] is defined as

Δγ = _ωh, Δα =
_ωh

30

� �
−

_ωx

30

� �
, Δq = _ωx, ð56Þ

where ωx, ωh are wind components.
The reference signal and actuator fault model are

designed as

yd =
3, t < 20
5, t ≥ 20

(
,

p1 = 1, bf 1 = 0, t < 20
p1 = 0:7, bf 1 = 0:07, t ≥ 20

(
: ð57Þ

Case 14. Against actuator fault and slight external
disturbances.

In this simulation, external wind disturbances are con-
sidered to verify the robustness of the proposed composite

control scheme. Figure 1 gives the wind disturbances.
Figure 2 shows the estimated lumped disturbances. One
can find that the compared DO and the proposed DO are
both able to estimate lumped disturbances including actua-
tor fault and external unmatched disturbances. However,
the compared DO exhibits a larger disturbance estimation
error. Curves of elevator deflection are shown as Figure 3.
Figures 4 and 5 illustrate the tracking errors of flight-path
angle, angle of attack, and pitch rate. It can be found that
flight-path angle, angle of attack, and pitch rate react reason-
ably. The proposed controller exhibits smaller tracking
errors than the compared method, when the actuator is fault
at t = 20s.

Case 15. Against actuator fault and severe external
disturbances.

In this simulation, severe wind disturbances are imposed
on the UAV. The other conditions are kept as Case 14.
Figure 6 gives the curves of the wind disturbances.
Figures 7 and 8 illustrate the lumped disturbances estima-
tion. Figures 9 and 10 describe the tracking errors. It can
be seen that the disturbance estimation errors of the pro-
posed DO are much smaller than the compared method. It
is validated that the proposed controller operates well even
though there exist the reinforced wind disturbance and actu-
ator fault.
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Figure 9: Tracking error e1 and trajectories of γ.
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6. Conclusions

In this paper, the fixed-time fault-tolerant tracking control
problem for the fixed-wing UAVs subject to external dis-
turbances and actuator fault has been addressed. To esti-
mate the lumped disturbance with unknown upper
bound precisely, a new disturbance observer has been pro-
posed. A new fixed-time fault-tolerant controller without
fractional power terms has been proposed in this paper,
which overcomes the potential singularity problem often
encountered in fixed-time backstepping design procedures.
Moreover, a new fixed-time dynamic surface filter has
been added in the controller design to prevent the phe-
nomenon of “differential explosion.” Lyapunov stability
analysis has proven the stability of the proposed control
scheme. The simulation results verify the effectiveness of
the proposed method.
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