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To address the control allocation problem caused by the redundant arrangement of control surfaces with nonlinear effectiveness
for tailless aircraft, a novel multiobjective incremental control allocation (MICA) strategy is proposed. Firstly, the incremental
nonlinear control allocation (INCA) method together with the active set quadratic programming algorithm is adopted to
precisely allocate the virtual control commands. Secondly, a series of normalized objective functions in the form of increment
are designed. Combining these functions by means of linear weighted sum, an incremental multiobjective function is
constructed. Then, an improved nondominated sorting genetic algorithm (INSGA) is introduced to offline determine a set of
weights that best meets the requirements of each flight phase. In this way, the dependence on subjective experience is
minimized based on the theory of Pareto optimal. Meanwhile, the huge computational burden that the intelligent optimization
algorithm brings can also be avoided. Finally, combined with the nonlinear dynamic inversion (NDI) control method, a
closed-loop validation for the effectiveness of this control allocation strategy is carried out on the tailless aircraft model.

1. Introduction

With the advantages such as strong stealth and high lift-to-
drag ratio [1], the tailless aircraft is a highly competitive
alternative for the next-generation fighters. Due to the can-
cellation of vertical tail, radar cross section (RCS) is kept at
a relatively low level, but the horizontal control effectiveness
and lateral stability of tailless aircraft are reduced. So the
tailless aircraft is usually equipped with innovative control
surfaces such as all-moving wing tips and spoiler-slot deflec-
tors besides conventional control surfaces [2]. However, this
design also brings a series of challenges to flight control.
First, the control surface system of tailless aircraft is highly
redundant, and the deflection of each control surface will
generate moments in multiple directions instead of one
certain direction. So it is necessary to effectively coordinate
the deflection of control surfaces to accurately and quickly
generate the moments required for attitude control within
the limits of deflection positions and rates, achieving the
purpose of control allocation [3]. Second, the control sur-

faces of tailless aircraft are closely arrayed, so the aerody-
namic coupling between them is serious [4]. Besides, there
is often a nonlinear relationship between the single control
surface deflection and the moment it generates, which fur-
ther increases the difficulty of control allocation. Third, there
is always more than one combination of control surface
deflections to meet the requirements of flight control. The
performance of different deflection combinations varies
greatly, such as total energy cost of surface deflections, drag
and lift. Therefore, it is necessary to optimize multiple objec-
tives through the reasonable deflection of control surfaces
according to the requirements of flight phases and tasks [5].

In order to cope with the above challenges, scholars have
carried out a series of relevant studies. The research on
nonlinear control allocation used to deal with nonlinear con-
trol effectiveness and cross coupling effects started relatively
early and developed relatively mature. It can be roughly
divided into traditional methods and intelligent methods.
The former is based on piecewise linearization [6], nonlinear
programming [7], or other methods to overcome the
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allocation difficulties caused by nonlinear control effective-
ness, and offset the cross-coupling effects under the guidance
of compensation method [8] and robust control principle
[9]. Such methods have good real-time performance, but
the allocation accuracy is often limited by the operation step
size, polynomial order, and other factors. The latter is based
on modern intelligent algorithms such as ant colony algo-
rithm and differential evolution algorithm [10]. Reinforce-
ment learning [11] is also applied on nonlinear control
allocation. These methods take advantage of the powerful
nonlinear optimization capabilities of intelligent algorithms
and neural networks to process nonlinear control effective-
ness and cross-coupling effects. The high quality of solution
can be ensured in most cases, but the large amount of calcu-
lation is an inevitable obstacle to accomplish its real-time
application under current calculation conditions. Addition-
ally, the relatively poor reliability of the algorithms leads to
doubts about its feasibility in the field of aerospace [12].

The multiobjective control allocation strategy can be
roughly divided into two categories according to the idea of
multiobjective optimization. The first type of strategy is based
on the decomposition idea. The multibjective optimization
problem is transformed into a single-objective optimization
problem through methods such as linear weighted sum and
ε-constraint (also known as main objective method). Sun
et al. [13] constructed a comprehensive objective function in
the form of linear weighted sum, and used analytic hierarchy
process (AHP) method to determine weights for each single
objective according to the performance requirements of differ-
ent flight phases. Zhang et al. [14] proposed a hybrid multiob-
jective control allocation strategy for the reentry phase of
reusable launch vehicle, similarly using AHPmethod to deter-
mine the weight values in the objective function. But the
weights are calculated for a series of chosen feature points
rather than flight phase, and the real-time adjustment of
weight values is achieved through linear interpolation. Aiming
at compound high-speed rotorcraft in multimode conversion
process, Zheng et al. [15] presented a hybrid multiobjective
control allocation strategy. Preference matrix was introduced
to determine the weights of each single objective, and an adap-
tive particle swarm optimization (PSO) algorithm was pro-
posed to calculate the deflection of control surfaces with
nonlinear control effectiveness; Park et al. [16] designed a
multiobjective control allocation method based on evolution-
ary game theory, but the method is not applicable for nonlin-
ear tailless aircraft model. Such strategies are relatively simple
and easy to understand, but the determination of weights is
highly subjective, and it is difficult to obtain Pareto optimal
solutions under nonconvex conditions [17].

The second category of the strategy is based on the
Pareto optimal theory, and uses multiobjective evolutionary
algorithms (MOEAs) to search for the Pareto front and
Pareto optimal solutions. There are many excellent MOEAs,
according to difference on the mechanism of evolution; they
can be divided into 3 categories [18–21]: (1) MOEAs based
on the Pareto dominance relationship; (2) MOEAs based
on indicator function; and (3) MOEAs based on decomposi-
tion. The details of the 3 categories of MOEAs are concluded
and compared in Table 1.

However, in the field of multiobjective control allocation,
there are few researches on using the above MOEAs to solve
this problem. Taking allocation efficiency and deflection
amount as optimization goals, Chen et al. [22] presented
an improved NSGA to find multiple sets of Pareto optimal
solutions. However, the method can only be applied to air-
craft models with linear control effectiveness, and the deflec-
tion position and rate limits of control surfaces were not
considered. Zhao et al. [23] designed a comprehensive mul-
tiobjective PSO algorithm and an improved hierarchical
multiobjective PSO algorithm to simultaneously solve the
nonlinearity of control effectiveness and multiobjective opti-
mization problems. The advantages and disadvantages of the
two methods are compared. Zheng et al. [24] proposed a
hybrid multiobjective control allocation method based on
indicator function based MOEAs—multiobjective PSO with
adaptive probability guidance, which can comprehensively
balance the optimization precision and calculation speed.
To conclude, such strategies do not rely on subjective
experience and can be optimized under any nonconvex con-
ditions, but they are computationally complex. So it is neces-
sary to take further researches on better applying MOEAs on
the multiobjective control allocation problem.

In this paper, a novel multiobjective nonlinear control
allocation strategy is proposed. The strategy is aimed at real-
izing the precise allocation of control commands and the
comprehensive optimization of the energy cost that control
surface deflections cause, flight drag, and lift for the tailless
aircraft in multiphase flight. The main contributions of this
paper and the novelty of the proposed strategy are summa-
rized as follows:

(1) A closed-loop incremental nonlinear control alloca-
tion method with the active set quadratic program-
ming solver is presented, which is effective in
precisely allocating the virtual control command
against the adverse effects caused by nonlinear con-
trol effectiveness. What is more, the high precision
of the proposed method is theoretically verified by
proving its convergence, while other similar refer-
ences [25–27] that introduce nonlinear control allo-
cation methods usually ignore this essential step

(2) A series of objective functions are constructed to
accurately characterize the performances related to
control surface deflection. Then a comprehensive
objective function in the form of linear weighted
sum is further constructed. A critic difference of it
from other comprehensive objective functions, such
as the function mentioned in [13], is that each single
objective function in this paper is normalized before
constructing the comprehensive one, so as to facili-
tate the next process of weight determination

(3) A novel weight determination method based on
MOEAs is proposed. Different from the commonly
used expert knowledge based methods, such as the
method based on AHP, the proposed method is
subject to the Pareto optimal theory and takes the
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requirement priority for different objectives into
consideration, which reduces the influence of human
factor on the process of optimal weight value search-
ing and better ensures the objectivity of the process

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the dynamics model of the tailless aircraft
and describes the multiobjective nonlinear control allocation
problem; Section 3 clarifies the incremental nonlinear control
allocationmethod [28]. Then several objective functions in the
incremental form and a comprehensive multiobjective func-
tion in the form of linear weighted sum are constructed. The
weight determination method of the multiobjective function
based on the improved nondominated sorting genetic algo-
rithm (INSGA) is proposed. Section 4 proves the convergence
of the tailless aircraft flight control system that includes the
designed multiobjective incremental control allocation
(MICA) module. In Section 5, the effectiveness of the strategy
is verified in the attitude control of the tailless aircraft. Section
6 presents the conclusion of this paper.

2. Tailless Aircraft Control Allocation
Problem Description

2.1. Mathematical Model of Tailless Aircraft. This paper takes
the Innovative Control Effectors (ICE) tailless aircraft
designed by Lockheed Martin as the research object. The tail-
less aircraft is equipped with the multiaxis thrust vectoring
and 11 aerodynamic control surfaces shown in Figure 1 [29].
It is obvious that the number of actual control input far
exceeds that of control moments, and some control surfaces
such as spoiler slot deflector and elevon, inboard leading edge
flap, and outboard leading edge flap, are closely aligned.

Table 2 introduces the deflection characteristics of each
control surface.where

H1 sð Þ = 18 × 100
s + 18ð Þ s + 100ð Þ ,

H2 sð Þ = 40 × 100
s + 40ð Þ s + 100ð Þ :

ð1Þ

The rotational motion model and the center-of-mass
dynamics model of the ICE tailless aircraft in the airflow
coordinate system are the following [30];

_α = −p cos α tan β + q − r sin α tan β +
cos μ
cos β

g
v
cos γ

− FX
sin α

mv cos β
+ FZ

cos α
mv cos β

,

_β = p sin α − r cos α +
g
v
sin μ cos γ − FX

cos α sin β

mv

+ FY
cos β
mv

− FZ
sin α sin β

mv
,

_μ =
p cos α + r sin α

cos β
−
g
v
cos γ cos μ tan β

+ FY
tan γ cos β cos μ

mv
+
tan γ sin μ + tan β

mv

Á FX sin α − FZ cos αð Þ − tan γ cos μ sin β

mv
Á FX cos α + FZ sin αð Þ,

ð2Þ

_p =
IzL + IzxN + Izx Ix − Iy + Iz

À Á
pq + IyIz − I2zx − I2z

À Á
qr

IxIz − I2zx
,

_q =
M + Izx r2 − p2

À Á
+ Iz − Ixð Þpr

Iy
,

_r =
IzxL + IxN + I2x − IxIy + I2zx

À Á
pq + Izx Iy − Iz − Ix

À Á
qr

IxIz − I2zx
, ð3Þ

Table 1: An overview of MOEAs.

Basic ideas

(1) Using the Pareto fitness allocation strategy to find all the nondominated individuals from the current population

(2) Using the performance evaluation indicator function to guide the search process and the solution selection
process

(3) Decomposing the complex multiobjective problem into several single objective subproblems or multiple simple
multiobjective problems

Application scenarios

(1) Multiobjective optimization problems with 2 or 3 objectives

(2) Multiobjective optimization problems with irregular Pareto front

(3) Many-objective optimization problems (MaOPs)

Typical algorithms

(1) NSGA-II (nondominated sorting genetic algorithm-II); SPEA2 (strength Pareto evolutionary Algorithm2);
PESA-II (Pareto envelop-based selection algorithm-II)

(2) IBEA (indicator-based evolutionary algorithm); HypE (Hypervolume based evolutionary algorithm);
SMS-EMOA (S-metric selection based evolutionary multiobjective algorithm)

(3) MOEA/D (multiobjective evolutionary algorithm based on decomposition); REVA (reference vector guided
evolutionary algorithm); NSGA-III (nondominated sorting genetic algorithm-III)

Spoiler slot
deflector

Multi-axis thrust
vectoring

Pitch flap
Elevon

All moving
wing tip

Inboard leading
edge flaps

Outboard leading
edge flaps 

Figure 1: ICE aircraft control surfaces configuration.
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where p, q, and r are the rolling, pitching, and yawing angu-
lar velocities; L,M, N , and Ix, Iy, Iz are the three-axis control
moment and the corresponding inertia moment of the air-
craft in the body coordinate system, respectively; Izx is the
product of inertia; FX , FY and FZ are the components of
the resultant force that includes engine thrust and aerody-
namic force along the body axes; α, β, μ are, respectively,
the aerodynamic angle of attack, the aerodynamic angle of
sideslip, and the rolling angle around the velocity vector axis;
γ is the track inclination in the track coordinate system.

For the tailless aircraft, there is a complex nonlinear
mapping relationship between the deflection of the control
surface and its generated moment. Take the pitching
moment coefficient described by the wind tunnel test data
of the ICE aircraft as an example:

Cm =
M
�qS�c

= Cm_base α, Mað Þ + �q�c
2V

Cm_�q α, Mað Þ + Cm_beta α, β, Mað Þ
+ f flxercm alt, Mað Þ Cm_lele α, δlssd, δlele, Mað Þ + Cm_rele α, δrssd, δrele, Mað ÞÂ Ã
+ Cm_lilef α, β, δlilefð Þ + Cm_rilef α, β, δrilefð Þ + Cm_lolef α, β, δlilef , δlolef , Mað Þ
+ Cm_rolef α, β, δrilef , δrolef , Mað Þ + Cm_lamt−lolef α, δlolef , δlamtð Þ
+ Cm_ramt−rolef α, δrolef , δramtð Þ + Cm_lamt−lele α, δlele, δlamtð Þ
+ Cm_ramt−rele α, δrele, δramtð Þ + Cm_pf α, β, δrssd, δlssd, δpf , Ma

À Á
+ Cm_lamt α, β, δlamtð Þ + Cm_ramt α, β, δramtð Þ
+ f ssd−pf Mað Þ Cm_lssd α, β, δlssdð Þ + Cm_rssd α, β, δrssdð ÞÂ

,

ð4Þ

where Ma is the Mach number, �q is the dynamic pressure, S
is the wing reference area, and �c is the wing mean geometric
chord. For the meanings of the other symbols, please refer to
[29]. From Equation (4) and Figure 1, it can be seen that the
control effectiveness varies due to the close arrayment
between the control surfaces such as the SSD and ELE. The
control effectiveness will be affected by the deflection of
adjacent control surfaces to varying degrees, and the cross-
coupling effects are too obvious to be neglected. Figure 2
directly reflects the huge difference and nonlinear character-
istics of the control effectiveness of each control surface on
the ICE aircraft. For example, the control effectiveness curve
of SSD is of monotonic nonlinearity and the control effec-

tiveness curves of Cl − δamt and Cm − δamt are of nonmono-
tonic nonlinearity.

2.2. Nonlinear Dynamic Inversion Control Law Design.
According to the separation principle of time scale [31], that
is, the controlled variables can be divided into fast variables
and slow variables based on the their response speed and dif-
ferent control laws can be independently designed for the
two kinds of variables, the flight control system is divided
into inner and outer loops, which have been shown in Equa-
tion (2) and Equation (3), marked as

_x1 = f1 x1ð Þ + g1 x1ð Þx2,
_x2 = f2 x2ð Þ + g2 x2ð Þτ,
y = x1, x2½ �T,

ð5Þ

where τ = ½LMN�T is the virtual control command,
x1 = α β μ½ �T is regarded as the slow variables and
x2 = p q r½ �T is regarded as the fast variables.

The outer loop and inner loop dynamic inversion con-
trol laws are designed as

x2 = g−11 x1ð Þ ω1 x1c − x1ð Þ − f1 x1ð Þ½ �,
τ = g−12 x2ð Þ ω2 x2c − x2ð Þ − f2 x2ð Þ½ �,

ð6Þ

where ω1 and ω2 are diagonal matrices, and their diagonal
elements are all positive real numbers.

2.3. Description of Multiobjective Nonlinear Control Allocation
Problem. In order to coordinate the deflection of control sur-
faces more effectively and reduce the design difficulty of the
flight control system, the flight control system of the tailless
aircraft with redundant control surfaces usually adopts the
modular design scheme shown in Figure 3.

First, the flight control law calculates the virtual control
command τc ∈ Rm according to the state feedback, in this
paper, τc = ½Cld Cmd C nd�T, m = 3, Cld = Ld/�qSb, Cmd =
Md/�qS�c, Cnd =Nd/�qSb are, respectively, the desired roll,

Table 2: ICE aircraft control surfaces characteristics.

Control surface Position limit (°) Rate limit (°/s) Dynamics

Left/right
Inboard leading edge flap(ILEF)

(0,40) 40 H1 sð Þ
Left/right
Outboard leading edge flap(OLEF)

(40,40) 40 H1 sð Þ
Left/right
All moving wing tip(AMT)

(0,60) 150 H2 sð Þ

Left/right Elevon(ELE) (-30,30) 150 H2 sð Þ
Left/right
Spoiler slot deflector(SSD)

(0,60) 150 H2 sð Þ

Pitch flap(PF) (-30,30) 150 H2 sð Þ
Pitch/yaw
Multiaxis thrust vectoring(MTV)

(-15,15) 150 H2 sð Þ
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pitch, and yaw moment coefficient, and b is the wing span.
Then, based on the nonlinear control effectiveness model

τ = h x, δð Þ, ð7Þ

and the position and rate limits of the control surface
deflection

δmin ≤ δ ≤ δmax,

_δ
��� ��� ≤ _δmax,

ð8Þ

where δmax and δmin are the upper and lower limits of the
deflection position of the control surface, respectively, _δmax
is the maximum deflection rate of the control surface, the
control allocation module runs a certain control allocation
algorithm to calculate the control surface deflection com-
mand δc. The actual deflection of control surfaces is δ,
generating the virtual control input τ = ½Cl Cm C n�T

and finally changing the flight state x. In many studies,
in order to simplify subsequent processing, Equation (7)
is linearly approximated as

τ ≈ B xð Þδ ≈ Bδ, ð9Þ

where BðxÞ ∈ Rm×p is called the control effectiveness
matrix, p is the number of control surface. Then the con-
trol allocation problem can be solved through traditional
methods such as direct allocation, redistribution pseudo
inverse, and linear programming. However, as mentioned
in Section 2.1, the control surfaces on the ICE tailless
aircraft have complex nonlinear control characteristics, so
Equation (7) cannot be approximated to the form of
Equation (9), and it is impossible to use the above
methods to calculate the control surface deflections. The
characteristics greatly increase the difficulty of mapping
from virtual control commands to control surface deflec-
tion commands.

ILEF

OLEF
ELE

SSD

PF

0.01

−0.01

0

C
l

−40 −20 200 40 60
𝛿

AMT

(a) Rolling moment generation effectiveness
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−0.02

0

0.04

C
m
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OLEF
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SSD

PF

−40 −20 200 40 60
𝛿
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(b) Pitching moment generation effectiveness

−0.02

−0.01

0
C
n

ILEF

OLEF
ELE

SSD

PF

−40 −20 200 40 60
𝛿

AMT

(c) Yawing moment generation effectiveness

Figure 2: Control effectiveness curve of control surfaces.

Flight
control law

Control
allocation

Control system
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dynamics
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Control 
effectiveness

Aircraft dynamics
·
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c
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𝜏 = h (x, 𝛿) x = f (x) + g (x) 𝜏

𝜏

x

Figure 3: Modular flight control system structure of tailless aircraft.
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In addition, control allocation can also be regarded as a
constrained optimization problem, and the optimization
objective is

min J = t − tck k2 = h x, dð Þ − tck k2: ð10Þ

In order to ensure the uniqueness of the solution, one or
several secondary objectives related to the deflection of con-
trol surfaces are usually added. It is constructed as a multi-
objective optimization function in the form of

min J = F J1 δð Þ, J2 δð Þ,⋯,Jn δð Þð Þ, ð11Þ

where n is the number of the secondary objective. It should be
noted that in this multiobjective optimization problem, the
minimum allocation error must always be the primary optimi-
zation objective to ensure the stability of the control system.

However, due to the complex aerodynamic characteris-
tics of tailless aircraft, some secondary objectives are difficult
to precisely depict, such as drag and lift. Due to the diversity
of tasks performed by the tailless aircraft, it is necessary to
dynamically adjust the priority of each secondary objective
in the multiobjective optimization function. Besides, the
interaction relationship between secondary objectives fur-
ther increases the difficulty of this multiobjective optimiza-
tion problem.

3. Multiobjective Incremental Control
Allocation Strategy

3.1. Incremental Nonlinear Control Allocation. In order to
solve the problem that linear control allocation methods
cannot solve due to the nonlinearity of control effectiveness
and the cross-coupling of control surfaces, this paper adopts
the incremental nonlinear control allocation (INCA)
method to deal with it.

The first-order Taylor expansion of Equation (7) can be
carried out at ðx0, δ0Þ.

τ = τ0 + Δτ = h x0, δ0ð Þ + ∂h
∂x

���� δ=δ0
x=x0

x − x0ð Þ + ∂h
∂δ

���� δ=δ0
x=x0

δ − δ0ð Þ,

ð12Þ

where x0, δ0, and τ0 are the flight state, the deflection posi-
tion of control surfaces, and the virtual control input at last
step, respectively.

Since the sampling frequency of the flight control com-
puter is usually around 100Hz, so the sampling interval is
small enough, according to the separation principle of time
scale, the flight state x is a slow variable relative to the deflec-
tion δ of control surfaces, and the state x can be regarded as
a constant value in the duration of about 0.01 s. Therefore,
the expression of Δτ in Equation (12) can be simplified into
the form of multiplying the Jacobian matrix by the difference
between the adjacent two-step control surface deflections.

Δτ = ∂
∂δ h x, δð Þj δ=δ0x=x0

Δδ = ∇δh x0, δ0ð ÞΔδ, ð13Þ

where

∇δh x, δð Þ =

∂h1 x, δð Þ
∂δ1

∂h1 x, δð Þ
∂δ2

· · ·
∂h1 x, δð Þ

∂δp
∂h2 x, δð Þ

∂δ1

∂h2 x, δð Þ
∂δ2

· · ·
∂h2 x, δð Þ

∂δp
· · · ·

· · · ·

· · · ·
∂hm x, δð Þ

∂δ1

∂hm x, δð Þ
∂δ2

· · ·
∂hm x, δð Þ

∂δp

2
666666666666666664

3
777777777777777775

,

ð14Þ

and ∇δhðx0, δ0Þ is also called the local control effectiveness
matrix at the deflection position δ0, indicating the matrix
changes as the control surfaces deflect rather than keep
constant like the matrix B in Equation (9). Each partial
derivative in Equation (14) can be approximated by the dif-
ference method,

∂h
∂δi

≈
h x0, δ1, δ2,⋯,δi + Δ,⋯ð Þ − h x0, δ1, δ2,⋯,δi − Δ,⋯ð Þ

2Δ
,

ð15Þ

where Δ is a very small amount, which is taken as 0.01° in
this paper. Meanwhile, the position and rate limits of the
control surface deflection can also be rewritten in the incre-
mental form:

Δδmin ≤ Δδ ≤ Δδmax,

Δδmax = min _δmaxΔts, δmax − δ0
� �

,

Δδmin = max − _δmaxΔts, δmin − δ0
� �

,

ð16Þ

where Δts is the sampling step. The minimum allocation
error objective function of the control allocation problem
in the incremental form is

min J0 = ∇δh x, δð ÞΔδ + τ0 − τck k2,
Δδmin ≤ Δδ ≤ Δδmax:

ð17Þ

On this basis, the redistribution pseudo inverse and
mathematical programming algorithms can be used to cal-
culate the control surfaces deflection increment. Then the
total deflection can be obtained by adding it to the deflection
of last step. Figure 4 summarizes the procedure of INCA
method:

According to the description, it can be seen that INCA
has the following advantages:
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(1) High precision. Similar to the mechanism of the
feedback control system that eliminates the error
between output and input, the closed-loop structure
enables the allocation error to be eliminated through
allocating the difference signal between virtual con-
trol command and virtual control input generated
in last operation cycle. In Section 4, the convergence
of this method will be proved, so as to verify its high
precision advantage theoretically

(2) Good real-time performance. INCA is based on the
discrete operation characteristics of the flight control
computer. It obtains the local control effectiveness
matrix by calculating the Jacobian matrix in real
time. Then, the nonlinear control allocation problem
is transformed into a linear one in each operation
cycle, making the efficient linear control allocation
methods still applicable

(3) Control surface limits can be effectively handled. The
deflection position and rate limits are unified into
the incremental form shown in Equation (16),
reducing the difficulty of handling the control sur-
face limits, especially the deflection rate limits

3.2. Construction of Secondary Objectives in Incremental
Form. After completing the incremental form reconstruction
of the nonlinear control allocation problem, the multiobjec-
tive optimization problem needs to be further considered.
This paper plans to comprehensively optimize four objec-
tives, including allocation error, total surface deflections,
flight drag, and lift produced by control surface deflection.
First, the incremental form objective function is constructed
for each secondary objective, respectively.

3.2.1. Minimum Surface Deflection. The minimum surface
deflection is the most commonly used secondary objective
in the control allocation problem, and together with the
minimum allocation error, it constitutes a hybrid optimiza-
tion objective. Achieving the minimum surface deflection
objective is of practical significance in three aspects: (1) it
can reduce the control energy consumption caused by the
deflection of the control surface; (2) it can prevent the con-
trol surface from reaching the saturation position prema-
turely and improve the control allocation efficiency [32];
(3) the deflection of control surface effects the RCS of air-
craft [33], and relatively little deflection keeps the RCS as

low as possible. The expression of this objective in the
incremental form is

min J1 = Δδ + δ0k k2,
Δδmin ≤ Δδ ≤ Δδmax:

ð18Þ

3.2.2. Minimum Drag. Due to the complex aerodynamic
characteristics of tailless aircraft, its drag effectiveness is dif-
ficult to describe. For example, under the flight conditions of
Ma = 1:2 and h = 15000 ft, the drag effectiveness curve of
each control surface is shown in Figure 5:

Some studies choose the minimum surface deflection
objective to approximate the minimum drag objective. How-
ever, due to the difference in the characteristics of different
control surfaces, there is still large room to reduce the drag
generated by the deflection of control surfaces.

It is known that the drag D, lift L, and lateral force Y of
the aircraft can be obtained from the following equations
[34]

D

L

Y

2
664

3
775 =

−cos α cos β −cos α sin β −sin α

sin α cos β sin α sin β −cos α

−sin β cos β 0

2
664

3
775

FX − T

FY

FZ

2
664

3
775:

ð19Þ

In this paper, referring to [12], the drag coefficient is
written in the incremental form.

CD x, δð Þ = CD0 x, δ0ð Þ + ∇δCD x, δ0ð ÞΔδ, ð20Þ

∇δCD x, δ0ð Þ = ∂CD

∂δ1

����
x,δ0

⋯⋯
∂CD

∂δp

�����
x,δ0

2
4

3
5: ð21Þ

Similar to Equation (15), each partial derivative in
Equation (21) can also be approximated by the difference form.

∂CD

∂δi
=
CD x, δ1, δ2,⋯,δi + Δ,⋯ð Þ − CD x, δ1, δ2,⋯,δi − Δ,⋯ð Þ

2Δ
:

ð22Þ

The minimum drag objective is then constructed as fol-
lows:

min J2 = ∇δCD x, δ0ð ÞΔδ + CD0k k2,
Δδmin ≤ Δδ ≤ Δδmax:

ð23Þ

3.2.3. Maximum Lift. Similar to the drag effectiveness, the lift
effectiveness of the tailless vehicle are also complex, which is
depicted in Figure 6.

The maximum lift objective is constructed as

min J3 = ∇δCL x, δ0ð ÞΔδ + CL0 − λk k2,
Δδmin ≤ Δδ ≤ Δδmax,

ð24Þ

CA
algorithm

Effector
dynamics

Control
effectiveness+- +

+

∇𝛿h (x
0
,𝛿
0
)

𝜏c 𝜏∆𝜏c ∆𝛿 𝛿c

𝛿
0

𝛿
0

𝛿

Z−1
Z−1

Z−1

𝜏
0

Partial
derivative 
calculation

Figure 4: Flow chart of incremental nonlinear control allocation
method.
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where λ is a positive real number that satisfies

∇δCL x, δ0ð ÞΔδ + CL0 − λ < 0,∀Δδ ∈ Δδmin, Δδmax½ �: ð25Þ

3.2.4. Comprehensive Objective. On this basis, aiming to
comprehensively optimize the above objectives, and accord-
ing to the performance requirements of the tailless aircraft in
different flight phases, a comprehensive objective function is
further constructed. To facilitate the solution, the compre-
hensive objective function is constructed in the form of lin-
ear weighted sum as follows:

J = kJ0 + 〠
3

i=1
εi J i ð26Þ

However, due to the great difference in the order of mag-
nitude of each optimization objective, it is difficult to deter-
mine the weight in the comprehensive objective function in
the form of linear weighted sum. So it is necessary to nor-
malize each single objective in the comprehensive function
in the following form as follows:

J0
∗ = J0/ τ0 − τck k2 max, J1

∗ = J1/ δk k2 max, J2
∗

= J2/CD max, J3∗ = J3/λ, J∗ = kJ0
∗ + 〠

3

i=1
εi J i

∗,
ð27Þ

where k·k2 max represents the maximum that the 2-norm of a
variable can reach within its upper and lower limits. In order
to use the active set quadratic programming algorithm to solve
the problem, the normalized comprehensive objective func-
tion can be written in the form of weighted least squares:

J∗ = FΔδ +Gk k2 =

k
τ0 − τck k2 max

∇δh x, δ0ð Þ

ε1
δk k2 max

ε2
CD max

∇δCD x, δ0ð Þ

ε3
λ
∇δCL x, δ0ð Þ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

Δδ



+

k
τ0 − τck k2 max

τ0 − τcð Þ

ε1
δk k2 max

δ

ε2
CD max

CD0

ε3
λ

CL0 − λð Þ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA


2

:

ð28Þ

When the weights k, ε1, ε2, and ε3 are given, the increment
of surface deflection can be directly obtained by running the
active set quadratic programming algorithm, and then the
total amount of surface deflection can be calculated. It can
be seen that the determination of weights is of great impor-
tance and needs to be achieved according to the flight phase
and task requirements. Nevertheless, each objective is not
independent of each other, that is, the optimization of one
objective might obstruct or promote the optimization of other
objectives, as qualitatively shown in Figure 7.

To be specific, when the weight k of the minimum error
objective is fixed, the increase of the weight of any other sec-
ond objective will reduce the consideration of the minimum
error when calculating the deflection of the control surface
through active set quadratic programming. In addition,
because the drag and lift are partially derived from the
deflection of the control surface, for the objectives of mini-
mum drag and maximum lift established above, when the
weight of the objective of minimum total deflection of the
control surface increases, the drag and lift will remain at a
relatively low level. Therefore, the minimum control surface
deflection and minimum drag objective promote each other,
while the objective of minimum control surface deflection
and the objective of maximum lift restrain each other. To
conclude, there is a complex unproportionate relationship
between the weight values and flight performance, which is
shown in Figure 7.

The weight determination method based on AHP never
takes the interaction between secondary objectives into con-
sideration, and highly relies on expert experience, which is of
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Figure 6: Lift effectiveness curve of control surface of tailless
aircraft.
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Figure 5: Control surface drag effectiveness curve of tailless
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great subjectivity. So the optimization result is often not the
Pareto optimal solution that best meets the requirements.
Therefore, according to the Pareto dominance relationship
and the priority relationship of each optimization objective
in different flight phases, this paper adopts an intelligent
weight determination method of more objectivity based on
the improved NSGA algorithm to achieve multiobjective
control allocation.

3.3. Multiobjective Weight Determination Based on Improved
NSGA. Owing to the powerful nonlinear optimization capa-
bilities, metaheuristic optimization algorithms are suitable
for the determination of weights to achieve the optimization
of J1 J2 J3½ �. However, due to the unbearable computa-
tional burden, it is difficult for the current flight control
computer to support real-time solution based on meta-
heuristic optimization algorithms. For the purpose of foster-
ing strengths and avoiding weaknesses, this paper adopts
MOEAs to offline determine the weight of each secondary
objective for different flight phases and tasks. Furthermore,
the problem of weight determination in the multiobjective
function has the following characteristics: (1) this is a
multiobjective optimization problem with 3 objectives; (2)
the true Pareto front is unknown; and (3) the preference
for each objective changes with the flight phase. Therefore,
according to the information of basic ideas and application
scenarios in Table 1, NSGA-II [35] is selected among so
many MOEAs mentioned in Section 1, and, in consideration
of different preference for each objective, it is improved by
modifying the expression of crowding distance to optimize
the weight in Equation (28).

Above all, some basic concepts need to be clarified:

Definition 1 (Pareto dominance). In a multiobjective mini-
mum optimization problem, assume that ε1 and ε2 are two
sets of feasible solution within the limits. It is called that ε1
Pareto dominates ε2 if and only if ∀i ∈ f1, 2,⋯,ng, Jiðε1Þ ≤
Jiðε2Þ, and ∃i ∈ f1, 2,⋯,ng, Jiðε1Þ < Jiðε2Þ, which is noted
as ε1 ≺ ε2.

Definition 2 (Pareto optimal solution). In the set Ω formed
by all feasible solutions within the limits, if a feasible
solution ε∗ is not dominated by any other feasible solution,

then ε∗ is called the Pareto optimal solution of the multiob-
jective optimization problem.

Definition 3 (Pareto optimal solution set). There is often
more than one Pareto optimal solution, and the set of all
Pareto optimal solutions is called the Pareto optimal solu-
tion set, denoted as P.

Definition 4 (Pareto front). The set of function values of all
Paretooptimal solutions in theobjective space is called thePareto
front, denoted as P f = fðJ1ðε∗Þ, J2ðε∗Þ,⋯,Jnðε∗ÞÞjε∗ ∈ Pg.

The procedure to determine the weight of each objective
in the multiobjective control allocation problem through
improved NSGA-II (INSGA) is as follows:

Step 5. Set the population size N and the max iteration imax,
generate the initial parent population P0 through random
initialization. Then perform nondominated sorting to gener-
ate several classification subsets F1, F2,···, Fl, where F1 is the
set of all nondominated individuals in P0, F2 is the set of
all nondominated individuals in P0 − F1, and so on. Also
define a partial order relationship between two individuals.

For two individuals ε1 ∈ Fi and ε2 ∈ Fj in the population
P0, the relationship between their partial orders Poðε1Þ and
Poðε2Þ is

Po ε1ð Þ > Po ε2ð Þ if i < jð Þ or D ε1ð Þ >D ε2ð Þð Þ and i = jð Þ½ �:
ð29Þ

Dð·Þ represents the crowding distance of the individual,
and Poðε1Þ > Poðε2Þ represents that the partial order of the
individual ε1 is better than the partial order of the individual
ε2. ε1 will be preferentially selected in the selection operation.

The standard NSGA-II algorithm defines the crowding
distance as

D εið Þ = 〠
n

j=1
J j εi+1ð Þ − J j εi−1ð Þ�� ��, ð30Þ

where εi+1 and εi−1 are the two individuals most adjacent to
εi, and the crowding distance of the boundary point is set to
∞. However, because the priority w of each objective is dif-
ferent under different circumstances, though sorting by the
crowding distance shown in Equation (30) can maintain
the diversity of the population, it is not conducive to ensure
that the high-quality individuals better meeting the

Min
error

Max
lift

Min
drag

Min
deflection

Conflict
Promote

Figure 7: Qualitative relationship between some secondary
objectives.

Table 3: Priority of each secondary objective.

Secondary objective Climbing Cruise Maneuver Landing

Minimum deflection 3 2 1 2

Minimum drag 2 1 3 3

Maximum lift 1 3 2 1
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requirements of different phases are retained. So the crowd-
ing distance is improved to the following form:

D εið Þ = 〠
n

j=1

J j εi+1ð Þ − J j εi−1ð Þ�� ��
wjJ j εið Þ : ð31Þ

In the flight of the tailless aircraft, the priorities wj of dif-
ferent objectives at each phase are shown in Table 3, where 1
represents the relatively highest priority, and 3 represents
the relatively lowest priority.

Step 6. According to the nondominated sorting results and
the partial order relationship, the parent population Piði =
0, 1, 2,⋯, imax − 1 is selected in the method of binary cham-
pionship, crossover, and mutation are operated to create the
son population Si in the same size N. The process of cross-
over operation is

ai1 j = rand ⋅ ai2 j + 1 − randð Þ ⋅ ai1 j,
ai2 j = rand ⋅ ai1 j + 1 − randð Þ ⋅ ai2 j,

ð32Þ

where ai1 j and ai2 j are the j
th genes of individuals numbered

i1 and i2 in the parent population Pi, i1, i2 = 1, 2,⋯, p and
i1 ≠ i2, j = 1, 2,⋯, q, and rand is a random number in the
interval (0,1). The process of mutation operation is

aij =
aij + aij − amax

À Á
⋅ rand ⋅ 1 −

iter
imax

� �2
, rand > 0:5,

aij − amin − aij
À Á

⋅ rand ⋅ 1 −
iter
imax

� �2
, rand ≤ 0:5,

8>>>><
>>>>:

ð33Þ

where iter is the current number of iterations, and the influ-
ence of the mutation operation will be gradually weakened
with the increase of the number of iterations. The design

plays a role in improving the robustness and global optimal-
ity of the algorithm.

Step 7. Merge the parent population and the son population
into a population Qi in the size of 2N, and perform nondo-
minated sorting on it.

Step 8. Determine the partial order relationship between
individuals in the critical layer classification subset accord-
ing to the crowding distance, where the definition of critical
layer classification subset is: in several classification subsets
of Qi, the number nðFkÞ of individuals contained in subset
Fk satisfies

Eliminated 
individuals

···

···

···
Non-dominated

sorting

Partial order 

calculation

Pi

F1

F2

Fk

Fl-1

Pi+1

FlQi

Si

Figure 8: New population generation mechanism in INSGA.
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Specify parameters

Generate initial parent population P0

End

Binary tournament
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Generate offspring population Si
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Output a suitable individual from Pimax
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Fast non-dominated
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Figure 9: Flow chart of INSGA.

10 International Journal of Aerospace Engineering



Figure 10: Block diagram of tailless aircraft control system with MICA module.

Table 4: Algorithm parameter settings.

Population size Max iteration Crossover probabilityPc Mutation probability Pm Retained percentage a% Retained percentage b%

50 40 1 0.3 20% 20%

0.012
0.0115

0.0125 30 20 10

0.76
0.765

0.77
0.775

1−
C
L

CD ||𝛿||

(a) Pareto front

0.0115 0.012 0.0125
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(b) CL‐CD side view
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Figure 11: Pareto front and its side views.
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〠
k−1

i=1
n Fið Þ <N ,

〠
k

i=1
n Fið Þ ≥N ,

ð34Þ

then Fk is called the critical classification subset of Qi.

Step 9. According to the nondominated sorting result and
the partial order relationship, select N individuals to form
the parent population Pi+1 in next generation. The specific
process is shown in Figure 8.

Step 10. To obtain the final population Pimax
and its corre-

sponding Pareto front, repeat step 6 to step 9 until the
max iteration is reached.

Step 11. In the application scenario of this paper, it is neces-
sary to select an optimal individual Pimax

ðkÞ from Pimax
as the

weights in Equation (28). According to the priority relation-
ship of each optimization objective corresponding to each
flight phase predetermined in Table 2, first, for Ji that has
the highest priority, select the top a% of the optimal individ-
uals from Pimax

to form a loose set A. Then, for the next high-
est priority objective Jj, select the top b% of the optimal
individuals from the loose set A to form a new loose set B.
Finally, for Jk with the lowest priority objective, select the
optimal individual in B. Take the individual as the weight

of each subobjective in the objective function shown in
Equation (28).

The overall flow of the algorithm is summarized in
Figure 9:

3.4. Tailless Aircraft Control System with MICA Module.
According to the above description of nonlinear dynamic
inversion, INCA method and multiobjective weight determi-
nation method based on INSGA, a complete strategy of
objective incremental control allocation (MICA) for tailless
aircraft is formed. Figure 10 summarizes the tailless aircraft
flight control system adopting the MICA strategy.

4. Proof of Convergence

4.1. Closed-Loop Convergence Proof for Incremental
Nonlinear Control Allocation. According to the description
of INCA in Section 3.1, denoting ∇δhðx0, δ0Þ as BdðkÞ, the
active set quadratic programming algorithm can be regarded
as a pseudoinverse operation, which is expressed as

Δδ kð Þ = B+
d kð ÞΔτ kð Þ: ð35Þ

Then the actually generated virtual control input is

τ kð Þ = Ba kð Þ δ k − 1ð Þ + B+
d kð ÞΔτc kð Þ½ �, ð36Þ

where BaðkÞ is the actual control effectiveness matrix at the
current moment. Assuming that between two adjacent
sampling points, the change of BaðkÞ is negligible, that is,
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Figure 12: Tracking of angle commands.
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BaðkÞ = Baðk − 1Þ. Denote BaðkÞB+
dðkÞ as KðkÞ, then

Equation (36) can be transformed into

τ kð Þ = Ba k − 1ð Þδ k − 1ð Þ + Ba kð ÞB+
d kð ÞΔτc kð Þ

= τ k − 1ð Þ +K kð Þ τc kð Þ − τ k − 1ð Þ½ �: ð37Þ

Perform z transform on Equation (37).

τ zð Þ = z−1τ zð Þ + K kð Þ τc zð Þ − z−1τ zð ÞÂ Ã
: ð38Þ

Further simplify Equation (38) into

τ zð Þ = z − 1ð ÞI +K kð Þ½ �−1zK kð Þτc zð Þ: ð39Þ

The necessary and sufficient condition to ensure the sta-
bility of the closed-loop system shown in Equation (39) is
that every solution of characteristic equation

z − 1ð ÞI +K kð Þ½ �j j = 0, ð40Þ

is in the unit circle [36].
According to Schur’s lemma, there are an invertible

matrix P and an upper triangular matrix Q that satisfy

K kð Þ = PQP−1 = P

λ1 a12 · · · a1m

λ2 · · · a2m

· ·

· ·

· ·

λm

2
666666666664

3
777777777775

P−1: ð41Þ

Equation (40) can be transformed into

z − 1ð ÞPP−1 + PQP−1Â Ã�� �� = 0⇔ Pj j z − 1ð ÞI +Q½ �j j P−1�� ��
= 0⇔ z − 1ð ÞI +Q½ �j j = 0:

ð42Þ
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Further solve

zi − 1 + λi = 0, i = 1, 2,⋯,m, ð43Þ

to get

zi = 1 − λi: ð44Þ

Then, the necessary and sufficient condition to ensure
the convergence of the closed-loop system is

zij j = 1 − λij j < 1 ð45Þ

Set λi = xi + jyi, j is an imaginary unit, then we can get

1 − xi − jyij j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − 1ð Þ2 + yi2

q
< 1⇔ xi − 1ð Þ2 + yi

2 < 1:

ð46Þ

It can be obtained that the necessary and sufficient con-
dition for the stability of the closed-loop system is that the
characteristic roots of KðkÞ are all in the circle with the cen-
ter of (1,0) and the radius of 1 in the complex plane. In other
words, the closed-loop system can be converged by ratio-
nally designing B+

dðkÞ so that each characteristic root of Kð
kÞ satisfies the condition of Equation (45).

Applying the final value theorem of z transform to Equa-
tion (39) can further calculate the steady-state error of the

closed-loop system: let the virtual control command τcðkÞ
be the unit step signal, then the final value of the output vir-
tual control variable τðkÞ is

lim
k⟶∞

τ kð Þ = lim
z⟶1

z − 1ð Þτ zð Þ,

lim
k⟶∞

τ kð Þ = lim
z⟶1

z − 1ð Þ z − 1ð ÞI +K kð Þ½ �−1zK kð Þ z
z − 1

z
z − 1

z
z − 1

h iT� �
,

lim
k⟶∞

τ kð Þ = lim
z⟶1

z − 1ð ÞI +K kð Þ½ �−1K kð Þ z2 z2 z2
Â ÃTn o

,

lim
k⟶∞

τ kð Þ = 1 1 1½ �T: ð47Þ

It can be seen that the INCA method using the active set
quadratic programming solver can perform error-free
allocation of virtual control commands in the form of step
while ensuring the convergence of the system.

4.2. Convergence Proof for Nonlinear Dynamic Inversion. For
the outer loop, after substituting the dynamic inversion
control law into the state equation, we get

_x1 =ω1 x1c − x1ð Þ: ð48Þ

Since the diagonal elements of ω1 are all positive num-
bers, each eigenvalue of ‐ω1 contains a negative real part,
and the control command x1c is bounded, so the outer loop
control system is stable.
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For the inner loop, there will always be a certain error in
the control allocation module, so the actual control input is
τ = τc − e, and for the allocation error e, τ = g−1

2 ðx2Þ½ω2ðx2c
− x2Þ − f2ðx2Þ� − e is substituted into the state equation of
the inner loop:

_x2 = −ω2x2 +ω2x2c − g2 x2ð Þe: ð49Þ

From the closed-loop stability proof of INCA in Section
4.1, it can be seen that the allocation error e is bounded and
globally convergent, so we have

_x2 +ω2x2k k = ω2x2c − g2 x2ð Þek k < R+, ð50Þ

where R+ is a positive real number. Equation (50) makes the
following conditions hold:

_x2i < 0,∀x2i >
R+

ω2i
,

_x2i > 0,∀x2i < −
R+

ω2i
,

ð51Þ

and get

x2ik k ≤ R+

ω2i
, ð52Þ

This shows that x2 is bounded and x2 ⟶ x2c when
e⟶ 0.

5. Simulation and Analysis

5.1. Simulation Settings. The cruise phase of ICE tailless
aircraft is taken as an example to conduct simulation exper-
iments. The simulation step size Δts is set to 0.01 s,Ma = 0:6,
h = 15000 ft, and the attitude tracking command is set to

αdes tð Þ = 10l tð Þ − 5l t − 2:5ð Þ,
βdes tð Þ = 0,

μdes tð Þ = 5 l tð Þ − l t − 1:8ð Þ − l t − 3:2ð Þ½ �,
ð53Þ

where lðtÞ is the unit step function.
Due to the mechanism of elitist preservation in INSGA,

there is no need to worry about the destruction of high-
quality individuals in the crossover and mutation opera-
tions. Therefore, the crossover probability Pc and mutation
probability Pm can be set relatively high to improve the
global search ability and speed up the search progress. The
parameter settings of INSGA are shown in Table 4.

5.2. Simulation Results and Analysis. First, run INSGA off-
line to solve the Pareto front of multiobjective weight and
its corresponding Pareto optimal solution in the set flight
state. The results are shown in Figure 11.

Figure 11 can verify the qualitative relationship between
the objectives shown in Figure 7. The maximum lift and the
minimum drag target are mutually restrained; within a

certain range, the minimum drag and the minimum surface
deflection objective are positively correlated, and themaximum
lift and the minimum surface deflection are negatively corre-
lated. According to the demand priority of each objective in
the cruise phase, an optimal point (marked in red in
Figure 11) is selected on the Pareto front, and its corresponding
independent variable, that is, the weight of each objective, is
got. Its corresponding weight ε = 0:9741 0:0071 0:0188½ �.

On the condition that the model used is also the ICE air-
craft and the solution algorithm used is also active set qua-
dratic programming, the multiobjective weight of the
cruise phase determined by the AHP method in Reference
[13] is ε = 0:5498 0:3681 0:0821½ �. Figure 12 is a com-
parative analysis of the effects of the weight determined by
the two methods.

Since the MICA method used in this paper is mainly
aimed at minimizing the allocation error, the two groups
of experiments with different weights can both achieve good
tracking results for the attitude commands. The moment
command allocation results shown in Figure 13 further
verify the effective processing capability of the INCA
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method for nonlinear control effectiveness, and the alloca-
tion errors are all within the allowable range of flight control.

Figure 14 shows the variation of the deflection position
of each control surface on the ICE aircraft during the control
command tracking process. Figure 15 makes statistics on the
average deflection of each control surface. It can be clearly
seen that the control surface deflections differ greatly when
different multiobjective weights are used. The deflection of
each control surface obtained by MICA based on INSGA is
generally less than 50% of that of the other method, indicat-
ing that the control energy consumption is effectively
reduced. Due to the difference in control surface deflections,
combined with the drag and lift generation effectiveness of
each control surface of the ICE aircraft shown in Figures 5
and 6, it can be seen that due to more usage of SSDs with
high drag generation effectiveness and negative lift effective-
ness, the allocation results obtained by AHP-based MICA
generate relatively large drag and relatively small lift. The
drag and lift curves shown in Figures 16 and 17 validate this.
Table 5 makes a summarized comparison on the perfor-
mance of the two MICAs: the average total surface deflection
of INSGA-MICA is only 31.2% of that of AHP-MICA, the
average drag is 5.88% lower than that of AHP-MICA, and
the average lift is 9.19% higher than that of AHP-MICA.
In other words, the weights calculated by INSGA-MICA
dominate the weights calculated by AHP-MICA on the per-
formance of multiple secondary objective optimizations.

6. Conclusion

A novel multiobjective control allocation strategy for tailless
aircraft is designed based on the INCA method and the
INSGA algorithm. The strategy mainly solves the following
problems:

(1) Construct INCA framework based on piecewise line-
arization and error feedback, effectively overcoming
the control allocation difficulties caused by the nonlin-
ear control effectiveness and deflection limits. Further-
more, active set quadratic programming algorithm is
adopted to solve the amount of deflection. The
closed-loop convergence of INCA is also proved

(2) Construct an incremental linear weighted multiob-
jective function concerning allocation error, control
surface deflections, drag, and lift. Run the INSGA

to determine a set of optimal weights is selected
and apply it to the constructed objective function.
On the basis, Multiobjective Incremental Control
Allocation strategy is completely formed

(3) Compare the advantages and disadvantages of the
multiobjective weights determined by the INSGA
and AHP. The simulation takes ICE tailless aircraft
in the cruise phase as an example. Its results show
that the proposed control allocation strategy can
help generate lower the flight drag and total surface
deflection, together with a higher lift

The strategy proposed in this paper comprehensively
considers the accuracy and real-time requirements of the
control allocation algorithm, always takes the minimum
allocation error as the primary objective, and uses the multi-
objective intelligent optimization algorithm to search the
optimal weight offline and use it online. While exploiting
the control potential of tailless aircraft, it avoids the large
amount of computation and long computation time. In the
next step of research, the minimum RCS objective can be
further accurately characterized and included in the consid-
eration of multiobjective optimization to meet the stealth
requirements in the penetration mission of tailless aircraft.
With the capability of flight computer improved, the intelli-
gent weight determination can be operated online, so that
the multiobjective weights can be adjusted more flexibly in
the complex and changeable flight process and better adapt
to the task environment.
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Table 5: Performance comparison of AHP-MICA and INSGA-MICA.

Method error Cxj jmax error Cxj javg δk kavg CDavg CLavg

AHP-MICA

6:32 × 10−3 4:46 × 10−4

49.3540 1:206 × 10−2 0.20141:88 × 10−2 7:16 × 10−4

3:46 × 10−3 1:51 × 10−4

INSGA-MICA

6:36 × 10−3 4:22 × 10−4

15.3994 1:135 × 10−2 0.21992:09 × 10−2 6:90 × 10−4

3:65 × 10−3 1:74 × 10−4
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