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The structural reliability analysis suffers from the curse of dimensionality if the associated limit state function involves a large
number of inputs. This study develops a reliability analysis method that deals with high-dimensional inputs over time. The
probability distribution of the structural response is reconstructed by the maximum entropy principle which is achieved by
solving an optimization problem derived from the concept of relative entropy. The optimization problem is transformed into a
convex one with respect to the orders of fractional moments and the Lagrange multipliers. Additionally, considering the
associated computational issues, it is reformulated with side constraints on the parameters of the maximum entropy
distribution. Then, a global optimization procedure is performed. The proposed method is successfully applied to the reliability
analysis of a linear and a nonlinear structural system, which involves a large number of inputs deriving from the discretization
of the input random processes.

1. Introduction

Structural reliability analysis has been intensively studied
during the past few decades. Based on the consideration of
time factor, structural reliability analysis can be roughly
divided into two groups: time-invariant reliability analysis
and time-variant reliability analysis. For the first group, as
its name implies, the time-invariant reliability methods do
not consider the effect of time factor, for example, first-/sec-
ond-order reliability method (FORM/SORM) [1–3],
moment methods [4, 5], response surface methods [6–9],
and importance sampling [10, 11]. Therefore, they only take
random variables as inputs. However, almost all structural
systems involve time-dependent parameters during their
period of operation and/or service, e.g., stochastic loading
and material property degradation. Thus, time-invariant
reliability analysis may provide inaccurate reliability assess-
ment and prediction.

In the past decade, time-variant reliability analysis has
drawn much more attention than its counterpart because
of its capacity of dealing with time factor. Thus, the corre-

sponding time-variant reliability methods can take random
variables, random processes, and even random fields as
inputs. Many time-variant reliability methods have been
developed in recent years. They can be roughly classified
into three categories: (1) the out-crossing-rate-based
methods [12–18], (2) the extreme value methods [19–27],
and (3) the composite limit state methods [28–32]. A com-
mon feature of these methods is that a time-variant reliabil-
ity analysis problem is usually transformed into a time-
invariant one or broken down into a series of time-
invariant ones. Then, the aforementioned time-invariant
reliability methods are applied to complete the time-
variant reliability analysis. For instance, FORM has been
integrated into many time-variant reliability methods [14,
17]. Note that the time-variant reliability methods with
FORM inherent the drawbacks of FORM.

Many challenges are encountered by time-variant reli-
ability analysis. One main challenge arises from the curse
of dimension when a large number of random variables are
used to represent the input random processes and/or fields.
It should be pointed out that there is also a universal and
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dimension-free tool for both time-invariant reliability analy-
sis and time-variant ones. It is direct Monte Carlo simula-
tion (MCS). However, MCS suffers from a huge
computational effort for estimating a small failure probabil-
ity when a time-consuming model or experiment is
involved, e.g., a large-scale finite element model. Subset sim-
ulation [33, 34] is an alternative for MCS for estimating
small failure probabilities in both time-invariant reliability
analysis and time-variant ones. However, several thousands
of samples are still required to obtain a robust and accurate
estimation by subset simulation.

In this paper, we are interested in developing an efficient
and accurate method for high-dimensional time-variant reli-
ability analysis. The high-dimensional issue is solved
through the development of a reliability method using statis-
tical moments.

Zhao and Ono’s moment method is the most attractive
one for structural reliability analysis [4, 5] after the year
2000, where the first three or four moments of structural
response are used to fit a parametric distribution. The Pear-
son system [35] was recommended as the reliability index
for the moment method. Although the Pearson system of
frequency curves is flexible, they still impose spurious infor-
mation on the unknown distribution. It is also contentious
from both theoretical and practical views [36, 37]. The max-
imum entropy (MaxEnt) principle was pioneered by Jaynes
[38, 39], which minimizes the amount of prior information
built into the approximate distribution while maximizing
entropy, i.e., a measure of uncertainty. Using the MaxEnt
principle, Li and Zhang proposed a combined method for
structural reliability analysis [37]. The statistical moments
of structural response are calculated by the dimension
reduction method [40, 41]. Zhang and Pandey analyzed
two challenging issues of using integer moments when
approximating the unknown distribution by the MaxEnt
principle [36]. They are a large number of required
moments and the oscillatory phenomena at the tail of
MaxEnt distribution. The usage of fractional moments
[42] was proposed to overcome these two issues for
time-invariant reliability problems since a fractional
moment contains the statistical information of a large
number of integer moments. A multiplicative dimensional
reduction method was also developed to compute the frac-
tional moments of structural response [36]. Considering
correlated input random variables, Li et al. suggested using
the unscented transformation technique to calculate frac-
tional moments [43]. Dai et al. employed the MaxEnt
principle to construct the optimal importance sampling
density for the importance sampling method [44]. How-
ever, the above investigations are limited to time-
invariant reliability problems.

For the time-variant reliability analysis problem, Shi
et al. presented the performance of the combination of
dimension reduction method and the MaxEnt principle with
fractional moments [45]. Xu and his colleagues carried out a
series of studies about the MaxEnt principle with fractional
moments and their applications for time-variant reliability
analysis [46–50]. However, the number of input random
variables in the application examples is not beyond 20

[45–50]. Thus, the abovementioned methods cannot be
applied to the time-variant reliability analysis problems
involving a large number of inputs [47].

The objective of this paper is to propose an efficient
method for the high-dimensional time-variant reliability
problems by using the MaxEnt principle with fractional
moments, where the number of input random variables is
larger than 100. The contributions of this study are as fol-
lows: (1) a new perspective for estimating a failure probabil-
ity curve from the combination of fractional moments and
the maximum entropy principle and (2) a new tool for
high-dimensional and nonlinear time-variant reliability
analysis with input random variables and processes. High-
dimensional issue is very challenging in many science and
engineering fields [51–53]. To address this issue, fractional
moment and the maximum entropy distribution are used
to approximate the probability density function of structural
responses of interested, which has a capacity of dealing with
zero-shot events [54] for structural reliability analysis. In
other words, the proposed method can estimate structural
reliability with zero-failure samples.

The remainder of the paper is organized as follows:
Section 2 briefly reviews the problem setup for time-
variant reliability analysis. Section 3 describes the proce-
dure and theoretical rationale of the proposed method.
Section 4 analyzes the implementation issues and their
corresponding possible solutions. Two high-dimensional
examples are used to demonstrate the performance of
the proposed method in Section 5. Concluding remarks
are provided in Section 6.

2. Problem Statement

Limit state functions (LSFs) are employed to capture the
intended operating condition of structures in the structural
reliability community, which divides the operating space
into two domains, i.e., the safe domain and the failure
domain. Let gð⋅Þ be an LSF of the intended operating condi-
tion of a structure, where gð⋅Þ > 0 indicates the structure is
safe while gð⋅Þ ≤ 0 means there is a failure in the structure.
The general form of LSF is defined as

G = g X, Y tð Þ, tð Þ, ð1Þ

where G is the response quantity, X is the input random var-
iable vector, YðtÞ is the input random process vector, and t is
the input time, respectively. Based on the different type of
inputs in the LSF gð⋅Þ, the LSF may degrade into simpler
types [22]. It is well-known that reliability is a function of
time snice the LSF of interest is related to time via the
time-dependent random process YðtÞ and the explicit oper-
ating time t. Suppose that we are interested in the time-
variant reliability of the structure over a time interval ½0, t f �
, where t f is the final time instant. The time-variant reliabil-
ity Rð0, t f Þ can be expressed as

R 0, t f
� �

= Pr G = g ⋅ð Þ > 0,∀t ∈ 0, t f
� �� �

, ð2Þ
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where the symbol ∀ means for all time instants. In practical
estimation, the corresponding time-variant failure probabil-
ity Pf ð0, t f Þ is more preferable which is defined as a comple-
mentary quantity to the time-variant reliability, i.e.,

Pf 0, t f
� �

= Pr G = g ⋅ð Þ ≤ 0,∃t ∈ 0, t f
� �� �

, ð3Þ

where the symbol ∃ has a meaning of “there exists at least
one.” To distinguish the failure probability over a time inter-
val from that for a time instant, Pf ð0, t f Þ in Equation (3) is
also called as the cumulative failure probability. Obviously,
it is a function of the final time t f .

To handle the input random processes, the time interval
of interest ½0, t f � is usually divided into a set of discrete time
instants with a constant time step Δt. Let ti = iΔt represent
the time instant at the ith step, where the index i = 1,⋯, n.
Spectral decomposition methods are suggested to deal with
the input random processes and transform them into a set
of random variables [17, 22, 24, 26]. Let Z be the trans-
formed random variables from the input random processes.
Then, the LSF becomes G = gðX, Z, tÞ. Furtherly, at a time
instant ti, an instantaneous LSF is defined as Gi = gðX, Z, ti
Þ. Using the concept of series-system reliability, the cumula-
tive failure probability in Equation (3) is approximated as

Pf 0, t f
� �

≈ Pr ∪
n

i=1
g X, Z, tið Þ ≤ 0

n o
= Pr ∪

n

i=1
Gi ≤ 0

n o
= Pr max

i=0,1,⋯,l
Gið Þ ≤ 0

� 	
,

ð4Þ

where W = max
i=0,1,⋯,n

ðGiÞ. The advantage of Equation (4) is

that the output random process G = gð⋅Þ is converted into
a random variable W.

The magnitude of time step size Δt affects the approxi-
mate accuracy of input random processes with a finite num-
ber of random variables firstly. Then, this effect may
propagate into Equation (4) through the LSF and furtherly
influence the estimation accuracy of the cumulative failure
probability. In this study, we assume that the magnitude of
time step size is sufficiently small and adequate to capture
the uncertainty in the input random processes and failure
information in the transformed series system. The current
study focuses on the development of a new high-
dimensional time-variant reliability analysis method based
on Equation (4).

3. Proposed Method

3.1. Overview. The new high-dimensional time-variant reli-
ability analysis method has three stages. The first stage is
to generate random samples for the input random variables
and random processes using MCS sampling strategy and
furtherly compute the structural responses. The second stage
involves the approximation of the MaxEnt distribution. The
third stage is related to the calculation of failure probability
using the MaxEnt distribution obtained in the second stage.
It is clear that the second stage is the key stage of the pro-

posed method. The implementation procedure of the pro-
posed method is shown in Figure 1.

Stage 1 involves four steps. Step 1: discretize the time
interval ½0, t f � with a constant time step size Δt and obtain
n + 1 discrete time instant ðt0 = 0, t1,⋯, tn = t f Þ. Step 2:
decompose the input random processes YðtÞ with a group
of random variables Z. Step 3: generate N random samples
for the input random variables and random processes. Step
4: substitute the random samples into the LSF to obtain N
trajectories of structural response.

Stage 2 is furtherly divided into three steps. Step 1: solve
the optimization problem derived from the concept of rela-
tive entropy. Step 2: calculate the fractional moments from
the N trajectories of structural response. Step 3: determine
the MaxEnt distribution based on the solution to the optimi-
zation problem in Step 1. In the subsequent sections, we will
discuss the details of Step 1 and 3 since these steps are theo-
retical fundamentals of the proposed method.

Stage 3 is straightforward once the probability density
function (PDF) of MaxEnt distribution is determined in
Stage 2. The estimation of a cumulative failure probability
is just a numerical integration over the failure domain.

3.2. Maximum Entropy Principle with Fractional Moments.
The advantages of usage of fractional moments in the max-
imum entropy principle have been proven by several studies
in the structural reliability community [36, 43, 45–50]. This
subsection will give a brief review of the maximum entropy
principle with fractional moments.

Identifying the probability distribution with statistical
moments has been investigated extensively in the literature.
However, the use of integer statistical moments suffers from
accuracy concern. Zhang and Pandey study the need of frac-
tional moments instead of integer moments, which is evoked
by the relationship between them [36].

We start with the definition of the fractional binomial

coefficient
α

i

 !
that is given by

α

i

 !
= α α − 1ð Þ⋯ α − i + 1ð Þ

i i − 1ð Þ⋯ 1 , ð5Þ

where α is a real number and i is an integer number. If
applying the Taylor series expansion on a function of xα,
one has

xα = 〠
∞

i=0

α

i

 !
cα−i x − cð Þi, ð6Þ

where c is a reference point.
The αth-order fractional moment of a positive random

variable X is defined as

E Xα½ � =
ð
X
xα f X xð Þdx: ð7Þ
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Substituting Equation (6) into Equation (7), one has

E Xα½ � = 〠
∞

i=0

α

i

 !
cα−iE X − cð Þi� � ð8Þ

where E½ðX − cÞi� is the ith central moment of the random
variable X. If the reference point is put on the mean value
of the random variable X, the ith central moment can be
rewritten as

E X − cð Þi� �
= 〠

i

k=0
−1ð Þi−k

i

k

 !
ci−kE Xk

h i
, i = 1, 2,⋯:

ð9Þ

Equations (8) and (9) indicate that a fractional moment
includes the information of a series of integer statistical
moments, either central moments or raw moments.

If a couple of fractional moments are available at hand,
they would provide much more information than the same
number of integer moments for identifying an unknown dis-
tribution type. In contrast, Gzyl and Tagliani [55] proved
that 30 or more integer moments are required by Equations
(8) and (9) to guarantee the accuracy of a fractional

moment, where the infinite sequence of integer moments is
demanded theoretically. This result is extremely important
and gives a strong motivation to employ the concept of the
fractional moment to reconstruct an unknown distribution
type from a group of samples.

The information entropy of a random variable X is a
measure of the uncertainty containing by the random vari-
able, which is defined as

HX =
ð
f X xð Þ log f X xð Þð Þdx, ð10Þ

where f XðxÞ is the probability density function of the ran-
dom variable X.

The core step of the proposed method in this study is to
reconstruct an expression for the unknown PDF of the
structural response G, given a sample of experimental data.
The MaxEnt principle states that the most unbiased estima-
tion of the unknown PDF is the one that maximizes Equa-
tion (10) with given constraints. In this study, the given
constraints are the fractional moments determined from
the experimental data. Therefore, by the MaxEnt principle,
the PDF identification problem is converted into an optimi-
zation problem [42].

max HX ,

s:t:
ð
f X xð Þdx = 1,

ð
xα f X Xð Þdx =Mα

x ,

ð11Þ

where Mα
x is the αth fractional moment estimated from a

sample

Define time-variant 
reliability problem

Step 4: Compute 
structural response

Step 1 : Discretize the 
time interval

Stage 1

Step 2: Decompose 
input random processes

Step 3: Generate 
random samples

Step 1: Solve 
optimization problem

Step 3: Determine the 
MaxEnt distribution

Step 2: Calculate 
fractional moments

Obtain the failure 
probability

Stage 2

Stage 3

Figure 1: Procedure of the proposed method.

k

c
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Figure 2: The SDOF oscillator.
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Mα
x =

1
N
〠
N

i=1
xαi ≈ E Xα½ �: ð12Þ

Note that xi are the random samples for the random var-
iable X and N is the number of experimental points in the
sample.

Solving the optimization problem with the Lagrange
multiplier method, one has the following generic form of
the MaxEnt distribution [36, 42].

f̂ X xð Þ = exp −λ0ð Þ exp −〠
m

i=1
λix

αi

 !
, ð13Þ

where f̂ XðxÞ denotes the MaxEnt PDF for f XðxÞ, λi are the
Lagrange multipliers, αi are the orders for the fractional
moments, and m is the number of available fractional
moments, respectively. The parameter λ0 is a normalizing

factor which makes sure that the integration of f̂ XðxÞ over
its support domain is 1 and satisfies the definition of PDF.
Thus, from Equation (13), one has

λ0 = log
ð
exp −〠

m

i=1
λix

αi

 !" #
: ð14Þ

Based on the concept of relative entropy (or the
Kullback-Leibler distance), Zhang and Pandey proved that
the following optimization problem is equivalent to Equatio
(11) [36].

min Ι λ, αð Þ = log
ð
X
exp − 〠

m

i=1
λix

αi

 ! !
dx

 !
+ 〠

m

i=1
λiM

αi
X :

ð15Þ

The minimization of the relative entropy means the
minimization of the generalized distance between the true
PDF f XðxÞ and the estimated PDF f̂ XðxÞ, which is quantified
by the information entropy. We will further reformulate the
optimization problem in Equation (15) and derive an attrac-
tive property of it in the next subsection.

3.3. Computation of Maximum Entropy Distribution. Recal-
ling the equivalent optimization problem in Equation (15),
its objective function is furtherly rewritten as

Ι λ, αð Þ = log
ð
X
exp − 〠

m

i=1
λix

αi

 ! !
dx

 !
+ 〠

m

i=1
λiM

αi
X

= log
ð
X
exp − 〠

m

i=1
λix

αi − 〠
m

i=1
λiM

αi
X

 ! !
dx

 !
:

ð16Þ
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Figure 3: Fractional moments and relative error of the normalized response (the SDOF oscillator).

Table 1: The value of the objective function without penalty term.

N = 500 N = 1000 N = 1500 N = 2000
m = 3 0.406786 0.408704 0.398282 0.397276

m = 4 0.406792 0.408709 0.398292 0.397279

m = 5 0.406797 0.408708 0.398286 0.397281

Table 2: The value of the objective function with penalty term.

N = 500 N = 1000 N = 1500 N = 2000
m = 3 0.4128 0.4117 0.4003 0.3988

m = 4 0.4148 0.4127 0.4010 0.3993

m = 5 0.4168 0.4137 0.4016 0.3998
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It is obvious that minimizing Iðλ, αÞ is equivalent to
minimize the following integral:

ð
X
exp − 〠

m

i=1
λix

αi − 〠
m

i=1
λiM

αi
X

 ! !
dx ≡Q λ, αð Þ: ð17Þ

The integral term is defined as a function Qðλ, αÞ for the
purpose of simplification. Based on the definition of Qðλ, αÞ
in Equation (17), the MaxEnt distribution can be rewritten
as

f̂ xð Þ = Q λ, αð Þ½ �−1 exp −〠
m

i=1
λi x

αi −Mαi
X

� � !
: ð18Þ

This study examines the properties of the integral func-
tion Qðλ, αÞ firstly. The derivative of Qðλ, αÞ with respect
to λi is written

∂Q
∂λi

=
ð
X

∂
∂λi

exp − 〠
m

i=1
λix

αi − 〠
m

i=1
λiM

αi
X

 ! !
dx

=Q λ, αð Þ
ð
X
− xαi −Mαi

X

� �
Q λ, αð Þ−1 exp − 〠

m

i=1
λix

αi − 〠
m

i=1
λiM

αi
X

 ! !
dx

=Q λ, αð Þ
ð
X
− xαi −Mαi

X

� �
f X xð Þdx:

ð19Þ

Recalling the definition of fractional moment, we have

∂Q
∂λi

=Q λ, αð Þ
ð
X
− xαi −Mαi

X

� �
f X xð Þdx

=Q λ, αð Þ Mαi
X −

ð
X
xαið Þf X xð Þdx


 �
= 0:

ð20Þ

The first derivative of Qðλ, αÞ with respect to αi is given
by
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Figure 4: Comparison of histogram, PDF, and POE for m = 3 and N = 500.

6 International Journal of Aerospace Engineering



∂Q
∂αi

=
ð
X

∂
∂αi

exp − 〠
m

i=1
λix

αi − 〠
m

i=1
λiM

αi
X

 ! !
dx

=
ð
X
− λi αix

αi−1 −
ð
X

∂
∂αi

xαi f xð Þdx

 �

exp − 〠
m

i=1
λix

αi − 〠
m

i=1
λiM

αi
X

 ! !
dx

=Q λ, αð Þ
ð
X
− λiαi xαi−1 −Mαi−1

X

� 
f X xð Þdx = 0:

ð21Þ

From Equations (20) and (21), we know that the solution
point ðλ1,⋯, λm, α1,⋯, αmÞ to Equation (17) is a saddle
point of Qðλ, αÞ at least.

Next, we examine the elements in the Hessian matrix of
Qðλ, αÞ. There are four types elements in the Hessian matrix,
i.e., ∂Q/∂λi∂λj, ∂Q/∂αi∂αj, ∂Q/∂λi∂αj, and ∂Q/∂αi∂λj which
consist of the submatrices A, B, C, and D, respectively, as
shown in

H =
A B
C D

" #
: ð22Þ

For the submatrix A, the elements are

∂Q
∂λi∂λj

=Q λ, αð Þ
ð
X
xαi −Mαi

X

� �
xα j −M

α j

X

� 
f X xð Þdx ð23Þ

It is apparent submatrix A is a covariance-like and sym-
metric one. In a similar way, we have

∂Q
∂αi∂αj

= αiαjλiλjQ λ, αð Þ
ð
X

xαi−1 −Mαi−1
X

� 
xα j−1 −M

α j−1
X

� 
f X xð Þdx:

ð24Þ
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Figure 5: Comparison of histogram, PDF, and POE for m = 3 and N = 2000.

Table 3: The average computational time of the oscillator example
(second).

N = 500 N = 1000 N = 1500 N = 2000
m = 3 34.0 41. 34.3 33.4

m = 4 23.7 37.4 18.2 30.3

m = 5 21.5 22.5 40.0 25.8
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Equation (24) indicates that submatrix D is also a
covariance-like and symmetric one. For an element in sub-
matrix B, it has an expression

∂Q
∂λi∂αj

= αjλjQ λ, αð Þ
ð
X
xαi −Mαi

X

� �
xα j−1 −M

α j−1
X

� 
f X xð Þdx:

ð25Þ

Similarly, an element in submatrix C has an expression

∂Q
∂αi∂λj

= αiλiQ λ, αð Þ
ð
X

xαi−1 −Mαi−1
X

� 
xα j −M

α j

X

� 
f X xð Þdx:

ð26Þ

It can be seen from Equations (25) and (26) that subma-
trices B and C are also covariance-like ones. An attracting
property of submatrices B and C is that the columns of B
are the rows of C, i.e., B is the transpose of C.

According to above discussion, the Hessian matrix of Q
ðλ, αÞ is proven to be a covariance-like and symmetric one.
As long as the investigated f XðxÞ is a PDF, the Hessian
matrix is positive definite and of full rank. Thus, the solution
to Equation (16) is the minimum point of Qðλ, αÞ and
furtherly of Ιðλ, αÞ. Since the optimization problem in Equa-
tion(17), (15) is convex and has no constraint; it seems to
provide an opportunity to solve it easily.

4. Computational Issues and Solutions

We have discussed the theoretical rationale of the proposed
method in Section 3. However, the technical rationale of the
proposed method is more important for implementing this
algorithm in practical applications.

4.1. Problem Reformulation. We have proved that the core
optimization problem in Equation (17) is a convex one
and there is no constraint on it. That is why most of studies
have suggested that the optimization procedure can be car-
ried out by the Nelder-Mead algorithm to search the solu-
tion ðλ1,⋯, λm, α1,⋯, αmÞ [36, 45–50]. However, its
technical implementation is not as perfect as the theoretical
derivations, based on a lot of numerical implementation
experience.

m1

m2

m5

m4

m3

Base Excitation and
Structural Model

ki
si

Hysteretic restoring
force representation

ci

ri

force

Si / ki

β, tanβ = ri

α, tanα = ki+ri
displ.

m1
m4m2 m5m3

k1, s1, c1, r1 k2, s2, c2, r2 k3, s3, c3, r3 k4, s4, c4, r4 k5, s5, c5, r5

Figure 6: Schematic of a five-story shear building.

Table 4: Means of the random system properties.

Story
i

Mass
mi (kg)

Stiffness
ki (N/m)

Stiffness
ri (N/m)

Sliding force
stiffness ratio
si/ki (m)

Damping
ratio ξi

1 20 × 103 24 × 106 2:4 × 106 8 × 10−3 0.06

2 20 × 103 21 × 106 2:1 × 106 8 × 10−3 0.06

3 20 × 103 18 × 106 1:8 × 106 8 × 10−3 0.06

4 20 × 103 15 × 106 1:5 × 106 8 × 10−3 0.06

5 20 × 103 12 × 106 1:2 × 106 8 × 10−3 0.06
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The first reason is that the Nelder-Mead algorithm is
only suitable for a small number of optimization variables.
As the number of optimization variables increases, the per-
formance of the Nelder-Mead algorithm becomes worse.
The current study focuses on the high-dimensional time-
variant reliability analysis; then, the number of fractional
moments is set to be 3 or larger empirically. Thus, the total
number of optimization variables is 6 or larger. We also
encountered the phenomena of diversity due to different ini-
tial values of the optimization variables. This may be caused
by the incapability of the Nelder-Mead algorithm.

The second reason is that the estimate error of fractional
moment increases with the order of moment, i.e., α [36]. For
this reason, the lower-order moments are used in the classi-
cal maximum entropy method. To overcome this serious
drawback, the values of α should have limits during the opti-
mization procedure. For example, jαj ≤ 2 was suggested to
obtain an unbiased estimation from experimental data [36]
and jαj ≤ 1 was used by Inverardi and Tagliani [42]. In this
study, jαj ≤ 1:5 is used. Additionally, the magnitude of the
Lagrange multipliers should also have limits on their values
to reduce the searching space and the numerical error asso-
ciated to the numerical computation. We put the restriction
of ±100 on the Lagrange multipliers.

The third reason is the numerical error associated with
the integral calculation involved in Equation (17). Further-
more, it affects the accuracy of λ0, PDF and CDF of the Max-
Ent distribution, and further reliability analysis. The CDF of
the MaxEnt distribution may be larger than 1 if the
improper fractional exponents and Lagrange multipliers
are obtained. A high-order global adaptive quadrature is
used to perform the integral calculation in this study, which
possesses a relatively high accuracy among the numerical
integration algorithms in the literature.

Except the above reasons, there is another aspect that is
worth to be discussed since it is directly connected with
the interval of integration and further the associated accu-
racy. That is the support of the MaxEnt distribution. Since
the samples of structural responses are available when deter-
mining the support of the MaxEnt distribution, the maxi-
mum, minimum, mean, and standard deviation can be
estimated from the samples easily. To avoid arbitrariness,
the well-known 6σ principle is suggested to determine the
support of the MaxEnt distribution. The upper limit is set
to be xmax + 6s, where xmax and s are the maximum and stan-
dard deviation of the sample, respectively. The lower limit is
set to be xmin − 6s if xmin − 6s is larger than 0, where is xmin
the minimum observation in the sample. Otherwise, it is
set to be 0 as the investigated response quantity has positive
support which is required by the definition of fractional
moment.

Integrating the above discussion, the reformulated opti-
mization problem has side constraints on the fractional
exponents and the Lagrange multipliers. Thus, subset simu-
lation optimization [56, 57] is employed to solve the refor-
mulated optimization problem, instead of the Nelder-Mead
algorithm in this study.

4.2. Parameter Estimation Using Subset Simulation
Optimization. Subset simulation optimization is a heuristic
algorithm for optimization problems, which is extended
from a popular reliability method, i.e., subset simulation
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Figure 7: Fractional moments and relative error of the normalized response (the nonlinear structural system).

Table 5: The value of the objective function for the nonlinear
structure.

m = 3 m = 4 m = 5
Equation(17) 0.3073 0.3092 0.3108

Table 6: Parameters for the MaxEnt distribution with m = 3.

k 0 1 2 3

αk 0 -0.4950 0.6545 -1.1883

λk 7.1554 -14.9265 12.4875 3.0281
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[56–58]. An attractive feature of subset simulation optimiza-
tion is its ability for high-dimensional problems.

Based on the discussion in subsection 4.1, we have refor-
mulated the optimization problem in the MaxEnt principle
as an unconstrained one with side constraints on optimiza-
tion variables. In subset simulation optimization, a truncated
normal distribution is assigned to each optimization variable
according to the associated side constraint. Take a moment
order αi as an example, the PDF of the corresponding trun-
cated normal distribution is given by [56–58]

f αi αið Þ = ϕ αi − μið Þ/σið Þ
Φ αui − μið Þ/σið Þ −Φ αli − μi

� �
/σi

� � , ð27Þ

where αui and αli are the upper and lower limits of the
moment order, respectively; μi and σi are the mean value
and standard deviation determined by the 3-sigma rule in
reliability engineering; and ϕð⋅Þ and Φð⋅Þ are the PDF and
cumulative distribution function of standard normal distri-
bution, respectively.

Since the side constraints are considered in the truncated
normal distributions, there is no need to handle them during
the optimization procedure. Along with the spirit of subset
simulation optimization, subsets are generated to approach
the optimal solution progressively. All subsets Fi have a
generic form as

Fi = Q λ, αð Þ ≤ bif g, ð28Þ

where bi are the thresholds for the objective function Qðλ, αÞ
in Equation (17). If one arranges the thresholds in a descent
order, i.e., b1 ≥ b2 ≥ b3 ⋯ , the subsets have a nested struc-
ture

F1 ⊃ F2 ⊃ F3⋯: ð29Þ
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Figure 8: Comparison of histogram, PDF, and POE for the nonlinear structure.

Table 7: The value of the objective function for the nonlinear
structure.

m = 3 m = 4 m = 5
44.1 27.9 34.5
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Thus, the final subset in the sequence would be or
include the minimum solution theoretically.

In subset simulation optimization, the value of the objec-
tive function Qðλ, αÞ is the driving quantity for optimiza-
tion, while the optimization procedure is achieved by the
evaluation of the level probability pi that is an optimization
parameter for subset simulation optimization. The condi-
tional probability between two contiguous subsets is defined
as the level probability and simulated by Markov Chain
Monte Carlo simulation, i.e.,

pi = P Fi+1 Fijð Þ ≈ 1
M

〠
M

i=
I Q λ, αð Þ ≥ bi+1½ �, ð30Þ

where M is the number of candidate designs (or samples)
belonging to the subset Fi, and Ið⋅Þ is an indicator function
which is used to check a candidate design falling in Fi+1 or
not. In this study, we adopted a strategy in which the value
of pk is reduced as the number of optimization iterations
(or simulation level) increases.

The standard deviation of the samples in the ði + 1Þth sim-
ulation level is employed to check the convergence of the opti-
mal searching. The estimator of standard deviation tends to
zero while the searching process is approaching the global
minimum. At the same time, we also impose a maximum
number of simulation levels as another stopping criterion to
avoid the overflow of the affordable computational effort.

More details of subset simulation optimization can be
referred to Refs. [56–58].

5. Test Problems

Two dynamic reliability analysis problems are used to dem-
onstrate the performance of the proposed method. The first
problem involves a single-degree-of-freedom (SDOF) oscil-
lator which has a linear behavior, while the second problem
is a five-DOF structural system with nonlinear behavior.

5.1. A SDOF Oscillator. The investigated SDOF oscillator is
shown in Figure 2 with a white noise excitation WðtÞ. The
governing equation of this structural system is given by

€Y tð Þ + 2ςωY tð Þ + ω2Y tð Þ =W tð Þ, ð31Þ

where the natural frequency is = 7:85rad/s ð1:25HzÞ and the
damping ratio is ς = 2%, respectively. The spectral intensity
of the white noise S takes 1. The following initial conditions
are applied to the system:

Y 0ð Þ = 0,
_Y 0ð Þ = 0:

(
ð32Þ

The failure event of this system is defined as its maxi-
mum displacement exceeding a threshold b = 2:1 over a time
interval ½0, 30� s

F = max
k=1,⋯,n

∣ Y tkð Þ >bj
� 	

, ð33Þ

where n is the total number of discrete time instants to rep-
resent the Gaussian white noise. Ref. [33] used a constant
time step size Δt = 0:002s for discretizing the time interval
of interest, which leads to the total number of time instants
be n = 30/Δt + 1 = 1501. Then, 1501 input standard normal
random variables φk are employed to represent the input
white noise, i.e.,

W tkð Þ =
ffiffiffiffiffiffiffiffi
2πS
Δt

r
φk : k = 1,⋯, n

( )
: ð34Þ

To meet the definition of the fractional moment, the
structural response associated to the failure event in Equa-
tion (33) is rewritten as

Gn = gn X, Y tð Þ, tð Þ =
max

k=1,⋯,n
Y tkð Þj j
b

, ð35Þ

where Gn is the normalized structural response. Then, the
proposed method was applied to solve this problem with a
sample size N = 500, 1000, 1500, and 2000. For the purpose
of comparison, an MCS with 106 samples was carried out to
obtain a reference result.

Figure 3 shows the comparisons of the fractional
moments and the relative error for the normalized response
in Equation (35). Here, the order of fractional moments var-
ies in the interval of ½−1:5, 1:5� as we discussed in Section
4.1. The fractional moments calculated from different sam-
ple sizes almost overlap one another (Figure 3(a)). However,
it is clear that the relative error is becoming small with the
increase of sample size N (Figure 3(b)). Furthermore, the
biggest relative error is 1% when the order of fractional
moment takes -1.5, which is close to the used values reported
by Xu and Wang [48] using a low-discrepancy sequence.
Therefore, the relatively accurate fractional moments are
employed in the proposed method by limiting the scale of
the order exponents.

Inverardi and Tagliani proposed a penalty term m/N ,
which is proportional to the order of the MaxEnt distribu-
tion m and inversely proportional to the sample size N , to
avoid reconstructing a “too elaborate” distribution that can-
not be justified by the given experimental data [42]. Table 1
lists the values of the objective function in Equation (17)
while Table 2 gives the values of the objective function con-
sidering the penalty term. Six digitals must be kept in order
to observe the difference among the results for a sample size
in Table 1, while four digitals are required in Table 2. The
value of the objective function increases as the number of
fractional moments used in the MaxEnt distribution and
decreases with the number of samples adopted for the esti-
mation of fractional moments. Thus, m = 3 is preferable for
approximating the MaxEnt distribution of the normalized
structural response, and 2000 samples provide the most
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accurate estimation of fractional moment and further reduce
the objective function value.

Figures 4 and 5 show the histograms, PDFs, and proba-
bility of exceedances (POEs) [36] obtained by the proposed
method and MCS. Since all settings of parameters produce
very similarly results, we only report the results for m = 3
with N = 500 (Figure 4) and 2000 (Figure 5). The term
“Exp” refers to the experimental data (sample) used to esti-
mate the fractional moments. The results of the proposed
method agree with those of MCS, low to a very small prob-
ability (about 10-6). Thus, the proposed method possesses a
good accuracy and efficiency for this investigated linear
system.

We completed all calculations on a desktop PC with
CPU@3.60GHz and 16GB RAM. Table 3 reports the aver-
age computational time of the SDOF oscillator based on 30
runs of different combinations of N and m. Although it is
hard to draw a common conclusion from these data, the
average calculational time that are around 20~ 40 s is attrac-
tive for engineering optimization design.

5.2. A Nonlinear Five-DOF Structural System. The second
example is a five-DOF shear building adapted from Refs.
[34, 51]. The structural system shown in Figure 6 is sub-
jected to an external excitation. There are 25 input random
variables to model uncertainties in the system properties,
including masses, stiffness, sliding force stiffness ratios, and
damping ratios. Table 4 lists the means of these 25 input
random variables which are independently and normally
distributed. Note that the damping terms ci in are given by

ci = 2ξi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi ki + rið Þ

p
, ð36Þ

where ξi are the damping ratios, mi are the masses, and ki
+ ri are the stiffness, respectively. Except for the damping
variables, the coefficient of variation of the other random
property variables is set to be 0.1. The standard deviations
of damping variables are set to be 0.01.

Suppose that the external excitation to the structural sys-
tem is a general Gaussian excitation acting on the horizontal
ground. The Karhunen-Loève expansion is used to represent
it with 200 independent standard normal variables. There-
fore, there are total 225 input random variables which are
beyond the capacity of FORM and surrogate model
methods.

The failure event is defined by the first-passage of the
maximum displacement at the first story with a threshold
b = 0:039m For the structural dynamic analysis, the time
interval of ½0:0 s, 20:0 s� is discretized by a time step size of
0.01 s.

For this problem, 500 experimental points generated
from MCS are employed to estimate the fractional moments
of the normalized response. The comparisons of fractional
moments and the corresponding relative errors are shown
in Figure 7. Similar conclusions can be drawn as for the
SDOF oscillator, except that the magnitude of relative error
grows to 2.75% for α = −1:5.

Additionally,m = 3, 4, and 5 are adopted in the proposed
method. Table 5 lists the values of the objective function

with penalty term. As the value of m increases, the values
of the objective function also increase, which is consistent
with the results of the SDOF oscillator. This indicates that
the MaxEnt distribution with m = 3 has a good balance of
accuracy and model complexity. Table 6 lists the orders of
fractional moments and Lagrange multipliers obtained by
the proposed method.

Based on the parameters in Table 6, we reconstructed the
distribution of the normalized response and compared the
proposed method and MCS in Figure 8. The PDF curve of
the proposed method matches the histogram of the experi-
mental data closely (Figure 8(a)), while we observed a dis-
persion between it and the histogram of MCS samples in
Figure 8(c). Similarly, the POE curve of the proposed
method agrees with that of experimental data
(Figure 8(b)), whereas it has a deviation from the curve esti-
mated from MCS samples (Figure 8(d)). For the interval of
½10−3, 100�, the POE of the proposed method has a good
agreement with that of MCS. The failure probability is esti-
mated as 1:3400 × 10−6 by MCS with 107 samples when the
threshold level b is 0.039m (corresponding to the case of
the normalized threshold level of 1). The estimation of fail-
ure probability yielded by the proposed method is 3:5027
× 10−5. Therefore, the proposed method overestimated the
failure probability for a large threshold level. Compared with
the investigated linear system, the overestimations may
cause by the nonlinear behavior of the current structural
system.

Table 7 reports the average computational time of the
nonlinear structural system based on 30 runs of different
m. Similar conclusion can be drawn from this table as that
of the SDOF oscillator example.

6. Conclusions

In this study, a maximum entropy distribution method is
proposed to perform structural reliability analysis for high-
dimensional problems with random process input. With
the development of the maximum entropy distribution with
fractional moments, we proved that the solution to a func-
tion Qðλ, αÞ is the global one to the maximum relative
entropy between the true PDF and the approximate one.
Thus, the corresponding optimization problem is converted
into a convex one with a global solution. To estimate the
fractional moments efficiently, a set of experimental points
are generated for this purpose, which provides the estimator
of a fractional moment for any order. Converting the com-
mon optimization problem into an equivalent one can avoid
the trapping in a locally optimal solution. Furthermore, we
reexamined the associated computational issues of the target
optimization problem and reformulated it with side con-
straints on the optimization variables, i.e., the orders of frac-
tional moments and the corresponding Lagrange multipliers.
Subset simulation optimization is used to solve the new opti-
mization problem.

Two benchmark problems with high-dimensional inputs
show that the proposed method has both good accuracy and
efficiency. If the limit state function, however, has a strong
nonlinear behavior with respect to inputs, the maximum
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entropy distribution may not approximate the tail region
accurately, and in this case, the proposed method may result
in a low efficiency or accuracy, or both.

Future studies will involve developing efficiently sam-
pling methods for the estimation of fractional moments for
high-dimensional nonlinear problems.

Appendix

A. Symbols

gð⋅Þ:limit state function
G, Gi:response quantity and its value given an input
X, x:input random variables and its observation
X,x:random vector and its observation vector
YðtÞ:input random process vector
t,t f :time and final time
Rð⋅Þ:reliability function
Pf ð⋅Þ:failure probability function
Δt:time step
Z:random vector transformed from input random

process
Pr ð⋅Þ:probability operator
Eð⋅Þ:expectation operator
W:maximum value variable
α, αi:order of fractional moment
f XðxÞ, f̂ XðxÞ:probability density function and approxi-

mate probability density function
c:reference point
Mα

x :αth fractional moment
λi:Lagrange multiplier
Ið⋅Þ:objective function
Qð⋅Þ:potential function
A, B, C and D submatrix

B.

Recall that the PDF of MaxEnt distribution is given by

f̂ X xð Þ = exp −λ0ð Þ exp −〠
m

i=1
λix

αi

 !
: ðB:1Þ

Since
Ð
f XðxÞdx = 1, one could obtain the following rela-

tionship:

exp −λ0ð Þ = 1Ð
exp −∑m

i=1λix
αið Þdx : ðB:2Þ

Substitute Equation (B.2) into Equation (B.1), the PDF
expression of MaxEnt distribution is

f̂ X xð Þ = exp −∑m
i=1λix

αið ÞÐ
exp −∑m

i=1λix
αið Þdx : ðB:3Þ

Further, the PDF expression of MaxEnt distribution can
be rewritten as

f̂ X xð Þ = exp ∑m
i=1λiM

αi
X

� �
⋅ exp −∑m

i=1λix
αið Þ

exp ∑m
i=1λiM

αi
X

� �
⋅
Ð exp −∑m

i=1λix
αið Þdx

= exp −∑m
i=1λi x

αi −Mαi
X

� �� �
Ð exp − xαi −Mαi

X

� �� �
dx

,
ðB:4Þ

as long as exp ð∑m
i=1λiM

αi
X Þ ≠ 0. With the definition of Qðλ,

αÞ in Equation (17), one obtain that

f̂ xð Þ = Q λ, αð Þ½ �−1 exp −〠
m

i=1
λi x

αi −Mαi
X

� � !
: ðB:5Þ
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