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In this paper, a distributed asymptotic tracking control strategy is investigated by establishing filters and barrier function-based
consensus control scheme to address the control of heterogenous power-chained multiagent systems (MASs) under a directed
graph subject to the unknown input deadzone nonlinearities and unknown control coefficients. First, to generate estimation
information from the leader, a two-order filter is exploited for every agent which solves the difficultly of the time-varying
control coefficients in multiagent systems with a directed topology. Then, based on the two-order filters, prescribed
performance method and barrier functions are utilized to establish the distributed tracking protocol to handle the power-
chained deadzone input nonlinearities, such that the MAS can reach the global consensus while guaranteeing the prescribed
tracking error performance. Using the Lyapunov stability theorem, the proof of the convergence is accomplished rigorously.
Ultimately, the efficacy and advantage of the devised method are validated by two simulation examples.

1. Introduction

The problem of distributed control for nonlinear MASs has
been investigated for several decades, and a lot of significant
achievements have been achieved [1–4]. Recently, various
control methodologies, including the function approxima-
tion control techniques [5], adaptive control [6], and robust
control [7], have been studied extensively for nonlinear
MASs. In [8, 9], a consensus tracking protocol for uncertain
pure feedback MASs is addressed. The distributed tracking
problem based on observer is studied for nonlinear MASs
with uncertain networks in [10]. In [11], on the strength of
Nussbaum-type gain technique, both leaderless and leader-
following consistent tracking control methodologies can
make the errors converge be guaranteed asymptotically to
zero for a second-order MAS with unknown control
directions, without any information about the global com-
munication graph. Under directed topologies or undirected
topologies, a distributed adaptive control approach is
applied to the leader-following networked Lagrangian sys-

tems with unknown control directions in [12]. However,
the leader-following system assumes that there is only one
leader in the system, and the communication graph among
the followers is an undirected connected topology. Different
from adaptive designs, [13] proposes a prescribed perfor-
mance control method for an uncertain multiagent system.
For resolving the consensus difficulty in MASs with
unknown nonlinearities, neural networks or fuzzy logic sys-
tems are used as universal approximators in [14–16]. To set-
tle the issue of unknown control directions, [17] presents a
novel Nussbaum-type function. Although these above stud-
ies can obtain good command tracking performance, there
is still a lack of research on fault-tolerant control design.

From a practical perspective, input deadzone nonlinear-
ity is one of the key problems in nonlinear control system
design, which results in the unaccomplished desired control
efforts [18]. In the process of multiagent control design, if
the control input constraints are not considered, the
closed-loop system may be limited by performance and even
lose stability. Therefore, the control investigations on
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restricted MASs has already attracted extensive attention in
recent years [19]. On the basis of meeting preset trigger
conditions, in [20], a distributed adaptive control approach
is investigated for the uncertain MAS to deal with inter-
mittent actuator faults. By introducing a predictor to
obtain each error surface estimation, a distributed adaptive
fuzzy consensus tracker design is used for MASs with
input saturations [21]. In [22], the time-varying formation
tracking control protocol for multileader MASs is studied
in order to address the problem of actuator failure and
saturation nonlinearity simultaneously. Whereas, the aug-
mented plant of [22] is constructed complicatedly, and
the first-order low-pass filter greatly increases the uncer-
tainty of numerical simulation results. To compensate for
both actuator bias fault and loss of actuator effectiveness
fault, a fully distributed control scheme is constructed in
[23]. In [24], a fully distributed protocol based on pre-
scribed performance control is proposed to set predefined
overshoot range, guarantee convergence rates, and limit
neighbourhood synchronization steady-state errors for
uncertain nonlinear MASs with deadzone inputs. Despite
the workload of [24] is very sufficient and it is greatly
improved compared with other aforementioned papers,
the proposed strategy is still limited in the scope to the
unity low power of MASs. As a matter of fact, there are
a lot of practical heterogenous power-chained MASs, such
as the coupled underactuated unstable 2-DOF machinery
model (i.e., equation (38)) of [25] and the roll dynamic
model of multiple axisymmetric skid to turn missiles as
Example 2 of [26]. Thus, it is of necessity to do the
research on MASs with heterogenous high powers. How-
ever, most control approaches applied to date have been
limited in their boundary to the unity low power of MASs
owing to the uncontrollable linearization of nonlinear sys-
tems caused by the high-power chains of control variables.

Contrary to these, the distributed consensus control for
power-chained MASs with limited communication net-
works is seldom studied. Based on the controller of single
nonlinear power-chained systems, aiming at the networked
nonlinear power-chained MASs, [27] proposes a robust
cooperative output tracking control protocol. Adding a
power integrator technique and adaptive disturbance com-
pensator are introduced to reduce the degradation of sys-
tem performance for complex nonlinear MASs with
input noise in [28]. By utilizing the distributed integrator
backstepping approach, the boundness of the closed-loop
system for multiple strict-feedback stochastic nonlinear
systems under a directed leader-followers type communi-
cation graph is achieved in [29]. In [30], a neural adaptive
tracking control scheme is employed to nonstrict feedback
nonlinear MASs. A distributed low-complexity control
strategy is proposed in [26] to guarantee consensus track-
ing performance of uncertain heterogenous power-chained
MASs. We note that considerable progress has been made
in the distributed control of MASs, but there are still some
nonnegligible issues that need to be solved. First, for MASs
with high powers, there are some restrictions on the heter-
ogenous high powers. Specifically, the existing design
methods usually require the high powers to be identical

or to be known for establishing the control protocols.
For example, in order to enable the control design for
high power systems, [26] assumes the powers of the first
order to be known (i.e., see Assumption 3 in [26]). Sec-
ond, for MASs with a directed communication graph, the
existing approaches do not consider the control coeffi-
cients or require that the control coefficients must be con-
stants. The reason making it difficult is that the directed
graph Laplace matrix is asymmetric. Considering the
time-varying control coefficients of MASs are unknown,
traditional adaptive control techniques [3, 20] used to
address the time-varying coefficients will make the
unknown matrix P inestimable, where P is defined by
the Laplacian matrix and the communication directed
matrix (i.e., see Lemma 1 in [5]). To circumvent the
difficulties, the symmetric positive definite property of
Laplacian matrix between followers is implicitly used in
most theoretical analyses [24]. Whereas, this means that
these methods are not applicable to the MAS with a
directed topology. Third, there is no performance envelope
scheme to predetermine the distributed consensus tracking
error in the controller design of MASs with heterogeneous
unknown uncertain powers. Moreover, it should be
stressed out that the global control of heterogenous
power-chained MASs with unknown input deadzone non-
linearities and unknown control coefficients is still an
unsolved problem.

Inspired by the aforementioned discussion, the paper
proposes the design of a distributed control for uncertain
MASs with a directed graph. Compared to the relevant exist-
ing researches in the literature, the main contributions of
this paper can be concluded as follows.

(1) The investigated control scheme is able to relax the
aforementioned four restrictions in the existing con-
sensus researches [26–30] for power-chained MASs
with input deadzone nonlinearities

(2) To deal with the time-varying difficulty of multi-
agent control coefficients, a second-order filter is
exploited to make each agent generate the estima-
tions of the leader signals, thus avoiding to use the
asymmetric Laplacian matrix of the directed
topology

(3) To solve the unknown nonlinearities in MAS, barrier
functions are applied to the prescribed tracking dis-
tributed protocol, which make the specified tracking
performance guaranteed; thus, the convergence of
the controlled system is proved, and all the closed
signals are globally bounded

2. Problem Formulation

2.1. Problem Statement. In this subsection, the analysis on
control system with nonlinear deadzone is given first. Then,
the new mathematical model under nonlinear model with
asymmetric deadzone is constructed.

In practical physical systems, certain abnormal events
and emergencies may happen in time of operation, which
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will result in the failure of the actuator. Besides, as a result of
the practical constraints on manufacturing and assembly
process, the actual output of actuators often presents the
characteristic of asymmetric deadzone nonlinearity. The
actual control input nonlinear model can be modelled as
follows.

D t, uð Þ =
hr tð Þ u − brð Þ,
0,

hl tð Þ u − blð Þ,

8>><
>>:

u ≥ br ,

bl < u < br ,

u ≤ bl,

ð1Þ

where u ∈ℝ is the control input, Dðt, uÞ: ℝ⟶ℝ is the
control output with nonlinear deadzone, hrðtÞ and hlðtÞ
are unknown time-varying positive continuous functions
denoting the left and right slopes of the deadzone, bl < 0
and br > 0 are unknown parameters representing the
break-points of deadzone nonlinearity, as shown in Figure 1.

According to (1), for the purpose of facilitating the con-
trol law design, the deadzone function can be modelled as

D t, uð Þ = h tð Þu + d t, uð Þ, ð2Þ

with

h tð Þ =
hl tð Þ if u ≤ 0

hr tð Þ if u > 0

(
, d t, uð Þ =

−hr tð Þbr if u ≥ br ,

−h tð Þu if bl < u < br ,

−hl tð Þbl if u ≤ bl:

8>><
>>:

ð3Þ

The uncertain high-order nonlinear MASs with Nn-th
order agents can be modelled by the following dynamic
equations

_xk,i = f k,i t, �xk,ið Þ + gk,i t, �xk,ið Þxpk,ik,i+1, i = 1,⋯, n − 1,

_xk,n = f k,n t, �xk,nð Þ + gk,n t, �xk,nð Þ hk tð Þuk + dk t, uð Þð Þpk,n ,
yk = xk,1, k = 1,⋯,N ,

ð4Þ

where �xk = ½xk,1,⋯, xk,n�T ∈ℝn are the states with initial con-

ditions �x0k = ½xk,1ð0Þ,⋯xk,nð0Þ�T , �xk,i = ½xk,1,⋯, xk,i�T ∈ℝi, xi
= ½x1,i,⋯, xN ,i�T ∈ℝN , xpii = ½xpi1,i,⋯, xpiN ,i�

T ∈ℝN , uk ∈ℝ is
the actual control input, yk ∈ℝ is the output; pk,i ≥ 1 is all
unknown odd integers. The system nonlinearities f k,iðt, �xk,i
Þ, gk,iðt, �xk,iÞ: ℝ ×ℝi ⟶ℝ and i = 1,⋯, n are unknown
continuous functions of �xk,iðtÞ. Without loss of generality,
the unknown control coefficients gk,iðt, �xk,iÞ are supposed
to be strictly positive.

The desired trajectory for the subsystem output ydðtÞ is
bounded and known only to some subsystems, and _ydðtÞ is
bounded and unknown to all subsystems.

The goal of the paper is to design a distributed tracking
protocol for the multiagent system (4) with heterogenous
high powers under the directed graph, so that all the agents’

output tracking errors (i.e., jyk − ydj, k = 1,⋯,N) converge
to the predesigned transient and steady state performance
boundaries, and simultaneously, make sure all signals of
the closed loop system bounded.

2.2. Algebraic Graph Theory. Let the telecommunication
network among agents be denoted by a directed graph
G = ðV ,E,AÞ, where V = fv1, v2,⋯, vng represents the
index set corresponding to each node with vi being the
i-th agent, E ⊆V ×V represents the set of the edges,
A = ½aij� represents the adjacency matrix. ði, jÞ denotes
an edge of the graph G , and ði, jÞ ∈E indicates that
there is an agent j-to-agent i communication. The ele-
ment aij of A corresponding to the edge ði, jÞ represents
the quality of communication between the agents i and j
(i.e., ði, jÞ ∈E ⇔ aij > 0), otherwise, aij = 0. G is referred
to as an undirected graph if and only if aij = aji. Stipulate
that the diagonal elements aii = 0. Clearly, for a directed
graph, A is unsymmetrical. The in-degree matrix D =
diag ðDiÞ ∈ℝN×N , with Di =∑ j=1aij being the i-th row

sum of A . Moreover, the Laplacian matrix L = ½lij� ∈
ℝN×N for the directed digraph G can be defined as L =
D −A . Besides, defining B = diag fbig ∈ℝN×N to denote
the communication directed topology between the agents
and the desired trajectory yd , where bi = 1 means that yd
is directly accessible by agent i, otherwise, bi = 0. A
sequence of edges in a graph G of the form fði, i1Þ, ði1, i2
Þ, ði2, i3Þ, ði3, i4Þg is called a path. The following notation
is utilized over all the paper. Have a ∈ℝn and b ∈ℝn

being two vectors, next, a vector operator :∗ is defined
as a:∗b = ½að1Þbð1Þ,⋯, aðnÞbðnÞ�T .

Assumption 1. The directed graph G = ðV ,E,AÞ includes a
directed spanning tree, and the desired trajectory ydðtÞ is
accessible to at least one subsystem.

Assumption 2. There are unknown and continuous functions

h
_

kð⋅Þ: ℝ⟶ ð0,∞Þ and nonnegative d
_

kð⋅Þ: ℝ⟶ ½0,∞Þ
such that jhkðt, uÞj ≤ h

_

kðuÞ and jdkðt, uÞj ≤ d
_

kðuÞ.

Lemma 3 (see [1]). For any real number y, time-varying func-
tion aðtÞ in field of real number and any odd integer p ≥ 1, the

bl

br0

D (u)
Actual output

u

Figure 1: A typical example of thinking about deadzone classes.
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following inequality is always true

y −y + a tð Þð Þp − a tð Þp� �
≤ −

yp+1

2p−1
: ð5Þ

Lemma 4 (see [31]). Let q and w be real variables. Then, for
any integers a > 0, b > 0 and any real number ε > 0, the follow-
ing inequality is always true

qj ja wj jb ≤ a
a + b

ε qj ja+b + b
a + b

ε−a/b wj ja+b: ð6Þ

Remark 5. Assumption 1 and Assumption 2 are not violated
conditions. Under a directed topology, the expected trajectory
ydðtÞ can only be accessible to a subset of followers (i.e., ∑N

i=1
bi > 0) in Assumption 1. In Assumption 2, hkðtÞ denotes the
left and right slopes of the deadzone when u ≤ bl and u ≥ br
(i.e., when u ≤ bl and u ≥ br, hkðtÞ = ∂Dkðt, ukÞ/∂uk). In engi-
neering practice, the slope is usually bounded, because for
any real physical system, the slope of the control input cannot
be infinite, which means that there must be an upper bound of
hkðtÞ. Simultaneously, the unknown input nonlinearity func-
tion dkðt, uÞ is bounded obviously due to the upper boundness
of hkðtÞ. Besides, it is usually supposed that j∂Dðt, uÞ/∂uj > 0
(i.e., see Assumption 2 in [32]), but this assumption cannot
be satisfied when there are unknown deadzone nonlinearities
because the derivative between the breakpoints is zero [24],
(i.e., ∂Dkðt, ukÞ/∂uk = 0, for bl < uk < br). In this work, when
bl ≤ u ≤ br, hkðtÞ ≠ ∂Dkðt, ukÞ/∂uk (i.e., the aforementioned
positive nature requirement on hrðtÞ, hlðtÞ will not restrict a
zero value appearing in the dead-band as ∂Dkðt, ukÞ/∂uk = 0).
Therefore, Assumption 2 is realistic and reasonable.

Remark 6. In this paper, the time-varying system nonlinear-
ities f k,i and gk,i are unknown continuous functions, such that
little knowledge can be used to establish the control scheme.
To handle the difficulty, neural networks and fuzzy logic
[14–16] are utilized for approximating the unknown functions
as a consequence of the system nonlinearities f k,iðt, �xk,iÞ and
gk,iðt, �xk,iÞ. But only semiglobal results can be got due to the
employment of the approximators. It is a challenge problem
to establish a distributed protocol for the unknown nonlinear
MASs with global consensus, which will be solved skillfully by
cooperating two-order filters and barrier functions as follows.

3. Main Results

In this section, first, we design a filter ðqk,1, qk,2Þ for each
agent to generate estimate information from the leader. Sub-
sequently, a distributed asymptotic tracking controller for an
uncertain MAS with deadzone input nonlinearities and het-
erogenous high powers will be designed. Finally, we shall
demonstrate that it results in the solution for the problem
of predesigned performance for (4).

3.1. Filter Design. To facilitate the distributed control design, a
filter ðqk,1, qk,2Þ is utilized for each agent k, where k = 1,⋯,N.

Denote

zk,p = bk qk,p − y p−1ð Þ
d

� �
+ 〠

N

j=1
akj qk,p − qj,p
� �

, p = 1, 2, ð7Þ

where yð0Þd = yd , y
ð1Þ
d = _yd . Then, design the filters as

_qk,1 = qk,2,

_qk,2 = αk,

(
ð8Þ

with

αk = −c2zk,1 − c1zk,2 − c0qk,2 − c0 sgn zkð Þ〠
2

p=1
F̂k,p, ð9Þ

_̂Fk,1 = bk Fk,1 − ydð Þ + 〠
N

j=1
akj F̂k,1 − F̂ j,1
� �

,

_̂Fk,2 = bk Fk,2 − _ydð Þ + 〠
N

j=1
akj F̂k,2 − F̂ j,2
� �

,

8>>>>><
>>>>>:

ð10Þ

where c0, c1, and c2 are positive constant parameters selected
as c0 ≥ 1, c1 > c0 + 1, and c2 = c0c1, Fk,1 is the upper boundary
of jydj, Fk,2 is the upper boundary of j _ydj, k = 1,⋯,N .

Theorem 7. Consider a closed-loop system composed of N fil-
ters (8) under Assumption 1 with control design (9). The
asymptotic and consistent tracking of all outputs of the filter
to ydðtÞ can be realized (i.e., lim

t⟶+∞
jqk,1 − ydðtÞj = 0, k = 1,

⋯,N). In addition, qk,1 and qk,2 are bounded.

Proof. Based on Assumption 1, the matrix L +B is nonsin-
gular. Same as [5], define θ = ½θ1,⋯, θN �T = ðL +BÞ−1
½1,⋯, 1�T , P = diag fP1,⋯, PNg = diag fθ−11 ,⋯, θ−1N g, Q =
P ðL +BÞ + ðL +BÞTP , where θk > 0 for k = 1,⋯,N . It
can be summarized from [5] that Q is positive definite.

Construct the following Lyapunov function

Vz =
1
2
zTP z +

1
2γ

〠
2

p=1

~F
T
pP

~Fp, ð11Þ

where z = ½z1,z2,⋯, zN �T ∈ℝN with zk = c0zk,1 + zk,2, F̂p =
½F̂1,p, F̂2,p,⋯, F̂N ,p�T ∈ℝN , Fp = ½F1,p, F2,p,⋯, FN ,p�T ∈ℝN ,
~Fp = F̂p − Fp ∈ℝN , p = 1, 2, and γ > 0 is a constant satisfying
γ < 2λ2minðQÞ/φ2 with φ = kP ðL +BÞk ∈ℝ. Denote zp =
½z1,p, z2,p,⋯, zN ,p�T ∈ℝN , α = ½α1, α2,⋯, αN �T ∈ℝN , and qp
= ½q1,p, q2,p,⋯, qN ,p�T ∈ℝN , p = 1, 2. Then, the following
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equation can be obtained

_z = L +Bð Þ c0q2 + α − c0 _yd − €ydð Þ: ð12Þ

Through (11) and (12), by denoting sgn ðzÞ =
½sgn ðz1Þ,⋯, sgn ðzNÞ�T , the time derivative of Vz is

_Vz = zTP L +Bð Þ −c1z − c0 〠
2

p=1
sgn zð Þ:∗Fp + c0 〠

2

p=1
ε zð Þ:∗Fp − c0 _yd − €yd

 !

−
1
γ
〠
2

p=1

~F
T
pP L +Bð Þ~Fp ≤ −c1z

TQz −
1
γ
〠
2

p=1

~F
T
pQ

~Fp

− c0 〠
2

p=1
zTPD sgn zð Þ:∗Fp + c0 〠

2

p=1
zTPA sgn zð Þ:∗Fp

− c0 〠
2

p=1
zTPB sgn zð Þ:∗Fp − 〠

2

p=1
zTP L +Bð Þ c0 _yd + €ydð Þ

+ c0 〠
2

p=1
zk k P L +Bð Þk k ~Fp

�� ��:
ð13Þ

It should be noticed that c0∑
2
p=1z

TPD sgn ðzÞ:∗Fp = c0
∑2

p=1Fp∑
N
j=1pjaijjz jj, c0∑

2
p=1z

TPA sgn ðzÞ:∗Fp ≤ c0∑
2
p=1Fp

∑N
j=1pjaijjz jj, c0∑2

p=1z
TPB sgn ðzÞ:∗Fp = c0∑

2
p=1Fp∑

N
j=1pjbjj

z jj, ∑2
p=1jzTP ðL +BÞðc0 _Xd + €XdÞj ≤ c0∑

2
p=1Fp∑

N
j=1pjμjjz jj,

and ∑2
p=1kzkkP ðL +BÞkk~Fpk2 +∑2

p=1φ
2k~Fpk/2λminðQÞ,

with λminðQÞ representing the minimum eigenvalue of Q.
Combing these above inequality, (13) becomes

_Vz ≤ −c2 zk k2 − γ∗ ~Fp

�� ��, ð14Þ

where c2 = λminðQÞðc1 − c0Þ, γ∗ = λminðQÞð1/γ − φ2/2λ2minðQ
ÞÞ. It is easy to verify that c2 > 0 and γ∗ > 0. Thus, it can be
obtained from (14) that limt⟶+∞kzk = 0 and limt⟶+∞j
qk,1ðtÞ − ydðtÞj = 0 accordingly, k = 1,⋯,N . The bounded-
ness of qk,1 and qk,2 can be deduced on the basis of the
boundedness of Vz and kzk. The proof is completed.

3.2. Control Scheme. In this subsection, the distributed track-
ing control scheme is constructed cooperating with the filter
(8). We define the error variables ek,i ∈ℝ, k = 1,⋯,N , and
i = 1,⋯, n as

ek,1 = xk,1 − qk,1, ð15Þ

ek,i = xk,i − vk,i, i = 2,⋯, n, ð16Þ
where vk:i is the intermediate control signal, which will be
defined later.

Define ρi = ½ρ1,1,⋯, ρN ,1�T ∈ℝN and select an output
performance function for t ≥ 0

ρk,i tð Þ = ρ0k,i − ρ∞k,i
� �

exp −lk,itð Þ + ρ∞k,i , ð17Þ

where k = 1,⋯,N , i = 1,⋯, n and the constant design
parameters lk,i > 0, ρ0k,i = ρk,ið0Þ > 0, and ρ∞k,i = limt⟶∞ρk,iðt
Þ > 0 are chosen appropriately to satisfy ρ0k,i > ρ∞k,i and jek,ið
0Þj < ρ0k,i with any given initial condition �xk,ið0Þ.

Define the barrier functions t↦ rk,iðtÞ as

rk,i tð Þ = ln
1 + ξk,i tð Þ
1 − ξk,i tð Þ
� �

, ð18Þ

where ξk,i = ek,i/ρk,i and i = 1, 2,⋯, n are the normalized
errors. The i + 1-th virtual control signals vk,i+1, k = 1,⋯,N
, and i = 1,⋯, n − 1 are designed as

vk,i+1 = −Kk,irk,i, ð19Þ

where Kk,i is a positive control parameter. At this stage, the
actual tracking control signal uk is designed as

uk = −Kk,nrk,n, ð20Þ

where Kk,n is a positive control parameter.

Remark 8. It is worth pointing out that the output perfor-
mance function ρk,iðtÞ is applied to limit the error ek,iðtÞ
within the imposed time-varying constraints. Given any ini-
tial condition, the constants ρ0k,i, i = 1,⋯, n is selected satis-
fying ρ0k,i > jek,ið0Þj, and ρ∞k,i represents the maximum
allowable value of the steady-state ek,iðtÞ, which can be
assigned to an arbitrarily small value. Hence, the conver-
gence of ek,iðtÞ to a predefined set of arbitrary small residuals
is realized. Furthermore, the rate of ρk,iðtÞ decline is influ-
enced by lk,i and results in the lower bound of the required
rate of ek,iðtÞ convergence. Therefore, ek,iðtÞ is restricted to
a preassigned boundary by using the performance function.

Remark 9. Under transient and steady state responses, for
the construction of (17), the proposed control scheme (19)
and (20) merely made up of nonlinear transformation error
surfaces and design constants can be designed to preallocate
the tracking performance boundary.

3.3. Stability and Performance Analysis

Theorem 10. Consider system (4) obeying Assumption 1 and
Assumption 2 controlled by the virtual control signals (19)
and the proposed distributed controller (20), all the signals
in the closed-loop system are globally bounded. Then, we have
the following properties:

(1) The normalized error ξk,iðtÞ, k = 1,⋯,N , and i = 1,
⋯, n satisfies jξk,iðtÞj < 1, which can be guaranteed
by prespecified tracking performance

(2) The outputs of each agent eventually satisfy
limt⟶+∞jykðtÞ − ydðtÞj < ρ∞k,1, where k = 1,⋯,N

5International Journal of Aerospace Engineering



Proof. From the definition of the errors, the states x1,⋯, xn
can be rewritten as

xk,1 = ek,1 + qk,1,

xk,i = ek,i + vk,i, i = 2,⋯, n:
ð21Þ

Let ξiðtÞ = ½ξ1,iðtÞ,⋯, ξN ,iðtÞ�T ∈ℝN , from the definition
of ξiðtÞ, we can get that

_ξk,1 =
f k,1 t, �xk,1ð Þ + gk,1 t, �xk,1ð Þxpk,1k,2 − qk,2 − ξk,1 _ρk,1

ρk,1
, ð22Þ

_ξk,i =
f k,i t, �xk,ið Þ + gk,i t, �xk,ið Þxpk,ik,i+1 − _vk,i − ξk,i _ρk,i

ρk,i
, i = 2,⋯, n − 1,

ð23Þ

_ξk,n =
f k,n t, �xk,nð Þ + gk,n t, �xk,nð Þ hk tð Þuk + dk tð Þð Þpk,n − _vk,n − ξk,n _ρk,n

ρn
:

ð24Þ
By denoting riðtÞ = ½r1,iðtÞ,⋯, rN ,iðtÞ�T ∈ℝN , i = 1,⋯, n,

the time derivative of riðtÞ can be given by

_rk,1 = μk,1 f k,1 t, �xk,1ð Þ + gk,1 t, �xk,1ð Þxpk,1k,2 − qk,2 − ξk,1 _ρk,1

� �
,

ð25Þ

_rk,i = μk,i f k,i t, �xk,ið Þ + gk,i t, �xk,ið Þxpk,ik,i+1 − _vk,i − ξk,i _ρk,i

� �
, i = 2,⋯, n − 1,

ð26Þ
_rk,n = μk,n f k,n t, �xk,nð Þ + gk,n t, �xk,nð Þ hk tð Þuk + dk tð Þð Þpk,n − _vk,n − ξk,n _ρk,n

� �
,

ð27Þ
where μk,i = 2/ðρk,ið1 − ξ2k,iÞÞ ∈ℝ.

The performance functions ρk,iðtÞ have been chosen to

meet requirements as ρ0k,i > jek,ið0Þj, which equals to �ξð0Þ ∈ϒ
where ϒ =ϒ 1 ×⋯ ×ϒ n an open set with ϒ i = ð−1, 1Þ, i = 1
,⋯, n. Additionally, the fact that from (17), the desired trajec-
tory yd and the performance functions ρk,iðtÞ are bounded
and continuously differentiable with respect to time. The inter-
mediate control signals vk,i, i = 2,⋯, n, and the control law uk,i
are smooth over the set ϒ . It is deduced that _ξkðtÞ is bounded
and piecewise continuous in t and locally Lipschitz on ξkðtÞ
over ϒ . According to Theorem 54 of [33], the conditions on
_ξkðtÞ ensure the existence and uniqueness of a maximal solu-
tion ξkðtÞ of (22)–(24) over the set ϒ , for ∀t ∈ ½0, τmaxÞ, k = 1
,⋯,N , i = 1,⋯, n such that ξkðtÞ ∈ϒ , ∀t ∈ ½0, τmaxÞ or equiv-
alently that for ∀t ∈ ½0, τmaxÞ, the following formula holds

ξk,i tð Þ ∈ −1, 1ð Þ: ð28Þ

Since rk,i is well established.

Next, τmax = +∞will be proved by looking for a contradiction.
It is supposed that τmax < +∞, thus, the following analysis is

performed. And a systematic procedure for the proof of the
aforementioned statements is given below for t ∈ ½0, τmaxÞ.

Step 1. From (17) and (28), for any t ∈ ½0, τmaxÞ, xk,1ðtÞ is
bounded as

xk,1 tð Þ		 		 = ξk,1 tð Þρk,1 tð Þ + qk,1 tð Þ		 		 ≤ ρ0k,i + �qk,1, ð29Þ

where �qk,1 > 0 is a constant such that jqk,1j < �qk,1. Moreover,
the boundedness of xk,1 results in the boundedness of the
functions f k,1ðt, xk,1Þ as

f k,1 t, xk,1ð Þ		 		 ≤ βk,1 xk,1 tð Þð Þ, ð30Þ

where βk,1ðxk,1Þ is a positive C1 nonlinear function.

By denoting riðtÞ = ½r1,iðtÞ,⋯, rN ,iðtÞ�T ∈ℝN , establish
the first Lyapunov function candidate as

V1 =
1
2
rT1 r1: ð31Þ

Substituting (18) and (22), the time derivative of V1 is
derived as follows

_V1 = 〠
N

k=1
rk,1μk,1 f k,1 t, xk,1ð Þ + gk,1 t, xk,1ð Þxp1k,2 − qk,2 − _ρk,1ξk,1

� �
:

ð32Þ

Using (30) and yields

〠
N

k=1
f k,1 xk,1ð Þ − qk,2 − ξk,1 _ρk,1
� �

≤ 〠
N

k=1
ι
^

k,1 ≤ 〠
N

k=1
Ck,1, ð33Þ

where ι
^

k,1 ≜ βk,1ðxk,1Þ + jqk,2j + jςk,1 _ρk,1j and Ck,1 is a positive
constant.

Applying Lemma 3 to the terms rk,1μk,1gk,1ðt, xk,1Þxp1k,2,
using ek,2 = xk,2 − vk,2 and ek,2 = ξk,2ρk,2, one has

rk,1μk,1gk,1 t, xk,1ð Þ ξk,2ρk,2 + vk,2
� �pk,1

≤ −
K

pk,1
k,1 gk,1
2pk,1−1

μk,1r
pk,1+1
k,1 + μk,1rk,1�gk,1 ξk,2ρk,2

� �pk,1 , ð34Þ

where g
k,1

and �gk,1 are both positive constants satisfying

g
k,1

≤ gk,1ðt, xk,1Þ ≤ �gk,1.

Combining (33) and (34), we obtain

_V1 = 〠
N

k=1
− �κk,1μk,1r

pk,1+1
k,1 + �gk,1 ρ0k,2

� �pk,1 + Ck,1

� �
μk,1 rk,1
		 		,

ð35Þ

where �κk,1 = K
pk,1
k,1 gk,1

/2pk,1−1.
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Applying Lemma 4 to the terms �κk,1μk,1r
pk,1+1
k,1 , one has

�κk,1μk,1 rk,1
		 		 ≤ �κk,1μk,1

pk,1 + 1
r
pk,1+1
k,1 +

pk,1
pk,1 + 1

�κk,1μk,1: ð36Þ

Therefore, (35) becomes

_V1 = 〠
N

k=1
μk,1 −~κk,1 rk,1

		 		 + ιk,1
� �

, ð37Þ

where ~κk,1 = �κk,1ðpk,1 + 1Þ − �gk,1ðρ0k,2Þpk,1 − Ck,1, ιk,1 = pk,1�κk,1.
From (37), for all t ∈ ½0, τmaxÞ, it follows that _V1 is negative
when jrk,1j ≥ ιk,1/κ

_
1, where κ

_
1 = min

0≤k≤N ,k∈N+
f~κk,1g and subse-

quently that jrk,1ðtÞj <�rk,1 ≤�r1 ≜ max
0≤k≤N ,k∈N+

fιk,1/κ_1g, which

implies that the normalized error is bounded as

−1 <
e−�r1 − 1
e−�r1 + 1

= ξk,1,low < ξk,1 tð Þ < ξk,1upper =
e�r1 − 1
e�r1 + 1

< 1,

ð38Þ

for k = 1,⋯,N . According to (19), for all t ∈ ½0, τmaxÞ, the
boundedness of r1 results in the boundedness of v2ðtÞ. Addi-
tionally, from ξk,i = ek,i/ρk,i, we conclude that

−ρk,1 tð Þ < e−�r1 − 1
e−�r1 + 1

ρk,1 tð Þ ≤ ek,1 tð Þ ≤ e�r1 − 1
e�r1 + 1

ρk,1 tð Þ < ρk,1 tð Þ:
ð39Þ

Step iði = 2,⋯, n − 1Þ: construct the i − th Lyapunov
function as

Vi =
1
2
rTi ri: ð40Þ

Differentiating along (40) with respect to time, using
(26), yields

_Vi = 〠
N

k=1
rk,iμk,i f k,i t, �xk,ið Þ + gk,i t, �xk,ið Þxpk,ik,i+1 − _vk,i − _ρk,iξk,i

� �
:

ð41Þ

According to the boundedness of viðtÞ in the last step,
using ek,i = xk,i − vk,i, ek,i = ξk,iρk,i, and (28), xk,iðtÞ is bounded
as jxk,iðtÞj = jξk,iðtÞρk,iðtÞ + vk,iðtÞj ≤ ρ0k,i + jvk,ij, k = 1,⋯,N ,
and i = 1,⋯, n. Furthermore, the boundedness of �xk,iðtÞ
results in the boundedness of f k,i. From (38), for all t ∈ ½0,
τmaxÞ, μk,i−1 = 2/ðρk,i−1ð1 − ξ2k,i−1ÞÞ ∈ℝ is also bounded.
Moreover, _viðtÞ is bounded. Similar to (30) and (33), there

is a C1 nonlinear function ι
^
k,i, and we have

_Vi ≤ 〠
N

k=1
rk,iμk,i gk,i t, �xk,ið Þxpk,ik,i+1 + ι

^
k,i

� �

≤ 〠
N

k=1
rk,iμk,i gk,i t, �xk,ið Þxpk,ik,i+1 + Ck,i

� �
,

ð42Þ

where ι
^

k,i ≜ j f k,iðt, �xk,iÞj + j _vk,ij + jξk,i _ρk,ij and Ck,i is a posi-
tive constant.

Applying Lemma 3 to the terms gk,iðt, �xk,iÞx
pk,i
k,i+1, using

ek,i+1 = ξk,i+1ρk,i+1, (42) becomes

_Vi ≤ 〠
N

k=1
− �κk,iμk,ir

pk,i+1
k,i + κ

^
k,i + Ck,i

� �
μk,i rk,i
		 		, ð43Þ

where �κk,1 = K
pk,1
k,1 gk,1

/2pk,1−1, κ
^
k,i = �gk,iðρ0k,iÞpk,i , gk,i

> 0, and
�gk,i > 0 are both constants satisfying g

k,i
≤ gk,iðt, �xk,iÞ ≤ �gk,i.

Then, applying Lemma 4 to the terms �κk,iμk,ir
pk,i+1
k,i yields

�κk,iμk,i rk,i
		 		 ≤ μk,i

�κk,i
pk,i + 1

r
pk,i+1
k,i + μk,i

pk,i
pk,i + 1

�κk,i: ð44Þ

Thus, (43) becomes

_Vi = 〠
N

k=1
μk,i −~κk,i rk,i

		 		 + ιk,i
� �

, ð45Þ

where ~κk,i = �κk,iðpk,i + 1Þ − κ
^

k,i − Ck,i, ιk,i = pk,i�κk,i. From (45),

we conclude that _Vi < 0 when jrk,ij ≥ ιk,i/κ
_

i, where κ
_

i =

min
0≤k≤N ,k∈N+

f~κk,ig and subsequently that jrk,iðtÞj <�rk,i ≤�ri ≜
max

0≤k≤N ,k∈N+
fιk,i/κ_ig for all t ∈ ½0, τmaxÞ. Additionally, for all t

∈ ½0, τmaxÞ by using (18), we get

−1 <
e−�ri − 1
e−�ri + 1

= ξi,low < ξk,i tð Þ < ξi,upper =
e�ri − 1
e�ri + 1

< 1, ð46Þ

From ξk,i = ek,i/ρk,i, (46) implies that

−ρk,i tð Þ <
e−�ri1 − 1
e−�ri + 1

ρk,i tð Þ ≤ ek,i tð Þ ≤
e�ri − 1
e�ri + 1

ρk,i tð Þ < ρk,i tð Þ:
ð47Þ

12
3

4

y
d

Figure 2: Communication topology for 4 subsystems.
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In addition, according to (19), the boundedness of ri
results in the boundedness of vi+1ðtÞ, i = 2,⋯, n − 1 for
all t ∈ ½0, τmaxÞ.

Step n: construct the final Lyapunov function as

Vn =
1
2
rTn rn: ð48Þ

Differentiating along (48) with respect to time and

invoking (18) and (24), one has

_Vn = 〠
N

k=1
rk,nμk,n f k,n t, �xk,nð Þ − _vk,n − ξk,n _ρk,n

�
+ gk,n t, �xk,nð Þ hk tð Þuk + dk tð Þð Þpk,n�:

ð49Þ

It can be deduced that for all t ∈ ½0, τmaxÞ, μk,n−1 is
bounded from (46). Based on the boundedness of vk,nðtÞ in
the n − 1 step. Additionally, from (17), (28), it is obviously

y1
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y3

y4

yd

y
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Figure 3: The output tracking performance yk and yd .

Time (s)

e

𝜌1

e11

e21

e31

e41

–𝜌1

0 1 2 3 4 5 6 7 8 9 10
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Figure 4: The error ek,1 of the closed-loop system.
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that xk,nðtÞ is bounded as jxk,nðtÞj = jξk,nðtÞρk,nðtÞ + vk,nðtÞj
≤ ρ0k,n + jvk,nj for all t ∈ ½0, τmaxÞ. From (19), _vk,n is also
bounded. Then, the boundedness of �xk,n results in the
boundedness of f k,n−1ðt, �xk,n−1Þ. Therefore, there is a con-
stant Ck,n > 0 satisfying j f k,nðt, �xk,nÞj + j _vk,nj + jξk,n _ρk,nj
≜ ι

^
k,n ≤ Ck,n, such that

_Vk,n ≤ 〠
N

k=1
μk,nrk,ngk,n t, �xk,nð Þ hk tð Þuk + dk tð Þð Þpk,n + μk,n rk,n

		 		Ck,n:

ð50Þ

Under Assumption 2 and Lemma 3, invoking (20) and
the previous analysis yields

μk,ngk,n t, �xk,nð Þrk,n hk tð Þuk + dk tð Þð Þpk,n
= μk,ngk,nrk,n −Kk,nhkrk,n + dkð Þpk,n − d

pk,n
k + d

pk,n
k

� �

≤ −
μk,nK

pk,n
k,n gk,n
		 		

2pk,n−1
h
pk,n
k r

pk,n+1
k,n + μk,ngk,nrk,n d

_pk,n

k ,

ð51Þ

where hk is an unknown positive constant satisfying hk ≤
h
^

kðuÞ ≤ jhkðuÞj, with an unknown positive continuous func-

tion h
^

kðuÞ. Invoking (51) and Assumption 2, we have

_Vn ≤ 〠
N

k=1
μk,n −

K
pk,n
n g

k,n
2pk,n−1

h
pk,n
k r

pk,n+1
k,n + rk,n

		 		 ι_k,n

 !
, ð52Þ

where ι
_

k,n = Ck,n + �gk,n
�d
pk,n
k with an unknown positive con-

stant �dk satisfying �dk ≤ d
_

kðuÞ, gk,n
and �gk,n are both positive

constants satisfying g
k,n

≤ gk,nðt, �xk,nÞ ≤ �gk,n.

Substituting (20) into the third term of (52) yields

_Vn ≤ 〠
N

k=1
−
K

pk,n
n g

k,n
h
pk,n
k

2pk,n−1
μk,nr

pk,n+1
k,n + μk,n ι

_
k,n rk,n
		 		: ð53Þ

Applying Lemma 4 to the term g
k,n
h
pk,n
k μk,nr

pk,n+1
k,n , we

obtain

g
k,n
hpnk μk,n rk,n

		 		 ≤ g
k,n
hpnk μk,n

pk,n + 1
rpn+1k,n +

pk,n
pk,n + 1

g
k,n
hpnk μk,n:

ð54Þ

Thus, (53) becomes

_Vn ≤ 〠
N

k=1
μk,n −~κk,n rk,n

		 		 + ιk,n
� �

, ð55Þ

where ~κk,n = K
pk,n
n g

k,n
h
pk,n
k ðpk,n + 1Þ/2pk,n−1 − ι

_
k,n and ιk,n =

K
pk,n
n pk,ngk,n

h
pk,n
k /2pk,n−1. Then, where _Vn is negative when j

rk,nðtÞj ≥ ιk,n/κ
_

n, where κ
_

n = min
0≤k≤N ,k∈N+

f~κk,ng, we obtain j
rk,nðtÞj <�rk,n ≤�rn ≜ max

0≤k≤N ,k∈N+
fιk,n/κ_ng for all t ∈ ½0, τmaxÞ.
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Figure 5: Control input u with deadzone.
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Figure 6: Communication topology for 4 fighters.
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Invoking (18), for k = 1,⋯,N , we get

−1 <
e−�rn − 1
e−�rn + 1

= ξn,low < ξk,n tð Þ < ξn,upper =
e�rn − 1
e�rn + 1

< 1: ð56Þ

From ξk,n = ek,n/ρk,n, (56) implies that

−ρk,n tð Þ < e−�rn1 − 1
e−�rn1 + 1

ρk,n tð Þ ≤ ek,n tð Þ ≤ e�rn − 1
e�rn + 1

ρk,n tð Þ < ρk,n tð Þ:
ð57Þ

As a result, due to (20), the control signal uk,nðtÞ is
bounded from the boundedness of rk,nðtÞ. Moreover, for all t
∈ ½0, τmaxÞ, (38), (46), and (56) imply that ξk,iðtÞ ∈ϒξ ⊂ϒ ,
where the set ϒξ = ðξi,low, ξi,upperÞ ×⋯× ðξn,low, ξn,upperÞ is
nonempty and compact. Thus, it is an obvious contradiction
to assume that τmax < +∞ determines the existence of a tem-
poral instant tξ ∈ ½0, τmaxÞ, which means that ek,iðtξÞ ∉ϒξ.
Therefore, τmax = +∞. Finally, from (39), (47), and (57), we
can draw the conclusion that jek,iðtÞj < ρk,iðtÞ for all t ≥ 0.
Based on the exponential decay property of ρk,i, the following
inequality holds limt⟶∞jek,ij < ρ∞k,i , k = 1,⋯,N, and i = 1,
⋯, n. Then, in view of (15), we have jykðtÞ − ydðtÞj = jykðtÞ
− qk,1ðtÞ + qk,1ðtÞ − ydðtÞj ≤ jek,1ðtÞj + jqk,1ðtÞ − ydðtÞj. Based

on Theorem 7, it can be derived that

lim
t⟶+∞

yk tð Þ − yd tð Þj j < ρ∞k,1: ð58Þ

10 15
0

5

10

15

20

50

50 10 15
–20

–10

0

10

20

𝜙1

𝜙2

𝜙3

𝜙4

𝜙d

Time (s)

𝜌𝜙

𝜙e1

𝜙e2

𝜙e3

𝜙e4

Time (s)

𝜙
e

𝜙

Figure 7: Roll angle ϕ.
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In the Lyapunov sense, ek,iðtÞ is kept within the
preassigned boundary of transient and steady state range,
and this is the end of the proof.

Remark 11. From Theorem 10, it should be noticed that this
memoryless control tracker is recursively constructed by vir-
tue of the specified performance design method, and the
transient and steady state performance boundaries of ek,i
are up to the performance functions ρk,i.

4. Simulation Study

A numerical simulation study and a practical simulation
study are presented in this section to give evidence of the
efficacy and advantage of the constructed control design.

Example 1. Consider the uncertain MAS with unknown high
powers and input deadzone with a communication topology
depicted in Figure 2 as follows

_xk,1 = f k,1 t, xk,1ð Þ + gk,1 t, xk,1ð Þxpk,1k,2 ,

_xk,2 = f k,2 t, �xk,2ð Þ + gk,2 t, �xk,2ð Þxpk,2k,3 ,

_xk,3 = f k,3 t, �xk,3ð Þ + gk,3 t, �xk,3ð Þ hk tð Þuk + dk t, uð Þð Þpk,3 ,
yk = xk,1, k = 1,⋯, 4,

ð59Þ

where pk,1 = pk,2 = pk,3 = 3, gk,1 = 0:8 + 0:5x12, gk,2 = 1 + 0:4
sin ðx3Þ, gk,3 = 1, f k,1 = sin ðxk,1Þ, f k,2 = xk,3 cos ðxk,2Þ, f k,3
= xk,3 sin2ðxk,2Þ, and k = 1,⋯, 4. The desired signal is yd =

cos ð0:5tÞ. The initial conditions are selected as x0k,1 = 0:5,
x0k,2 = 0, x0k,3 = 0, and k = 1,⋯, 4.

The proposed tracking control scheme with prescribed
performance is established as follows.

vk,2 = −Kk,1rk,1,

vk,3 = −Kk,2rk,2,

uk = −Kk,3rk,3,

ð60Þ

where the control parameters are Kk,1 = 2:8, Kk,2 = 5, Kk,3
= 18, and k = 1,⋯, 4.
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Figure 9: Sideslip angle β.
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From e1ð0Þ = yð0Þ − ydð0Þ = −0:5, e2ð0Þ = x2ð0Þ − v2ð0Þ,
and e3ð0Þ = x3ð0Þ − v3ð0Þ, set ρ0 = ½ρ1,0, ρ2,0, ρ3,0�T =
½3:5, 4:5, 2�T such that ρ0 > je0j. For the preselected bound
of e1, e2, and e3, design ρ1 = ð3:5 − 0:35Þe−2t + 0:35, ρ2 = ð
4:5 − 0:30Þe−3t + 0:30, and ρ3 = ð2 − 0:5Þe−t + 0:5.

In addition, to emphasize the capacity of the proposed
controller to deal with the deadzone with a u −DðuÞ charac-
teristic in the presence of nominal deviation from linear
slopes, we consider the deadzone function (2) where hlðtÞ
= 0:80 + 0:2 sin ðtÞ, hrðtÞ = 0:75 + 0:2 cos ðtÞ, bl = −0:7, and
br = 0:5.

As expected, from these simulation results shown in
Figures 3–5, it is indicated that the desired tracking perfor-
mance can be realized, and all the closed loop signals are
bounded under the proposed distributed controller.

Example 2. Consider the dynamics of four practical high
maneuverer fighters with input deadzone as follows [34],
and for simplicity, the subscripts of the following aerody-
namic variables are omitted (i.e., ϕk = ϕ, αk = α, βk = β
and so on).

_xk,1 = f k,1 t, xk,1ð Þ + gk,1 t, xk,1ð Þxpk,1k,2 ,

_xk,2 = f k,2 t, �xk,2ð Þ + gk,2 t, �xk,2ð Þxpk,2k,3 ,

_xk,3 = f k,3 t, �xk,3ð Þ + gk,3 t, �xk,3ð Þ hk tð Þuk + dk t, uð Þð Þpk,3 ,
yk = xk,1, k = 1,⋯, 4,

ð61Þ

with

f k,1 t, xk,1ð Þ =
q tan θ sin ϕ + r tan θ cos ϕ

pβ + z0Δα + g0/Vð Þ cos θ cos ϕ − cos θ0ð Þ
yββ + p sin α0 + Δαð Þ + g0/Vð Þ cos θ sin ϕ

2
664

3
775,

ð62Þ
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Figure 11: The responses of actuator of fighter 2.
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Figure 12: The responses of actuator of fighter 3.
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Figure 13: The responses of actuator of fighter 4.
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gk,1 t, xk,1ð Þ = −

−1 0 0

0 −1 0

0 0 cos α0

2
664

3
775, ð63Þ

f k,2 t, �xk,2ð Þ = q cos ϕ − r sin ϕ, ð64Þ
gk,2 t, �xk,2ð Þ = 0, ð65Þ

f k,3 t, �xk,3ð Þ =

lββ + lpp + lqq + lrr + lβαβ + lrαr
� �

Δα − i1qr

mαΔα +mqq + i2pr −m _α

g0
V

� �
cos θ cos ϕ − cos θ0ð Þ

nββ + nrr + npp + npαpΔα − i3pq + nqq

2
6664

3
7775,

ð66Þ
gk,3 t, �xk,3ð Þ = L,M,N½ �T , ð67Þ

L = lδel , lδer , lδal , lδar , 0, 0, lδr

 �

, ð68Þ

M = mδel
,mδer

,mδal
,mδar

,mδle f
,mδte f

,mδr

h i
, ð69Þ

N = nδel , nδer , nδal , nδar , 0, 0, nδr

 �

, ð70Þ

where xk,1 = ½ϕ, α, β�T is roll angle, attack angle, and side-

slip angle, xk,2 = θ is pitch angle, xk,3 = ½p, q, r_�T is roll
angular velocity, pitching angular velocity, and yaw angu-
lar velocity, respectively. uk = ½δel , δer , δal, δar , δlef , δtef , δr�T
is left and right elevators, left and right ailerons, front
and rear flaps, and rudder, respectively. The parameters
and variables of this model are explained in detail in
[34]. Assume that they are all flying at 40,000 feet, at 0.6
Mach. The expected roll angle, attack angle, and sideslip

angle for the fighters are yd = ½ϕd , αd , βd�T with ϕd = 20°,
αd = 30°, βd = 0°, respectively. The communication topol-
ogy for the four fighters is shown in Figure 6.

The tracking errors are defined as ϕk,e = ϕk − qd,1, αk,e =
αk − qd,2, and βk,e = βk − qd,3, where qd,1, qd,2, and qd,3 are the
signals generated by (7), and yd,i is, respectively, the filter inputs.

From ek,1ð0Þ = ½−16°,−25°, 0°�T , design ½ρ0k,1, ρ0k,2, ρ0k,3�T =
½20°, 33°, 3°�T to satisfy ρ0k,i > jek,ið0Þj. ½ρ∞k,1, ρ∞k,2, ρ∞k,3�T =
½0:05°, 0:02°, 0:05°�T , and ½lk,1, lk,2, lk,3�T = ½0:25, 0:25, 0:40�T .

Define ξk,1,1 = ϕk,e/ρ1,1 , ξk,1,2 = αk,e/ρ1,2 , ξk,1,3 = βk,e/ρ1,3,
ξk,2,1 = ðpk − vk,2,1Þ/ρ2,1, ξk,2,2 = ðqk − vk,2,2Þ/ρ2,2, ξk,2,3 = ð r_k

− vk,2,3Þ/ρ2,3, �Kk,i = diag fKk,i1, Kk,i2, Kk,i3g, rk,i,j = ln ðð1 +
ξi,jÞ/ð1 − ξi,jÞÞ, k = 1, 2, 3, 4, i = 1, 2, j = 1, 2, 3, and ~rk,i =
½rk,i,1, rk,i,2, rk,i,3�T , i = 1, 2. The proposed control scheme with
prescribed performance is established as follows.

vk,2 = −�Kk,1~rk,1,

uk = −�Kk,2~rk,2,
ð71Þ

where the control parameters are set as Kk,11 = 8, Kk,12 = 5,
Kk,13 = 12, Kk,21 = 4, Kk,22 = 5, Kk,23 = 1:8, and k = 1, 2, 3, 4.

In addition, to emphasize the capacity of the proposed
controller to deal with the deadzone with a u −DðuÞ
characteristic in the presence of nominal deviation from linear
slopes, we consider the deadzone function (2) where hl = diag f
0:80 + 0:2 sin ðtÞ, 0:70 + 0:2 cos ðtÞ, 0:75 + sin ð3tÞ, 0:85 +
cos ð0:5tÞ, 0:90 + sin ðtÞ, 0:70 + 0:2 cos ðtÞ, 0:80 + 0:4 sin ðtÞg
hr = diag f0:75 + 0:2 cos ðtÞ, 0:80 + 0:4 sin ðtÞ, 0:70 + 0:1 sin
ð2tÞ, 0:85 + 0:2 cos ð2tÞ, 0:90 + 0:4 sin ðtÞ, 0:70 + 0:2 cos ð2tÞ
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, 0:80 + 0:4 sin ðtÞg, bl = −½0:7, 0:5, 0:3, 0:6, 0:8, 0:4, 0:5�T ,
and br = ½0:5, 0:5, 0:8, 0:6, 0:3, 0:4, 0:7�T .

In order to facilitate comparison, we exploit the method
[6] under the same conditions. From [6], define ~ek,i =
½ek,i,1, ek,i,2, ek,i,3�T , i = 1, 2, and the control protocols are pre-
sented as follows

vk,2 = −�Kk,1~ek,1,

uk = −�Kk,2~ek,2:
ð72Þ

To ensure the validity of the comparative practical exam-
ple, �Kk,i and i = 1, 2 are the same as our proposed methods.

The results are indicated in Figures 7–13. In Figures 7–
9, the chain dotted curves represent the actuator responses
under the method control of [6], and the solid curves rep-
resent the actuator responses under our proposed
methods. It is observed from Figures 7–9 that control per-
formance under our approach is fairly better than [6]
since our roll angle, attack angle, and sideslip angle
responses can be faster and more accurately trail the
desired value. Figures 10–13 indicate the actions of actua-
tors under the method of this paper. Figure 14 demon-
strates the control performance of our approach and [6].
As shown in Figure 14, the blue curves represent the actu-
ator efforts E1 under our methodology, and the red curves
represent the actuator efforts E2 of [6], where E1 and E2
are defined as

E =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2el + δ2er + δ2al + δ2ar + δ2lef + δ2tef + δ2r

q
, ð73Þ

It is clear from the result presented in Figure 14 that
at the beginning, the actuator actions of our approach
are greater to that in [6], but eventually, the distinction
of the efforts between our method and [6] is little. In
other words, our method’s control performance is better
with the almost same control force.

The results that all the closed loop signals are bounded
and the preset transient and steady state tracking perfor-
mance are realized in the finite time can be concluded.

5. Conclusions

This paper investigates a distributed consensus control
approach under a directed graph for a multiagent system
with unknown input deadzone nonlinearities and time-
varying control coefficients. To provide the required signals
thus avoiding the estimation of the unknown matrix associ-
ated with the Laplace matrix, a two-order filter for each
agent is established. Together with the two-order filter, a dis-
tributed prescribed performance control design was pro-
posed for an uncertain heterogenous power-chained MAS
with unknown input deadzone nonlinearities under a
directed topology. This consensus control protocol is applied
to two examples. Simulations results demonstrate the effi-
cacy and advantage of the method.
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