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Facial expression recognition based on residual networks is important for technologies related to space human-robot interaction
and collaboration but suffers from low accuracy and slow computation in complex network structures. To solve these problems,
this paper proposes a multiscale feature fusion attention lightweight wide residual network. The network first uses an improved
random erasing method to preprocess facial expression images, which improves the generalizability of the model. The use of a
modified depthwise separable convolution in the feature extraction network reduces the computational effort associated with
the network parameters and enhances the characterization of the extracted features through a channel shuffle operation. Then,
an improved bottleneck block is used to reduce the dimensionality of the upper layer network feature map to further reduce
the number of network parameters while enhancing the network feature extraction capability. Finally, an optimized multiscale
feature lightweight attention mechanism module is embedded to further improve the feature extractability of the network for
human facial expressions. The experimental results show that the accuracy of the model is 73.21%, 98.72%, and 95.21% on
FER2013, CK+ and JAFFE, respectively, with a covariance of 10.14M. Compared with other networks, the model proposed in
this paper has faster computing speed and better accuracy at the same time.

1. Introduction

In recent years, with the rapid development of space tech-
nology, human-robot interaction in on-orbit service (OOS)
space robots has become an important research area in space
technology [1–3]. Although the intelligence of space robots
is limited, space human-computer interaction plays an
important role in space mission applications. Space robots
can replace or assist astronauts in various on-board/off-
board activities, and it is particularly important for space
robots to recognise astronaut commands [4]. Facial expres-
sion recognition by astronauts is a widely used method of
human-robot interaction in space that does not rely on the
highly intelligent capabilities of space robots, and it can
effectively combine the decision-making capabilities of
humans with the precise operational capabilities of space
robots to improve their operational capabilities [5–7].
The accuracy of the astronaut’s facial expression recogni-
tion and the size of the expression recognition model are

important indications of the increased efficiency of space
robots.

Early on in the research process, the features of facial
expressions were basically extracted manually, but the recog-
nition accuracy was not high because the facial expressions
in the natural environment were easily affected by many fac-
tors, such as occlusion, background, and pose [8]. In recent
years, deep learning has achieved major breakthrough
results in image recognition. Sun et al. [9] designed a facial
expression recognition system combining shallow and deep
features with an attention mechanism and proposed an
attention mechanism model based on the relative positions
of facial feature points and textural features of local regions
of faces for better extraction of shallow features. Wenmeng
and Hua [10] proposed a new end-to-end coattentive
multitasking convolutional neural network that consists
of a channel coattentive module and a spatial coattentive
module. Their approach demonstrates better performance
relative to single tasking and multitasking. Shi et al. [11]
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proposed a facial expression recognition method based on a
multibranch cross-connected convolutional neural network,
which was built based on residual connections, network-in-
network, and tree structure combined; it also added fast
cross-connections for the summation of the convolutional
output layer, which makes the data flow between networks
smoother and improves the feature extractability of each
sensory domain. Kong et al. [12] proposed a lightweight
facial expression recognition method based on an attention
mechanism and key region fusion, and to reduce the compu-
tational complexity, a lightweight convolutional neural
network was used as the basic recognition model for expres-
sion classification, which reduces the computational effort of
the network to some extent. Zhou et al. [13] designed a light-
weight convolutional neural network that uses a multitask
cascaded convolutional network to accomplish face detection
and combines a residual module and a depthwise separable
convolutional module to reduce a large number of parame-
ters of the network and make the model more portable.

Although most of the above studies were able to extract
features and lighten the model to some extent, there are still
shortcomings. For example, the face acquisition process is
susceptible to factors, such as lighting, background, and
pose, resulting in a reduced learning ability of the model
when training the face sample set and insufficient feature
extractability. The number of network layers of the deep
learning model also affects the accuracy of classification rec-
ognition to a certain extent, i.e., as the number of network
layers increases, the phenomenon of gradient disappearance
occurs, causing a decrease in recognition accuracy. To solve
the above problems, this paper proposes a multiscale feature
fusion attention lightweight network, making the following
main contributions.

First, during the image preprocessing stage, a random
erasing method based on data labels is used to mask the
facial expression images to expand the training set samples
and improve the robustness of the model.

Second, to further extract the deep features of facial
expressions, an improved convolutional block attention
module (CBAM) is embedded in the model, which rerepre-
sents the features of facial expressions in both channel and
spatial dimensions.

Third, to solve the problem of model redundancy caused
by too many convolutional layers, the improved bottleneck
layer is used to reduce the dimensionality of the network,
which saves the computation of the network and increases
the nonlinear expression capability of the model.

Fourth, to lighten the model, an improved depthwise
separable convolution module is added to reduce the num-
ber of parameters computed by the network while speeding
up the network operations.

Finally, through comparison with different network
models, it can be verified that the model proposed in this
paper has higher accuracy and lightness.

2. Related Work

2.1. Spatial/Channel Attention Mechanism [14, 15]. CBAM is
a lightweight module that combines channel attention and

spatial attention to dramatically improve model perfor-
mance while requiring a small amount of computation and
a small number of parameters. The channel attention mech-
anism [16–18] focuses on which channel features are mean-
ingful using global average pooling and global maximum
pooling to obtain two feature maps and then feeds them
sequentially into a weight-sharing multilayer perceptron
with a 1 × 1 convolution to better fuse channel information.
The spatial attention mechanism [19, 20] focuses on spatial
features, mainly on the part of the input image that is richer
in effective information. One of the pooling operations is
performed along the channel axis, i.e., each pooling com-
pares values between different channels rather than values
in different regions of the same channel.

2.2. BottleNeck Layer. The bottleneck layer [21] is the core
structure of the residual network [22], which mainly con-
tains three convolutional layers, as shown in Figure 1. The
size of the convolution kernel in the first layer is 1 × 1, which
is mainly aimed at reducing the dimensionality of the feature
map and thus the number of network parameters. The size
of the convolution kernel in the second layer is 3 × 3, and
the main purpose is to extract deeper semantic information
without enhancing the number of network parameters. The
convolutional kernel size of the third layer is 1 × 1, and the
main purpose is to updimension the feature map to obtain
the desired dimension size.

The formula for calculating the number of parameters
during the conventional convolution operation is shown in

Params = Cin × k × k × Cout, ð1Þ

where Params represents the number of parameters in the
convolution process, Cin and Cout represent the number of
channels of the input and the output feature map, respec-
tively, and k represents the size of the convolutional kernel.

Assuming that the size of the intermediate feature map
channels is Cmid, the number of parameters during the
bottleneck operation is shown in

PBottleNeck = Cin × 1 × 1 × Cmid + Cmid × 3 × 3 × Cmid + Cmid
× 1 × 1 × Cout:

ð2Þ

From the calculation of the input and the output fea-
ture map sizes in Figure 1, the number of parameters
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Figure 1: Structure of the bottleneck.
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generated by the regular convolution operation process
can be obtained:

PConv = 96 × 3 × 3 × 96: ð3Þ

The number of parameters generated by the bottleneck
layer is:

PBottleNeck = 96 × 48 + 48 × 9 × 48 + 48 × 96: ð4Þ

By comparing the two, the number of parameters gen-
erated during the bottleneck operation is greatly reduced.

2.3. Depthwise Separable Convolution. Depthwise separable
convolution [23] is the core structure of the lightweight net-
work MobileNet [24, 25], which is a combination of two
parts: depthwise convolution and pointwise convolution.
The specific structure is shown in Figure 2. Depthwise sepa-
rable convolution contains a lower number of parameters
and lower computational cost than the conventional convo-
lution operation process. The number of convolution kernels
in depthwise convolution is the same as the number of
channels in the previous layer, and one convolution kernel
is responsible for one channel. The number of channels in
the feature map generated by this process is the same as
the number of input channels, which cannot extend the
dimensionality of the feature map, and the convolution
operation for each channel independently cannot effectively
use the feature information of different channels at the same
spatial location. Pointwise convolution [26] mainly uses a
1 × 1 convolution to combine the feature maps obtained
in the previous step in a weighted manner in the depth
direction.

We assume that the input feature map size is Wi ×Hi ×
C; Wi, Hi, and C represent the width, height, and the num-

ber of channels of the input feature map, respectively. The
standard convolution size is Wc ×Hc × C ×H, which
denotes the width, height, the number of channels, and the
number of convolution kernels of the conventional convolu-
tion, respectively, and the size of the output feature map
after the conventional convolution operation is Wo ×Ho ×
N . Then, the computation of the regular convolution is:

FConv =Wo ×Ho ×N ×Wc ×Hc × C: ð5Þ

The depthwise separable convolution first uses a convo-
lution size of Wc ×Hc × C × 1 convolution for depthwise
convolution and then uses 1 × 1 × C ×N of the convolution
for pointwise convolution. The depthwise separable convo-
lution is computed as:

FDSC =Wo ×Ho × 1 ×Wc ×Hc × C +Wo ×Ho ×N

× 1 × 1 × C:
ð6Þ

The ratio of the two is:

FDSC
FConv

= 1
N

+ 1
Wc ×Hc

: ð7Þ

If the size of the input feature map is 48 × 48 × 96 and
the size of the convolution kernel is 3 × 3 × 96, then the ratio
of the parameter computation is ð1/96Þ + ð1/9Þ. Therefore, if
the depthwise separable convolution is used instead of the
regular convolution, the computation is reduced by a factor
of nearly 9.

2.4. Wide Residual Neural Network Model. To resolve the
problem of gradient disappearance caused by increasing
depth in deep neural networks, a residual learning unit is
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Figure 2: Structure of depthwise separable convolution.

3International Journal of Aerospace Engineering



introduced to more easily optimize deep networks by adjust-
ing the relationship between the input and output through
constant mapping. In the ResNet residual learning unit, the
neural network input is x, while the best mapping is HðxÞ,
FðxÞ denotes ResNet Function, after the nonlinear convolu-
tion layer to achieve FðxÞ =HðxÞ − x, the constant mapping
of itself is expressed as HðxÞ = FðxÞ + x. This constant map-
ping can then reduce the complexity and the computation of
the model and, to a certain extent, mitigate problems such as
gradient disappearance caused by stacking with the number
of layers. However, the deep residual network pursues net-
work depth too much, and the performance of the model
does not improve considerably as the number of modules
increases. The Wide ResNet residual learning module [27]
adds a factor k to the original residual module to widen
the number of convolution kernels [28], which reduces the
number of layers, where k denotes the number of multiples
of filters in the convolution layer. However, it does not
reduce the model parameters, and it speeds up the computa-
tion, making it easier for the stacking layer to learn new fea-
tures from the input image features.

The residual learning unit is shown in Figure 3, where
dropout regularization prevents overfitting of the model
and ReLU denotes the activation function; a is the ResNet
residual learning module, and b is the Wide ResNet residual
learning module.

3. Methods

3.1. Overall Architecture. Since too few layers of a fully con-
nected neural network will lead to insufficient feature repre-
sentation of facial expressions in the model, too many layers
will increase the computation of the network and cause the
problem of network redundancy. This paper combines the
above problems and designs a multiscale feature fusion
attention lightweight facial expression recognition network.
In the image preprocessing stage, noise is added to the train-
ing set by an improved random erasing method, which
enhances the robustness of the model while enriching the
entire dataset.

Then, the preprocessed facial expression images are
passed into the network. First, the number of parameters
of the model is reduced by the depthwise separable shuffle
module to speed up the computing speed of the network.
The SCAM is embedded in the middle, and then, the net-
work is characterized by the grouping bottleneck module
to reduce the dimensionality of the network, which saves
the computation of the network and increases the nonlinear
expression capability of the model. Then, it passes through
the depthwise separable shuffle module and finally enters
the Softmax layer to classify the output results. The overall
architecture of the model is shown in Figure 4.

The input object image size of this network is 48 × 48,
and the number of channels is 3. Each convolutional layer
is followed by a BN layer and a ReLU activation function
layer. The BN layer accelerates the training and convergence
of the network and prevents the gradient from disappearing
to a certain extent. To improve the feature representability of
the network, a SCAM is provided behind each packet bottle-

neck module and depthwise separable shuffle module. After
entering the grouping bottleneck module, the dimensionality
of the output is halved, the number of channels is doubled,
the risk of overfitting is reduced, and the parameters of the
computation are reduced by the Global-Ave-Pooling layer.
Finally, the pictures are classified by the Softmax layer, and
the categories contain a total of 7 categories: angry, dis-
gusted, scared, happy, sad, surprised, and neutral. The model
parameters are shown in Table 1.

3.2. Image Preprocessing. Data enhancement is a common
method in the image preprocessing stage, which mitigates
the overfitting of the model and improves its generalizability
to a certain extent. This paper expands the training set sam-
ples and enhances the robustness of the model by adding a
small amount of noise to the images through an improved
random erasing method [29].

First, in the preprocessing stage, the probability of ran-
dom erasing of the object image is set as p, the area of the
original image is set as S, the minimum and the maximum
thresholds of the random erasing image are set as Sl and
Sh, respectively, the aspect ratio of the occlusion matrix
is set as re, the area of random erasing is set as Se, the
height of the area of the random erasing matrix is set as
He, and the width of the area of the random erasing
matrix is set as We. An example of the random erasing
formula is as follows:

Se = S × Random Sl, Shð Þ, ð8Þ

He =
ffiffiffiffiffiffiffiffiffiffiffiffi
Se × re

p
, ð9Þ

We =
ffiffiffiffi
Se
re

s
: ð10Þ

Among them, the specific parameters of random erasing
are set, as shown in Table 2.

A randomly selected point Pe = ðxe, yeÞ on the image, xe
and ye, is bounded by the following example, where W
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Figure 3: Learning module.
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indicates the width of the image and H indicates the height
of the image.

xe=random 0,Wð Þ
ye=random 0,Hð Þ

n o
: ð11Þ

Since the background noise of the facial expression pic-
tures affects the accuracy of recognition and the random
erasing processing does not necessarily cover the facial
expression region, causing redundancy in the original data-
set, the random erasing method is improved to ensure that
the random erasing region must be at the face location,

and the coordinate values of xe and ye are requalified, for
example, as follows:

xe=random Rx ,Rxlð Þ
ye=random Ry ,Rylð Þ

� �
, ð12Þ

where Rx, Ry , Rxl, and Ryl denote the true coordinate values
of the upper left vertex and the upper right vertex of the face
image range, respectively. By limiting the selection range of
the random point Pe points so that each random erasing
can cover the facial expression range, the random erasing
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Figure 4: Overall architecture.
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method and the improved method are compared, as shown
in Figure 5.

As seen from Figure 5, the improved method can ensure
that each random erasing is within the range of facial expres-
sions, artificially extends the dataset of training samples,
improves the robustness of the model, and effectively
reduces the risk of model overfitting.

3.3. Spatial Channel Attention Module (SCAM). To further
extract the deep features of different facial expressions and
improve the accuracy of facial expression recognition, this
paper improves the lightweight attention module (convolu-
tional block attention module) proposed by Woo et al.
[30]. This is a simple and effective attention module for con-

volutional neural networks. Given an intermediate feature
map, our module sequentially generates attention maps
along two separate dimensions, channel and space, and then
multiplies the attention map into the input feature map for
adaptive feature refinement. Because SCAM is a lightweight,
general-purpose module, it can be seamlessly integrated into
any CNN architecture with negligible computational cost.
Since convolutional operations extract information features
by mixing cross-channel and spatial information, we use
our modules to emphasise features that are meaningful in
these two main dimensions: the channel and the spatial axis.
To achieve this, we apply the channel and spatial attention
modules in turn, so that each branch can learn what and
where to pay attention to on the channel and spatial axes,
respectively. Our modules thus effectively aid the flow of
information in the network by learning which information
needs to be emphasised or suppressed. The features of the
object image are represented in two dimensions, spatial
and channel, first by the spatial attention module and then
by the channel attention module, and finally, the generated
features are obtained. The structure of the SCAM proposed
in this paper is shown in Figure 6.

The proposed SCAM contains two independent submo-
dules, the spatial attention module and the channel attention
module, which perform feature extraction on space and
channels. The input feature map F is passed through the
two attention modules first, and then, the final features are
output F ′′, MsðFÞ indicates that the feature map F has
passed the spatial attention mechanism, ⊗ is multiplied by
the corresponding element, and F ′ indicates the output
feature map after passing the spatial attention mechanism;
McðF ′Þ indicates that the feature map F has passed the
channel attention mechanism, and F ′′ indicates the output
feature map after passing the SCAM attention mechanism,
as shown in the following example:

F ′ =Ms Fð Þ ⊗ F, ð13Þ

F ′′ =Mc F ′
� �

⊗ F ′: ð14Þ

(1) Spatial attention module

In the process of facial expression recognition, different
expressions are associated with specific regions. Moreover,
an overall facial expression consists of several regions, and
more attention needs to be paid to the local features with
the highest expression relevance. The SCAM is shown in
Figure 7.

First, the input feature map will perform global max
pooling and global average pooling, followed by a CONCAT
operation based on the channel and a 7 × 7 convolutional
dimensionality reduction, and finally, it will generate the
spatial attention feature by sigmoid normalization, where
MaxPoolðFÞ denotes the global max pooling, AvgPoolðFÞ
denotes the global average pooling, f 7×7 denotes the convo-
lution kernel for 7 × 7 size, σ is the sigmoid function, and

Table 1: Model parameters.

Light-NTWRN
Type Filters Size Output Repetition

Input — — 48 × 48 × 3 —

Conv 3 × 3 16 48 × 48 × 16 —

BN+ReLU — — 48 × 48 × 16 —

DS-1 3 × 3 96 48 × 48 × 96

5

BN+ReLU 48 × 48 × 96
DS-2 3 × 3 96 48 × 48 × 96
BN+ReLU+dropout 48 × 48 × 96
DS-3 3 × 3 96 48 × 48 × 96
BN+ReLU+SCAM 48 × 48 × 96
Conv-1 1 × 1 192 24 × 24 × 192

8

BN+ReLU 24 × 24 × 192
GConv-1 3 × 3 192 24 × 24 × 192
BN+ReLU+dropout 24 × 24 × 192
Conv-2 1 × 1 192 24 × 24 × 192
BN+ReLU+SCAM 24 × 24 × 192
DS-4 3 × 3 384 12 × 12 × 384

5

BN+ReLU 12 × 12 × 384
DS-5 3 × 3 384 12 × 12 × 384
BN+ReLU+dropout 12 × 12 × 384
DS-6 3 × 3 384 12 × 12 × 384
BN+ReLU+SCAM 12 × 12 × 384
GlobalAvg pooling — — 1 × 1 × 384 —

Softmax — — 1 × 1 × 7 —

Table 2: Random erasing parameters.

Parameter Value

p 0.5

Sl 0.05

Sh 0.3

re 0.3
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MsðFÞ is the output feature map after passing the spatial
attention mechanism. The example is as follows:

Ms Fð Þ = σ f 7×7 AvgPool Fð Þ ; MaxPool Fð Þ½ �ð Þ� �
: ð15Þ

(2) Channel attention module

To represent the feature information of facial expres-
sions in multiple dimensions, the feature maps output by
the spatial attention module are used as the input of this
module, based on global max pooling and global average
pooling of width and height, respectively, and the two
obtained features are fed into a neural network composed
of hidden layers and a multilayer perceptron (MLP). Then,
the final features are merged and output using element-by-
element summation, as follows:

Mc Fð Þ = σ MLP AvgPool Fð Þð Þ +MLP MaxPool Fð Þð Þð Þ:
ð16Þ

3.4. Grouping Bottleneck Method. In this paper, the grouping
bottleneck is improved based on the group convolution
method, and its specific structure is shown in Figure 8,
which consists of 1 × 1 and 3 × 3 convolutions, where the
number of convolution kernels in the first layer of 1 × 1 is
half of the number of input feature map channels, and the

reduction in the number of convolution kernels can reduce
the number of network parameters. The size of the input
feature map of the bottleneck block is 48 × 48 × 96, and the
size of the feature map is 24 × 24 × 192 after the 1 × 1 ×
192 convolution. A 1 × 1 convolution reduces the number
of parameters of the network by half while deepening the
network to extract deep semantic information, which sub-
stantially reduces the subsequent convolution computation.
The second layer of the bottleneck block is a 3 × 3 convo-
lution as a group convolution layer, the number of convo-
lution kernels of group convolution is the number of
channels of the input feature map, the feature map of 24 ×
24 × 192 is divided into 192 feature maps of 24 × 24 × 1 by
channel, the features are extracted using 192 convolution
kernels of 3 × 3, the corresponding element positions of the
input and output feature maps are summed in pairs to obtain
the final feature map, and the method of summing corre-
sponding elements can solve the network degradation prob-
lem to some extent. Since the second layer of the original
structure is a 3 × 3 convolutional structure changed to a
3 × 3 grouped convolutional structure, it can reduce the
number of parameters of the network, reduce the com-
plexity of the model, and improve the computational
speed of the network, because when the ordinary convolu-
tional operation is performed, the input feature map size is
C ×H ×W and there are N convolutional kernels, then
the output feature map, and the number of convolutional
kernels. The size of each convolutional kernel is C × K × K ,
and the total number of parameters of N convolutional
kernels is N × C × K × K .

Grouped convolution groups the input feature maps and
then convolves each group separately, if the input feature
map size is C ×H ×W and the number of output feature
maps is N ; if we set to divide into G groups, the number of
input feature maps of each group is C/G, then the number
of output feature maps of each group map is N/G, the size
of each convolutional kernel is ðC/GÞ × K × K , the total
number of convolutional kernels is still N , the number of
convolutional kernels in each group is N/G, the convolu-
tional kernels only convolve with the input map of the same

Target picture

Random erasing

Improved random erasing

Figure 5: Comparison chart of the random erasing experiment.

×
Ms

Mc

×

F

F' F''

Channel attention

Spatial attention

Figure 6: Scam overall attention module.
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group with them, and the total number of convolutional ker-
nels is N × ðC/GÞ × K × K , so the total number of parameters
is the original 1/G.

The number of parameters of the bottleneck and the
grouping bottleneck is shown in Table 3, and it was found
that the grouping bottleneck block has a substantial decrease
in the number of parameters compared with the original
bottleneck block, with a ratio of nearly 1/10. The nonlinear
expression capability of the model is increased.

3.5. Depthwise Separable Shuffle Method. In this paper,
channel shuffling is used to improve the depthwise separable
convolution [31, 32], and its structure is shown in Figure 9.
The depthwise separable convolution first uses depthwise
convolution to process the input feature map, and different
channels use different convolution operations and then use
the CONCAT method for channel stitching. Thus, the final
output features are derived from only part of the input chan-
nel features, and there is no information exchange between
the different channels, which leads to the limited character-
izability of the extracted features. Although the depthwise
separable convolution uses pointwise convolution to further

increase the dimensionality of features, which can enhance
the communication of spatial feature information to a cer-
tain extent, the increase in dimensionality leads to an
increase in the number of network parameters. Deep separa-
ble convolution is divided into deep convolution operation
and point-by-point convolution operation. In the deep con-
volution operation, if the input feature dimension is DF ×
DF ×M, M is the number of channels, and the parameter
of the convolution kernel is Dk ×Dk × 1 ×M, the output fea-
ture dimension after deep convolution is DF ×DF ×M. Each
channel only corresponds to one convolution kernel when
convolving, so the FLOPs are M ×DF ×DF ×Dk ×Dk. In
the point-by-point convolution operation, the input is the
feature after deep convolution, the dimension is DF ×DF ×
M, the parameter of convolution kernel is 1 × 1 ×M ×N ,
the output dimension is DF ×DF ×M, the convolution pro-
cess does 1 × 1 standard convolution for each feature, and
the FLOPs are N ×DF ×DF ×M. In this paper, the point-
by-point convolution operation is replaced by the channel
shuffle method, which reduces the number of parameters
of the point-by-point convolution operation. The channel
shuffle method has the same function as the point-by-point
convolution method; however, the number of parameters
of the whole network does not increase because its dimen-
sionality does not change, while the characterizability of
the features is enhanced, which reduces the complexity of
the network to some extent improves the training speed of
the model, which can improve the whole network’s face
recognition accuracy.

Spatial attention module

[MaxPool, AvgPool]F

Conv layer

Spatial attention
Ms

+

MaxPool

AvgPool

Shared MLP
Channel attention

Mc

Channel attention module

Spatial-refined 
feature F'

Figure 7: SCAM.

w×h×c

1×1×c/2

3×3×1 3×3×1 3×3×1...

1×1×c

w×h×c

+

Figure 8: Grouping bottleneck.

Table 3: Comparison of the number of participants before and
after bottleneck improvement.

Module Number of participants (pcs) Ratio

3 × 3Conv 580327 1.78

Bottleneck 324873 1

Grouping bottleneck 33257 0.10
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4. Experiment and Analysis

4.1. Experiment Preparation. To verify the accuracy and the
effectiveness of the Light-NTWRN network model proposed
in this paper, the light-NTWRN network model is subjected
to comparative ablation experiments on the FER2013, CK+
dataset, and JAFFE dataset. The experiment is based on the
TensorFlow deep learning framework for training, and test-
ing is conducted on Pycharm with the following hardware
environment configuration: Win10 operating system, Intel
Core i7-10700F with 2.9GHz CPU and 16G RAM and
NVIDIA GeForce RTX 3070 (8GB) graphics card. During
the experiments, 70% of the facial expression images are
randomly selected as the training set, and 30% of the facial
expression images are randomly selected as the test set.
Additionally, the experimental parameters are set as shown
in Table 4.

4.2. Facial Expression Dataset. The FER2013 facial expres-
sion dataset consists of 35,886 facial expressions, and the
dataset is expanded to 80,000 by an improved random eras-
ing method where the training set contains 56,000 and the
test set contains 24,000, and each image is composed of a
grayscale image with a fixed size of 48 × 48, which contains
a total of 7 expressions, namely, angry, disgusted, fear,
happy, sad, surprised, and neutral. The facial expression
images of FER2013 are more difficult to recognize because
of the interference of occlusion, pose, low contrast, and
background.

CK+ is expanded from the Cohn-Kanda dataset, which
contains a total of 123 participants, 593 image sequences,
and a total of 7 expressions. The CK+ dataset acquisitions
are all collected under the same lighting background, the
acquisition environment is better, and the dataset is
expanded to 1500 images through an improved random
erasing method, with 70% of the training set and 30% of
the test set.

The JAFFE dataset was selected from 10 Japanese female
students who each made 7 different expressions, consisting

of a total of 213 photos, which were expanded to 3408
photos by rotation, flip, contrast enhancement, panning,
cropping, scaling, and improved random erasing methods.

4.3. Ablation Experiment. To verify the effectiveness of the
Light-NTWRN network model proposed in this paper,
ablation experiments are conducted for each module, and
the experimental results are shown in Table 5. WRN denotes
the improved wide residual network, RE denotes the
improved random erasing method, SCAM denotes the
improved attention mechanism module, GBN denotes the
grouping bottleneck method, and DS denotes the depthwise
separable shuffle method, where WRN+RE+SCAM+GBN+
DS denotes the Light-NTWRN network proposed in this
paper.

First, the facial expression images are input into the
model after the improved random erasing operation, and
for the model to acquire more local features of facial expres-
sions, the improved SCAM is embedded into the network to
reassign the feature weights of facial expressions from both
the channel and space dimensions. The grouping bottleneck
method is improved to solve the problem of model redun-
dancy caused by too many convolutional layers. To reduce
the number of parameters computed by the network and
speed up the network operation, an improved depthwise

Input Concat

... ...

Channel
shuffle

Depthwise,

Output

DW

Figure 9: Depthwise separable shuffle method.

Table 4: Experimental parameter settings.

Parameter FER2013 CK+ JAFFE

Optimizer SGD SGD SGD

Momentum 0.9 0.9 0.9

Batch size 30 20 40

Learning rate 0.01 0.01 0.01

Learning rate
decay

0.5/50 0.5/50 0.5/50

Loss function Cross entropy Cross entropy Cross entropy

Epochs 300 300 300
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separable shuffle method is added. To verify the effectiveness
of each improved module, the Light-NTWRN network abla-
tion experiments are shown in Table 5.

The ablation experiments are shown in Figure 10, where
part a represents the FER2013 ablation experiment, part b
represents the CK+ ablation experiment, and part c repre-
sents the JAFFE ablation experiment. According to the abla-
tion experiments of the FER2013 dataset in part a, we can
see that Light-NTWRN has the fastest convergence rate,
and the model recognition accuracy grows slowly when
trained to 100 epochs and gradually levels off when trained
to 210 epochs. The accuracy gradually levels off, and the
highest accuracy reaches 73.21%.

From the ablation experiments of the CK+ dataset in
part b of Figure 10, it can be seen that the accuracy of the
model increases rapidly at the beginning of training, and
the accuracy of the model recognition oscillates up and
down from the 50th epoch to the 100th epoch. When the
training reaches 150 epochs, the accuracy tends to be stable,
and the highest accuracy can reach 98.72%. From the abla-
tion experiments of the JAFFE dataset in part c, we can see
that the accuracy of the model also grows faster at the begin-
ning of training, and when, the training reaches 180 epochs,
the accuracy tends to be stable, and the highest accuracy can
reach 95.21%. From the dataset, it was found that the accu-
racy of the model is improved after adding SCAM, but there
is a slight loss of its network operation speed. GBN and DS
can effectively reduce the number of network parameters
and improve the accuracy of the model. Furthermore, the
accuracy of the model proposed in this paper on the three
datasets FER2013, CK+, and JAFFE is improved by 3.61%,
3.34%, and 3.79%, respectively, compared with that of the
original model, and the number of parameters is reduced
by 44.74% compared to that for the original network, which
proves that the proposed model has better effectiveness and
faster computing speed.

To further verify the effectiveness and the robustness of
the proposed model in this paper, the confusion matrix
experiments are shown in Figure 11, where part a represents
the confusion matrix on the FER2013 dataset, part b repre-
sents the confusion matrix on the CK+ dataset, and part c
represents the confusion matrix on the JAFFE dataset.

From the confusion matrix on the FER2013 dataset in
part a, we can see that the recognition accuracy of the three
categories of anger, fear, and sadness is low because the
activities of these three categories of facial expressions are
less obvious, and the feature points are difficult to extract.
The recognition performance of each category on the CK+

dataset is better, and the accuracy is higher. On the JAFFE
dataset, the recognition accuracy of the anger and disgust
categories is lower because the misidentified samples all
belong to the negative category of emotions, which are more
similar, facial features are difficult to extract, so recognition
is more challenging.

4.4. Mainstream Algorithm Comparison Experiment. To
verify the effectiveness of the Light-NTWRN algorithm pro-
posed in this paper for facial expression recognition, com-
parison experiments are conducted with five mainstream
algorithms, mainly AlexNet, VGG16, VGG19, ResNet18,
and ResNet50, to compare the size of the number of param-
eters and the specific recognition accuracy on the three data-
sets, and the specific results are shown in Table 6.

The Light-NTWRN algorithm proposed in this paper
has the highest accuracy for facial expression recognition
on the FER2013 dataset, with an improvement of nearly
2% compared to the ResNet50 model in the mainstream
algorithm. From the experimental results on the CK+ data-
set, the recognition accuracy of the VGG16 model is the
highest among the mainstream networks, while the recogni-
tion accuracy of the model proposed in this paper is
improved by 3.26% compared to the VGG16. The recogni-
tion accuracy on the JAFFE dataset is as high as 95.21%.

This can further verify the effectiveness of the three
improved methods proposed in this paper, which can
improve the recognition accuracy. Compared with the other
five mainstream algorithms, the Light-NTWRN algorithm
proposed in this paper has the highest accuracy and the best
algorithm performance in terms of facial expression recogni-
tion and has strong generalization.

In terms of the number of model parameters, the num-
ber of model parameters of the network proposed in this
paper is 10.14M, which is the lowest compared with the
other five mainstream algorithms and can maintain high
recognition accuracy, which verifies the advanced and excel-
lent model. It also further verifies the effectiveness of the
three improvement methods proposed in this paper for
model lightweighting.

We compare the proposed method in this paper with
other existing methods. The existing more advanced
methods are MANet [33], a model that obtains key region
features by adaptively learning weights; Minaee [34], a model
that assigns residual blocks to spatial mask information;
WMDCNN [35], a model that mixes two-channel weighting
of static images; and APRNET50 [36], a model that uses mul-
tiscale feature extraction blocks instead of residual units. The

Table 5: Light-NTWRN network ablation experiments.

Model FER2013 (%) CK+ (%) JAFFE (%) Parameter (M)

WRN 69.60% 95.38% 91.42% 18.35

WRN+RE 71.05% 97.54% 93.88% 18.35

WRN+RE+SCAM 72.27% 98.35% 94.28% 23.21

WRN+RE+SCAM+GBN 72.58% 98.60% 94.87% 15.72

Light-NTWRN (ours) 73.21% 98.72% 95.21% 10.14
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Figure 10: Ablation experiment.
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comparison is performed on the FER2013, CK+, and JAFFE
datasets. It can be seen in Table 7 that the model proposed
in this paper has the highest accuracy, and the effectiveness
of the model proposed in this paper can be proven by the
above experiments.

5. Conclusion

This paper proposes a multiscale feature fusion attention
lightweight facial expression recognition method that effec-
tively suppresses the influence of irrelevant feature informa-
tion on the model while slowing the gradient disappearance
caused by too many layers of the neural network, thus reduc-
ing the number of parameters computed by the network and
improving the computational speed of the model. The
improved SCAM module focuses more on feature informa-
tion to speed up the convergence of the model and improve
its performance. The improved random erasing method
expands the training set while enhancing the robustness of
the model to noise. The grouping bottleneck method reduces
the dimensionality of the target image while increasing the
nonlinear expression capability of the model. In addition,
the depthwise separable shuffle method reduces the number
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Figure 11: Confusion matrix.

Table 6: Comparison experiments of mainstream algorithms.

Model FER2013 (%) CK+ (%) JAFFE (%) Parameter (M)

AlexNet 67.51 87.59 89.83 60.92

VGG16 68.89 95.46 91.04 14.75

VGG19 68.53 92.18 90.37 20.06

ResNet18 70.09 89.39 92,55 11.69

ResNet50 71.26 92.46 93.08 25.56

Light-NTWRN (ours) 73.21 98.72 95.21 10.14

Table 7: Recognition rates of various algorithms on the facial
expression dataset.

Model FER2013 (%) CK+ (%) JAFFE (%)

MANet [33] 69.46 96.28 —

Minaee [34] 70.20 98.00 92.80

WMDCNN [35] — 98.50 92.30

APRNET50 [36] 73.00 94.95 94.80

Light-NTWRN (ours) 73.21 98.72 95.21
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of parameters computed by the network while speeding up
the computational speed of the network. The accuracy of
the proposed model (Light-NTWRN) is 73.21% on the
FER2013 dataset, 98.72% on the CK+ dataset, and 95.21%
on the JAFFE dataset, while having a lower number of
parameters, and the experimental results are better than
many current mainstream algorithms, showing better effec-
tiveness and robustness. However, the recognition accuracy
is still not high enough in the case of obscured facial expres-
sions, and more attention should be given to the recognition
performance of these datasets in the future.
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