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For traditional predictor-corrector guidance algorithm for reentry glide vehicle, it cost a lot of time to obtain predicted flight range
with a slow speed to iterate. In this paper, according to residual network (ResNet)’s block and dynamic model of vehicle, through
analyzing the characteristics of predicted flight range with constraints, the flight range prediction block and flight range prediction
neural network are designed, which can obtain the predicted range accurately and quickly; then aiming at the separation between
guidance logic and no-fly zone avoidance logic, which may lead to guidance failure and increasing of the sign variation number of
the bank angle, the no-fly zone crossrange and the no-fly zone mapping crossrange are proposed in this paper. According the
repulsion force of artificial potential field, an adaptive crossrange corridor combining guidance logic and no-fly zone avoidance
logic is proposed, and the convergence of the corridor is analyzed theoretically. Through simulation, the block number of flight
range prediction network is determined firstly. By this method, the efficiency of lateral guidance can be improved. Then,
through the simulation with the different no-fly zones under different disturbed conditions, the stability and validity of the
guidance method are verified. Finally, compared with other predictor-corrector algorithms, the proposed method can realize
guidance with less sign variation number of bank angle and better avoidance for no-fly zones.

1. Introduction

The reentry glide vehicle [1] with a lift body structure has
extremely fast reentry and glide speeds, and can make a jump
maneuver of tens of kilometers in longitudinal direction with
hundreds of kilometers maneuver range in lateral direction,
which is difficult to predict and intercept [2], thus has high
research value.

The research on the guidance mechanism of the reentry
glide vehicle is beneficial to efficient trajectory generation and
accurate guidance. At present, there are several excellent
methods for guiding and controlling of agents with uncertainty.
For example, Zhang et al. [3] proposed a path-following control
capable of reinforcing transient performances for networked
mobile robots over a single curve, in which a tracking
differentiator-based prescribed performance control (TDPPC)

scheme was proposed to enforce tracking deviations of geomet-
ric and dynamic objectives approximating to pregiven ranges
before an appointed time. And for the control with uncer-
tainties, a line-of-sight principle-employed realizing guidance
and aperiodic sampling-based extended state observers (AS-
ESOs) were developed to estimate disturbance [4], when an
unknown input observer-based appointed-time funnel control
policy was proposed for the control with unknown input [5].
The above trajectory guidance and control methods are suitable
for discontinuous low-velocity vehicles. And in general, the
guidance mode of reentry glide vehicle can be divided into
nominal trajectory guidance and predictor- corrector guidance.

The nominal trajectory guidance methods usually make
use of convex optimization or sequential quadratic program-
ming method; base on the Drag-Velocity (D-V) or Height-
Velocity (H-V) profile of the vehicle, find the optimal nominal
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trajectory satisfying various constraints. By introducing a new
state, Wang and Grant [6] performed the first-order Taylor
expansion on the three-dimensional dynamic equation of the
reentry vehicle, realizing convexification, and solving the
approximate solution of the original problem, when its conver-
gence is also discussed. X. Zhou et al. [7] realized optimization
of the approximate solution of the vehicle within the three-
dimensional profile after convexification of the three-
dimensional dynamic models of the reentry vehicle, and the
new variables were introduced to realize the change of the trust
region. On this basis, X. Zhou et al. [8] refined the mesh point
generation methods to improve the speed of trajectory genera-
tion keeping guidance accuracy. Except convex optimization,
the pseudospectral method has high accuracy in solving the
strongly nonlinear and strongly constrained optimal control
problems and has been rapidly developed and applied in the
vehicle trajectory optimization [9]. Li et al. [10] proposed a
multi-interval mesh refinement radau pseudospectral method,
which improved the optimization accuracy and convergence
speed of the algorithm. H. Y. Zhou et al. [11] improved the par-
ticle swarm optimization algorithm to solve the trajectory plan-
ning problem in the glide phase of hypersonic vehicle. In
summary, the nominal trajectory guidance method can realize
guidance of reentry glide vehicle satisfying constraints. How-
ever, the optimization process of this method cost pretty a long
time, and it is difficult to meet the requirement generating the
trajectory fast.

To generate the guidance trajectory of reentry glide vehicle
within a short time, the predictor-corrector guidance methods
are usually adopted. According to different mechanisms,
predictor-corrector guidance algorithms include analytical
type and numerical type. The analytical predictor-corrector
method sets an equation with analytical form for the guidance
process and obtains approximate solution within the guidance
cycle. Then, continuously corrects the equation parameters by
using difference value between approximate solution and
terminal constraints. Bryant et al. [12] proposed an analytic
resistance equation based on the resistance height profile to
realize the guidance of the reentry vehicle. Lunghi et al. [13]
transformed the guidance process of reentry vehicle into an
optimal control problem and obtained its semianalytical solu-
tion. Mingliang et al. [14] designed a new balanced glide adap-
tive guidance algorithm, which can imitate the predictor-
corrector method to achieve effective guidance of reentry glide
vehicle. Although the analytical predictor-corrector method
has been used in the early development of reentry glide vehicle,
it still has several shortcoming. The analytical process needs to
be designed in advance with a unique analytical form, which
leads to complicated motion equation, large analytic solution
error, and sensibility for parameter disturbance.

With the enhancement of computing power, the numeri-
cal predictor-corrector algorithms are used more and more.
By setting the control logic of longitudinal and lateral direc-
tion, the numerical predictor-corrector algorithms obtain the
predicted range by continuously iterate the integral trajectory
according to dynamic equation. Then, the control parameters
are modified by calculating the difference value between
range-to-go and the predicted flight range. Finally, the guid-
ance can be realized with the lateral guidance logic.

The process of the numerical prediction correction algo-
rithm can be divided into two stages: longitudinal guidance
and lateral guidance. In the longitudinal guidance stage, the
attack angle profile and the absolute value of bank angle need
to be determined. In order to meet various constraints finely,
the attack angle profile should be set in advance in the process
of predictor-corrector guidance [15] in common. Then, all
kinds of constraints are transformed into bank angle corridor
[16], and the path constraints are meet by the constraints of
bank angle. To calculate the absolute value of the bank angle,
the common method is used to calculate the difference value
of two adjacent time’s predicted flight range [17] and put the
difference value into the secant method. According to the
secant method, Tao et al. [18] modified the absolute value of
bank angle change law based on fuzzy logic to improve the
accuracy of predictor-corrector method. Consider that tradi-
tional secant method is limited by initial value selection, X.
Zhang et al. [19]. proposed a design formula of secant method,
which is insensitive to initial value. L. Cheng et al. [20] designed
a new compound bank corridor that is designed to help convert
the complicated trajectory planning problem into a root-
finding problem, which is identified by a recursive least squares
estimation algorithm and solved by a newly proposed period-
crossing steepest descent method within a fraction of a second.
For the calculation of predicted range, the differential relation-
ship between speed and range [21] and range and energy [22] is
usually used. However, due to the complexity of the dynamics
model, the predicted flight range cannot be obtained by analyt-
ical integration. To solve this problem, some scholars predicted
the flight range by predicting the landing points position.
Among them, J. Zhang et. al [23] predicted the landing point
position by iteratively extrapolating at each time. Then, neural
network was used to learn the functional relationship between
the landing point position and initial state, which improved the
speed of predictor-corrector method [24]. In the above
method, the calculation time of the predicted flight range or
the landing points is pretty long or the improved method has
low correlation with dynamic model.

In the lateral guidance stage of reentry vehicle, heading
deviation angle corridor [25] and crossrange corridor [26]
are usually adopted. The guidance method based on cross-
range corridor may obtain higher guidance precision, while
the crossrange reflecting the lateral guidance characteristics
of vehicle easily. Base on the mechanism of vehicle lateral
guidance, K. Zhang et al. [27] proposed a crossrange corri-
dor that can constrain the crossrange dynamically and
improved the lateral guidance accuracy of vehicle. In the
process of lateral guidance, there are usually no-fly zones
that cannot be passed by vehicle, so valid no-fly zone avoid-
ance logic needs to be set up. Among them, J. Zhu et al. [28]
described the relative position relationship between the
flight path of the vehicle and no-fly zones through the angle
of sight and proposed the boundary selection algorithm for
each no-fly zone to realize the minimum energy avoidance.
For the lateral guidance instability caused by no-fly zone,
H. Lin et al. [29] combined lateral guidance with heading
dead zone corridor to realize no-fly zone avoidance with a
small amount of bank angle sign change. The above method
all designed avoidance logic for the no-fly zones when the
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avoidance logic is independent to lateral guidance logic,
which may cause the failure of vehicle avoidance or increas-
ing variation number of bank angle’s sign.

Aiming at long calculation time of traditional predicted
flight range, through analyzing variation of predicted flight
range with bank angle corridor, the flight range prediction
block and flight range prediction neural network are
designed in this paper according to residual network [30]
(ResNet) and dynamic model, by which the predicted flight
range can be obtained accurately and quickly. Compared
with traditional range calculation methods, the proposed
method can greatly improve the speed of range prediction.
Aiming at the separation between vehicle’s lateral guidance
logic and no-fly zone avoidance logic, the concept of no-fly
zone crossrange and no-fly zone mapping crossrange are
proposed in this paper. And based on the definition of repul-
sive force in artificial potential field method, an adaptive
crossrange corridor is designed, which can avoid no-fly zone
and complete lateral guidance under the same guidance
logic, and its convergence is also discussed. Compared with
traditional lateral guidance methods and no-fly zone avoid-
ance methods, the proposed method can reduce the sign var-
iation numbers of bank angle with the avoidance for the no-
fly zones and realized the guarantee of success for the lateral
guidance. Finally, through simulation analysis, the suitable
block number of the flight range prediction network is deter-
mined. And the simulation in different cases show that the
proposed method can realize the guidance quickly with less
bank angle’s sign change under various no-fly zones, and
the robustness of the proposed method is also verified
through the disturbance experiment.

The innovations of this paper are summarized as follows:

(1) According to the flight range prediction mechanism
of reentry glide vehicle, referring to the structure of
ResNet, the flight range prediction block and flight
range prediction network are designed to realize
flight range prediction accurately and quickly

(2) No-fly zone crossrange and no-fly zone mapping
crossrange are proposed firstly. By the definition of
repulsive force field, an adaptive crossrange corridor
is designed to realize the lateral guidance and no-fly
zone avoidance of vehicle with less bank angle’s sign
change. And the convergence of corridor is analyzed
theoretically

This paper is arranged as follows. The research status of
guidance algorithm of reentry glide vehicle are summarized
and innovations are introduced in Section 1. The dynamic
model and constraint of reentry glide vehicle are introduced
in Section 2. The longitudinal guidance method based on the
flight range prediction network is introduced in Section 3.
No-fly zone crossrange, no-fly zone mapping crossrange,
and lateral guidance logic are introduced, when the conver-
gence of adaptive crossrange corridor are discussed in Sec-
tion 4. The proposed method is verified by simulation in
Section 5. Finally, the summarization of all the work in this
paper is in Section 6.

2. The Dynamic Model and Constraints of
Reentry Glide Vehicle

Without considering the earth’s rotation, the dynamic
model of the vehicle is shown

_R = V sin θ,

_ϕ = V cos θ sin ψ

Re + hð Þ cos φ ,

_φ = V cos θ cos ψ
Re + hð Þ ,

_V = −
D
_

m
− g sin θ,

_θ = L
_
cos β
mV

+ cos θ V
Re + h

−
g
V

� �
,

_ψ = L
_
sin β

mV cos θ + V cos θ sin ψ tan φ

Re + h
,

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð1Þ

where H is the flight height of vehicle and ϕ and φ represent
the longitude and latitude, respectively. V is the velocity of
vehicle and θ and ψ represent the flight path angle and head-

ing angle, respectively. L
_

and D
_

represent the lift and drag
force. Re represents the radius of earth and m represents
the mass of vehicle.

For the convenience of calculation, the nondimensional
dynamic model can be described as

_r = v sin θ,

_ϕ = v cos θ sin ψ

r cos φ ,

_φ = v cos θ cos ψ
r

,

_v = −D −
sin θ

r2
,

_θ = L cos β
v

+ cos θ
v

v2

r
−

1
r2

� �
,

_ψ = L sin β

v cos θ + v cos θ sin ψ tan φ

r
,

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð2Þ

where r is the nondimensional geocentric distance, v is the
nondimensional velocity, and L and D represent the nondi-
mensional acceleration of lift and drag force, respectively.

L = CLSρv
2v2c /2mg0,

D = CDSρv
2v2c /2mg0,

(
ð3Þ

where CL is the lift coefficient and CD is the drag coeffi-
cient, S is the stressed area of the vehicle, m is the mass,
and g0 is gravitational acceleration at zero altitude. vc is
expressed as vc =

ffiffiffiffiffiffiffiffiffi
Reg0

p
. The energy of vehicle is expressed

as e = 1/r −V2/2.

3International Journal of Aerospace Engineering



Then there are process constraints, no-fly zone constraints,
and terminal constraints in vehicle flight, where terminal con-
straints is expressed as

r ef
À Á

= r f ,

v ef
À Á

≥ vf ,

ϕ ef
À Á

= ϕf ,

φ ef
À Á

= φf ,

8>>>>>><
>>>>>>:

ð4Þ

where r f ,V f , ϕf , and φf represent the terminal radius, velocity,
longitude, and latitude, respectively.

The process constraints conclude the heating rate con-
straint for vehicle _Qmax, dynamic pressure constraint qmax,
and overload constraint nmax. Where _Q, q, and n represent
the heating rate, dynamic pressure, and overload of vehicle,
respectively.C is the aerodynamic heat coefficient. The process
constraints can be expressed as

_Q = Cρ0:5 v ⋅ vcð Þ3:15 ≤ _Qmax,
q = 0:5ρ v ⋅ vcð Þ2 ≤ qmax,

n =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 +D2

p
r2 ≤ nmax:

8>><
>>: ð5Þ

In this paper, the no-fly zone is defined as a circular
area, where vehicle are not allowed to pass. It can be
expressed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ − ϕbð Þ2 + φ − φbð Þ2

q
≥ rb, ð6Þ

where ϕb and φb, respectively, represent the latitude and
longitude of no-fly zone’s center when rb is the radius of
no-fly zone.

3. Design of Longitudinal Guidance

3.1. Design of Attack Angle Profile. Considering that the
vehicle needs to meet the process constraints, the longitudi-
nal attack angle profile is designed using the attack angle
profile of the space shuttle [31], which is shown as follows

α =

αmax, V ≥ V1,
αK − αmax
V2 − V1

V − V1ð Þ + αmax, V2 ≤ V < V1,

αK , V < V2,

8>>><
>>>:

ð7Þ

where V1 = 5000m/s, V2 = 3000m/s in this paper, and αK
represent the attack angle with which the vehicle is in the
maximum lift-drag ratio.

3.2. Bank Angle Corridor. Transforming the heating rate
constraints, dynamic pressure constraints, and overload
constraints to the H-V profile, the path constraints can be
transform to be the constraints of height as follows

Put rmin = 1 +max ðh _Q max, hq max, hn maxÞ/Re into the
quasi-equilibrium glide equation L cos β + cos θðv2/r − 1/r2Þ
≤ 0, where θ ≈ 0 during the flight of the reentry glide vehicle,
so the upper boundary of bank angle corridor can be calcu-
lated as follows:

βj jc max = arccos 1/rminð Þ − v2/rmin
2À ÁÀ Á

Lr min
: ð9Þ

At the same time, the lower boundary of the bank angle
corridor can be calculated by using the equilibrium glide equa-
tion as follows:

βj jc min = arccos 1/rð Þ − v2/r2
À ÁÀ Á
L

: ð10Þ

The vehicle should meet the constraints jβjc min ≤ jβj ≤
jβjc max during flight.

3.3. Intelligent Flight Range Prediction. For longitudinal guid-
ance of vehicle, in order to make the vehicle having a strong
turning ability at the end of flight, the bank angle profile is
designed to calculate the amplitude of bank angle in general

βj j = β0 −
e − e0
e − ef

βf − β0

� �
, ð11Þ

Cρ0:50 e− r−1ð ÞRe/2H0ð Þ v ⋅ vcð Þ3:15 ≤ _Qmax ⟶ r ≥
2H0ð Þ ln Cρ0:50 v ⋅ vcð Þ3:15/ _Qmax

� �
+ Re

� �
Re

= r _Q max,

q = 0:5ρ0e− r−1ð ÞRe/H0ð Þ v ⋅ vcð Þ2 ≤ qmax ⟶
H0 ln ρ0 v ⋅ vcð Þ2/ 2qmaxð ÞÀ Á

+ Re

À Á
Re

= rq max,

n = ρ0e
− r−1ð ÞRe/H0ð Þ v ⋅ v2c

À Á
S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
L + C2

D

p
2mg0

r2 ≤ nmax ⟶ r ≥
H0 ln ρ0 v ⋅ vcð Þ2r2S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
L + C2

D

p
/2nmaxmg0

� �
+ Re

� �
Re

= rn max:

ð8Þ
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where β0 and βf are the amplitude of the initial and terminal
bank angle of the vehicle. In general, a lot of predictor-
corrector algorithms can also realize effective guidance when
β0 = βf , in which the bank angle profile is a constant. This
paper also selects this setting to verify the validity of the intel-
ligent flight range prediction method.

The bank angle amplitude of predictor-corrector guid-
ance is related to the difference value between the range-
to-go Stogo f and the predicted flight range Sp. Where
Stogo f = arccos ½cos φf cos φp cos ðϕf − ϕpÞ + sin φf sin φp�.
In general, the predictor-corrector guidance method obtain
the predicted range through integral-iteration method, and
its calculation equation is

Sp =
ðef
e

dSp
de

de =
ðef
e

dSp
dt

dt
de

de =
ðef
e

sin θ

rD
de ð12Þ

Using the numerical discrete integration method (such
as Euler method), its calculation process is

Sp = 〠
N

i=0

cos θi
riDi

ΔE = 〠
N−1

i=0

cos θi
riDi

+
θi′ cos θiriDi + sin θi ri′Di + riDi′

� �
r2i D

2
i

ΔE

0
@

1
AΔE

= 〠
N−1

i=0

cos θi
riDi

ΔE + sin θi
riD

2
i

Li cos βi

v2i
+ cos θi

v2i

v2i
ri

−
1
r2

� �� �
ΔE2

�

+ cos θi
r2i D

2
i

sin θi −
1
H0

ri
vi

−
Di

2ri
−
sin θi
2r3i

� �
ΔE2Þ ð13Þ

where ΔE = ðef − eÞ/N , N represents the number of iteration

steps, θ′ = dθ/de, r′ = dr/de, and D′ = dD/de.
It can be seen that the influencing factors of flight range

prediction are state ri, vi, θi and bank angle βi at each time.
The state of the vehicle at each time ri, vi, θi is related to the
initial state r0, v0, θ0 and the bank angle at each time β0,⋯,
βi. In order to improve the accuracy of flight range prediction,
the same corridor constraint for guidance should be added in
iteration. The predicted flight range of different initial states
under different bank angles are shown in Figure 1.

It can be seen that due to the existence of bank angle corri-
dor, the predicted flight range in different initial states show
continuous nonlinear characteristics under the same bank
angle, and three-dimensional function relationship is not obvi-
ous. The function relationship between the predicted flight
range and initial state r0, v0, θ0 is shown in Figures 2(a)–2(c)
under the same bank angle. In Figures 2(a)–2(c), the vehicle’s
bank angle is β0 = 38o; case 1, 2, and 3 represent different initial
states, respectively, and the information is shown in Table 1.

It can be seen from Figures 2(a) and 2(c) that the initial
flight path angle of vehicle has almost no impact on the pre-
dicted flight range under bank angle corridor when it has a
small impact at high speed. As can be seen from Figure 2(b),
the predicted flight range of vehicle is proportional to the
speed. And with the same speed and flight path angle, the larg-
est predicted flight range is not a simple proportional relation-
ship with height. There exist a peak in the curve when the
initial velocity increases with the peak’s height higher. It is

due to the bank angle corridor under which the initial bank
angle of vehicle at high speed at high height has to be adjusted.
On the whole, there is a highly coupled nonlinear relationship
among vehicle’s predicted flight range, initial state, and bank
angle, which is difficult to be fitted effectively by nonlinear
function or simple multilayer perceptron (MLP). To solve this
problem, based on the integral-iteration process of flight range
prediction and the structure of ResNet, the flight range predic-
tion block and flight range prediction neural network are
designed to realize flight range prediction effectively. Its struc-
ture is shown in Figure 3.

As seen from Figure 3(a), the structure of flight range
prediction block is same as Equation (13), which can regard
one flight range prediction block as a step of the integral-
iteration process. It includes two layers of fully connected
network and Relu activation function to simulate differential
of the state _ri, _vi, _θi and change rate of bank angle _β between
two points of flight. And differential of predicted flight range
_Spi is added into the output of block, which satisfies _SpiΔE

=
Ð ei+1
ei

_Spde = ΔSpi. Then take the sum of ΔSpi as shown in

Figure 3(b), the predicted flight range can be obtained. On
the other hand, due to structure of block is similar as the
ResNet’s base block, the input of the block can be added into
output directly, which can reduce the gradient diffusion and
disappear caused by the deep network. In this way, the flight
range neural network can also be training effectively when
layers number of network reaches one hundred and more.

For traditional predictor-corrector guidance methods, the
bank angle β0 is usually calculated through secant method,
which satisfies f ðβ0Þ = 0. It can be expressed as

β0 i + 1ð Þ = β0 ið Þ − ai
β0 ið Þ − β0 i − 1ð Þ

f i − f i−1
f i, ð14Þ
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Figure 1: Relationship between predicted flight range and initial
state under different bank angle.
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where ai is the adjustment coefficient and f i is the difference
valve between predicted flight range and range-to-go of i-th
iteration.

The convergence speed of the traditional secant method is
easily affected by the initial value and the adjustment coeffi-
cient. In this paper, when the network is used for calculating
β0, the different initial bank angle in the same state are input-
ted into flight range prediction network as a batch and make
use of Sf by inverse interpolation solution function to obtain
β0 which satisfies f = 0. Assuming flight range prediction net-
work as f pð⋅Þ, and the inverse interpolation solution function
can expressed as Ipð⋅Þ. β0 can be calculated as

β0 = Ip f S, β1,::,N
À Á

, Stogo f

À Á
= Ip Sp1,⋯,pN , Stogo f

� �
: ð15Þ

The time complexity of traditional predictor-corrector
guidance method is Oðn2Þ, in which the integral flight range
prediction method and secant method. Through the method
in this paper, the flight range prediction network replaces
the iterative process of interval range prediction, by which
the time complexity isOð1Þ. And through the inverse interpo-
lation solution method, the time complexity is also reduced to
Oð1Þ compared with the secant method. The time complexity
of the proposed algorithm for calculating the value of bank
angle is Oð1Þ.

4. Design of Lateral Guidance Method

In the common design of lateral guidance law, the lateral guid-
ance effect of vehicle is more easily reflected by the crossrange
corridor compared with the heading deviation angle corridor.
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Figure 2: Relationship between the initial state with the predicted flight range. (a) is the relation between the height and the predicted flight
range. (b) is the relation between the speed and the predicted flight range. (c) is the relation between the flight path angle and predicted flight
range.

6 International Journal of Aerospace Engineering



What is more, the avoidance logic of no-fly zone and cross-
range corridor guidance logic are often separate, and the con-
vergence condition of crossrange is not considered in the
design of dynamic corridor. To solve this problem, no-fly zone
crossrange and no-fly zone mapping crossrange are proposed
based on definition of crossrange and artificial potential field.
On this basis, an adaptive crossrange corridor combining no-
fly zone avoidance and lateral guidance is designed, and its
convergence is analyzed.

4.1. No-Fly Zone Crossrange and No-Fly Zone Mapping
Crossrange. Crossrange of vehicle is the distance between
the vehicle’s velocity and the terminal position, it can be
expressed as

χ = arc sin sin Stogo f

À Á
sin Δψf

� �� �
, ð16Þ

where Δψf is the heading deviation angle between vehicle
and terminal position. Δψf = ψ − ψf , and ψf is the sight line
angle between vehicle and terminal position, which can be
expressed as

ψf = arc sin
sin ϕf − ϕ
� �

cos φf

sin Stogo f

À Á : ð17Þ

Based on the definition of crossrange, the concept of no-
fly zone crossrange and no-fly zone mapping crossrange are
proposed as shown in Figure 4.

As shown in Figure 4(a), no-fly zone crossrange represents
the distance between the center of no-fly zone and the velocity
direction of vehicle. The definition can expressed as

χb =
arc sin sin Sbð Þ sin Δψbð Þð Þ, if Δψbj j < π

2 ,

∞, if Δψbj j ≥ π

2 ,

8><
>:

ð18Þ

where Sb = arccos ðcos φ cos φb cos ðϕ − ϕbÞ + sin φ sin φbÞ,
which is the distance between center of no-fly zone and vehi-
cle. ψb = arcsin ðsin ðϕb − ϕÞ cos φ/sin ðSbÞÞ, which repre-
sents the sight line angle between center of no-fly zone and
vehicle. Δψb = ψ − ψb. The sight line angles of the no-fly zone
boundaries are ψb min, ψb max, which can be expressed as

ψb max = ψb + arc sin rb
Sb

,

ψb min = ψb − arc sin rb
Sb

:

ð19Þ

No-fly zone mapping crossrange represents the mapping
distance on the vehicle’s crossrange cause of no-fly zone,
which is shown in Figure 4(b). The basic crossrange corridor
χ0 max and χ0 min in this paper can be expressed as

χ0 max = arc sin sin Stogo f

À Á
sin π

18
� � Stogo f

Stogo f 0
+ π

36

 ! !
,

χ0 min = −arc sin sin Stogo f

À Á
sin π

18
� � Stogo f

Stogo f 0
+ π

36

 ! !
,

ð20Þ

where Stogo f 0 is the range-to-go at the initial time.
And the lower boundary and upper value boundary of no-

fly zonemapping crossrange χb min and χb max can be calculated
as

χb min = arc sin sin Stogo f

À Á
sin ψb min − ψf

� �� �
,

χb max = arc sin sin Stogo f

À Á
sin ψb max − ψf

� �� �
:

ð21Þ

The mapping crossrange is calculated as Equation (22),
which is the overlap crossrange between basic crossrange corri-
dor and the mapping area’s no-fly zone crossrange.

Table 1: Initial state of case.

Figure Case 1 Case 2 Case 3

(a) up
V0 = 6200m/s,

θ0 = −3o
V0 = 6200m/s,

θ0 = −1o
V0 = 6200m/s,

θ0 = −1o

(a) down
V0 = 5800m/s,

θ0 = 0o
V0 = 4300m/s,

θ0 = 0o
V0 = 2800m/s,

θ0 = 0o

(b) up
H0 = 70:4km,

θ0 = −3o
H0 = 70:4 km,

θ0 = −1o
H0 = 70:4 km,

θ0 = −1o

(b) down
H0 = 68:8 km,

θ0 = 0o
H0 = 56:8 km,

θ0 = 0o
H0 = 44:8km,

θ0 = 0o

(c) up
H0 = 70:4 km,
V0 = 5800m/s

H0 = 70:4 km,
V0 = 4300m/s

H0 = 70:4 km,
V0 = 2800m/s,

(c) down
H0 = 68:8 km,
V0 = 6200m/s

H0 = 56:8 km,
V0 = 6200m/s

H0 = 46:8km,
V0 = 6200m/s
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Δχb =
0, if χb max < χ0 min,
min χb max, χ0 maxð Þ −max χb min, χ0 minð Þ,
0, if χb min > χ0 max:

8>><
>>:

ð22Þ

4.2. Adaptive Crossrange Corridor. According to the concept of
repulsive force in artificial potential field, an adaptive crossrange
corridor for reentry glide vehicle is designed, in which the
boundary can be adjusted adaptively. And the sign of no-fly
zone crossrange represents the direction of the repulsive force,
the value of no-fly zone crossrange and distance between center
of no-fly zone and vehicle decide the weight of repulsive force,

which can be expressed as

ϕs Sbi, rbið Þ =
1

Sbi − nirbi + 1ð Þ2 , if Sbi > nirbi,

1, if Sbi < nirbi,

8><
>: ð23Þ

ϕχ χbi, rbið Þ =
r2b
χbij jð Þ2 , if χbi > rbi,

1, if χbi < rbi,

8><
>: ð24Þ

where ϕs represents the weight relate to distance between the

no-fly zone and vehicle and ϕχ represents the weight relate to
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Figure 3: Design of flight range block and flight range neural network. (a) is the structure of the flight range prediction block. (b) is the
structure of the flight range prediction neural network.

𝜓bmax

𝜓bmin

𝜓b

o

V

No-fly
Zone

bS

𝜑

𝜙

𝜓
Ob

rb

𝜒
b

(a)

Stogo_f
𝜒
b2min

𝜒
b1max

𝜒
b1min

Terminal
Position 

𝜒
0max

𝜒
0min

O

Vehicle

𝜑

𝜙

Δ𝜒
b1

 = 𝜒
b1max – 𝜒

b1min

Δ𝜒
b2

 = 𝜒
0max – 𝜒

b2min

No-fly zone 2

No-fly zone 1

(b)

Figure 4: No-fly zone crossrange and no-fly zone mapping crossrange. (a) represents the no-fly zone crossrange. (b) represents the no-fly
zone mapping crossrange.

8 International Journal of Aerospace Engineering



no-fly zone crossrange. ni represents the impact factors of the
no-fly zone of i-th no-fly zone, and the value is larger when
the no-fly zone’s initial distance is greater in order to combine
the effects of multiple no-fly zones.

Equations (23) and (24) mean that the repulsive force
will decrease quickly when the distance between vehicle
and no-fly zone is out of setting range; the repulsive force
will also decrease quickly when the velocity direction is not
going through the no-fly zone.
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Figure 5: The result of flight range prediction network. (a) is the result of the predicted flight range with different blocks number. (b) is the
result of the single running time with different blocks number.
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Then, assuming that the truth upper and lower bound-
ary of the crossrange corridor at t-th time are χt max and
χt min, and the theoretical boundaries are �χt max and �χt min,
the change law of crossrange corridor’s upper and lower
boundary can be expressed as
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Figure 7: Lateral guidance trajectory. (a) is the generated trajectory in the Case 1. (b) is the generated trajectory in the Case 2. (c) is the
generated trajectory in the Case 3.

�χt max = χt0 max + 〠
n

i

sign χtbið ÞϕtbiϕtχiΔχ,

χt max = χt−1 max + sgn �χt max − χt−1 maxð Þ min _χt−1j jΔt, �χt max − χt−1 maxj jð Þ,

�χt min = χt0 min + 〠
n

i

sgn χtbið ÞϕtbiϕtχiΔχtb,

χt min = χt−1 min + sgn �χt min − χt−1 minð Þ min _χj jΔt, �χt min − χt−1 minj jð Þ:

ð25Þ
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The change logic of bank angle’s sign can be express as

sgn βtð Þ = 1 if χt = χt min,
sgn βtð Þ = −1 if χt = χt min,
sgn βtð Þ = sgn βt−1ð Þ if χt min ≤ χt ≤ χt max:

8>><
>>: ð26Þ

4.3. Convergence Analysis of Lateral Guidance Method

Lemma 1. Under the change logic of bank angle’s sign in this
paper, if χ0 min ≤ χ0 ≤ χ0 max and j _χminðtÞj ≤ j _χðtÞj, j _χmaxðtÞ
j ≤ j _χðtÞj, then χminðtÞ ≤ χðtÞ ≤ χmaxðtÞ

Proof. ∵χ0 min ≤ χ0 ≤ χ0 max
Let sgn ðβ0Þ = 1

,∃εt0, χmaxðεt0Þ = χðεt0Þ, sgn ðβðεt0ÞÞ = −1
Then ∵j _χminðtÞj ≤ j _χðtÞj, j _χmaxðtÞj ≤ j _χðtÞj

∴ _χmax εt0ð Þj j ≤ _χ εt0ð Þj j, ð27Þ

If χmaxðξt0Þ‐χminðξt0Þ > 0, ∃εt > 0, χminðtÞ ≤ χ0ðtÞ ≤
χ0 maxðtÞ, εt0 ≤ t ≤ εt

∴χmin tð Þ ≤ χ0 tð Þ ≤ χ0 max tð Þ ð28Þ

According to the design of corridor, χt max ⟶ �χt max,
χt min ⟶ �χt min after the vehicle realizing avoidance of no-
fly zone. And �χt max = χ0 max, �χt min = χ0 min,, so lim

t⟶t f
χt max

= 0, lim
t⟶t f

χt min = 0. And according to Lemma 1, χminðtÞ ≤
χðtÞ ≤ χmaxðtÞ, so lim

t⟶t f
χ = 0.

5. Simulation

5.1. Setting of Simulation and Training

5.1.1. Simulation Environment. In simulation, CAV-H is
selected as the object, whose key parameters can refer to lit-
erature [32]. The guidance interval is 0.3 s. PC CPU selects
Inter-i7, and GPU selects GTX 2080ti, MATLAB is selected
to generate the train data set of flight range prediction net-
work and draw the simulation results when PyTorch and
Python are selected to train networks and realize guidance.

5.1.2. Data Set and Training Setting. The data set for the flight
range prediction network is generated by integral-iteration
method with bank angle corridor, in which vehicle’s initial
height is within 30 to 70.4km, and initial speed is within
1500 to 6200m/s, and the initial bank angle is within -3 to
3°. All the initial state satisfy uniform distribution. During
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Figure 8: Variation of bank angle. (a) is the variation of the bank angle in the Case 1. (b) is the variation of the bank angle in the Case 2. (c)
is the variation of the bank angle in the Case 3.
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training, 4/5 of datasets are selected as train set and 1/5 of
datasets are selected as test set.

In the training process, the MSE loss are selected as the
loss function, Adam optimizer is selected when the learning
rate is equal to 5e − 4. A train batch includes 10,000 samples
and network is trained 2,000 epochs.

5.2. Analysis of Simulation Results

5.2.1. Effect Analysis of Flight Range Prediction Network. In
this paper, the simulation results of the flight range predic-
tion network is analyzed, which includes 3, 5, 10, 15, 25,
50, and 100 blocks, when the result is also compared with
that of pure fully connected network. The average prediction
error of test data set and the running time of each network
are shown in Figure 5. It can be seen from Figure 5(a) that
as the number of blocks increases, prediction error becomes
smaller and smaller. This is because the more prediction

blocks there are, the more the network prediction process is
closer to the iterative process with lower energy interval, which
can improve accuracy of prediction. On the other hand, com-
pared with pure fully connected network, flight range predic-
tion network has more accurate prediction result, which is
due to its network structure closer to the original dynamic
model. As can be seen from Figure 5(b), with the gradual
increase of prediction blocks, the single running time of the
network increases gradually. This is because the deeper the
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Figure 9: Variation of the crossrange and crossrange corridor. (a) is the variation of the crossrange in the Case 1. (b) is the variation of the
crossrange in the Case 2. (c) is the variation of the crossrange in the Case 3.

Table 2: Simulation results of cases.

Case Δϕf
oð Þ Δφf

oð Þ Δhf kmð Þ χf
oð Þ E(km)

1 -0.017 0.017 -1.863 -0.021 3.233

2 -0.009 0.034 -1.823 -0.014 4.340

3 7:7e − 4 -0.006 -1.724 0.010 2.188
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network is, the more parameters it has, the more operations it
needs to carry out, which will affect the running time.

The prediction results with initial state ðH0 = 38km, V0
= 5300m/s, θ0 = 0oÞ under different bank angle and the pre-
diction results with the state ðH0 = 50:8‐70:4km,V0 = 5300
m/s, θ0 = 0oÞ when bank angle is equal to 0 are shown in
Figure 6. As can be seen from Figure 6(a), when the number
of prediction block increases, the fitting effect of the network
gets better and smoother. Compared with the fully connected
network, the prediction network’s fitting precision is higher
and more consistent with the vehicle’s change. As can be seen
from Figure 6(b), as the initial state changes, there is a large
error between the predicted flight range and the truth value.
However, as the number of prediction block increases, the pre-

dicted result of flight range prediction network becomes more
and more accurate. Both speed and accuracy of prediction are
considered, the network structure with 25 blocks is selected to
obtain predicted flight range in this paper.

5.2.2. Analyzing for the Validity of Algorithm. The guidance
results for three representative cases are analyzed firstly.
There is no no-fly zone in case 1, which is shown that the
guidance algorithm can work well under general conditions.
And case 2 is shown that if vehicle can realize guidance with
avoidance of two consecutive no-fly zones when case 3 is
shown that if vehicle can realize guidance with going
through between two no-fly zones. The initial state of vehicle
ðϕ0, φ0, h0, V0, θ0, ψ0Þ is ð0o, 0o, 70km, 6000m/s, 0:1o, 60oÞ,
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Figure 10: Simulation result of guidance with different initial position. (a) is the lateral trajectories of the vehicle. (b) is the variation of the
bank angle. (c) is the variation of the crossrange.
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when the terminal state ðϕf , φf , hf , V f Þ is ð18o, 10:5o, 30km,
1500m/sÞ. And the no-fly zone information is

Case 2: ðϕb1, φb1, rb1Þ = ð6:5o, 4:6o, 1oÞ, ðϕb2, φb2, rb2Þ =
ð10:5o, 6:7o, 1:1oÞ.

Case 3: ðϕb1, φb1, rb1Þ = ð6:5o, 4:6o, 1oÞ, ðϕb2, φb2, rb2Þ =
ð11o, 5:2o, 1:1oÞ.

where ϕbi, φbi, rbi represent the center’s longitude, latitude
of the i-th no-fly zone, and the radius of the i-th no-fly zone.
And the n1, n2 in Equation (24) are selected ð2, 3:5Þ.

The lateral guidance results of case 1, 2, and 3 are shown
in Figure 7. It can be seen from case 1 that vehicle can reach
the terminal position finally with curvature changes. It can
be seen from case 2 to case 3 that vehicle can realize guid-
ance when the no-fly zones are avoided validly.

The variation of bank angle are shown in Figure 8 when var-
iation of crossrange and crossrange corridor are shown in
Figure 9. As can be seen from Figures 8(a)–9(a), when there is
no-fly zone, vehicle can reach the target position through several

Table 3: Simulation results of vehicle with different initial position.

Trajectory ϕ0
oð Þ φ0

oð Þ Δϕf
oð Þ Δφf

oð Þ Δhf kmð Þ χf
oð Þ E(km) F

1 1 -1 0.025 0.006 -0.612 0.009 2.976 9

2 2 -2 -0.034 -0.017 -0.642 -0.009 4.340 9

3 -2 2 -0.024 0.008 -1.864 -0.014 3.361 8

4 -1.2 1.2 0.059 3.8e-5 -1.880 -0.014 1.830 7

𝜙 (rad)

0.2

0.15

0.1

0.05

0

0 0.05 0.1 0.15 0.2 0.25 0.3

Ф
 (r

ad
)

Δ𝜃 = +0.5°
Δ𝜓 = –10°

Initial position
Δh = –2 km
Δv = +100 m/s Terminal

position

(a)

0 100
𝛽

 (°
)

200 300 400 500 600 700
t (s)

50

100

0

–50

–100

Δ𝜃 = +0.5°
Δ𝜓 = –10°

Δh = –2 km
Δv = +100 m/s

(b)

0 100 200 300 400 500 600 700
t (s)

0.1

0.05

0

–0.05

–0.1

–0.15

Cr
os

s-
ra

ng
e (

ra
d)

Δ𝜃 = +0.5°
Δ𝜓 = –10°

Δh = –2 km
Δv = +100 m/s

(c)

Figure 11: Simulation result of guidance with different initial state. (a) is the lateral trajectories of the vehicle. (b) is the variation of the bank
angle. (c) is the variation of the crossrange.
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Figure 12: Guidance result with disturbed reentry process. (a) is the lateral trajectories of the vehicle. (b) is the longitudinal trajectories of
the vehicle. (c) is the variation of the bank angle. (d) is the variation of the crossrange.

Table 4: Simulation results with initial disturbed state.

Trajectory Δϕf
oð Þ Δφf

oð Þ Δhf kmð Þ χf
oð Þ E(km) F

Δh0 = −2km -0.035 -0.018 -0.746 0.023 4.676 6

Δv0 = +100m/s 0.045 0.001 -0.301 -0.013 5.023 6

Δθ0 = +0:5o -0.037 -0.013 -0.632 -0.001 4.535 6

Δψ0 = −10o -0.062 -0.020 -0.916 -0.014 6.532 7
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sign changing of bank angle. It can be seen from Figure 9(a)
that the crossrange corridor is symmetrical and the boundary
changes slowly. It can be seen from Figures 8, 9(b), 9(c) that,
despite the existence of no-fly zones, the amount of sign change
of bank angle does not increase through adaptive crossrange
corridor logic, and crossrange is always within the adaptive
crossrange corridor. The crossrange corridor boundaries and
crossrange realize convergence eventually, which verifies the
validity of the proposed method. In conclusion, through the
adaptive crossrange corridor in this paper, the crossrange of
vehicle is always located inside the corridor, which can effec-
tively ensure the lateral guidance.

The simulation results are shown as Table 2. Where E
represents guidance error of vehicle, the calculation equation

is E =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððΔϕf Þ2 + ðΔφ f Þ2ÞR2

e + Δh2f
q

.Δϕf , Δφ f , Δhf represent
the guidance error of longitude, latitude, and height, respec-
tively. It can be seen from Table 2, whether there is no-fly
zones, the guidance error is less than 5 km when the lateral
and longitudinal guidance are always can be realized.

5.2.3. Simulation with Different Initial Position. In order to ver-
ify the guidance effect of proposed method in this paper fur-
ther. The guidance result with different initial positions of
vehicle are simulated under the same no-fly zone conditions

and terminal positions, in which the no-fly zone is setting as
same as case 2 in (1). The simulation condition and results
are shown in Figure 10 and Table 3. The number of bank
angle’s sign changing is defined in Table 3 as F.

It can be seen from Figures 10(a) and 10(b) that vehicle
can realize guidance with different initial positions, and the
flight trajectories have different variation law. On the other
hand, when the trajectory was affected slightly by the no-fly
zone, vehicle’s trajectory is closer to the no-fly zone according
to crossrange corridor. And as vehicle flied closer to the no-fly
zone, the crossrange reached the boundary of corridor rapidly
and the sign of bank angle changed to avoid the no-fly zone.
And from Figure 10(c), it was found that all the crossrange
of trajectories can converge to 0 eventually by the adaptive
crossrange corridor. And analyzing the guidance error with
different initial position from Table 3, all the trajectories guid-
ance error is less than 5km when the longitudinal guidance
error is less than 2km. What is more, the change number of
bank angle’s sign is even less when vehicle need to avoid the
no-fly zone with the adaptive crossrange corridor.

5.2.4. Simulation with the Different Initial State. In order to
verify the robustness of the guidance method in this paper
further, the simulation are operated when the initial state
of the vehicle is disturbed. The simulation include the initial
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Figure 13: Guidance result with different guidance logic. (a) is the lateral guidance results with different guidance logic. (b) is the variation
of bank angle with different guidance logic.

Table 5: Guidance results of different guidance methods.

Method Δϕf
oð Þ Δφf

oð Þ Δhf kmð Þ E (km) F T(s)

Proposed method 7:7e − 4 -0.006 -1.724 1.830 5 7.74

Comparing method 1 -0.004 0.013 -0.974 1.940 8 48.33

Comparing method 2 -0.019 -0.036 -0.418 4.507 8 48.83
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height Δh0 = −2km, initial speed Δv0 = +100m/s, initial flight
path angle Δθ0 = +0:5o, and initial heading angle Δψ0 = −10o
. By this simulation, the initial state’s influence on guidance
results can be analyzed. The simulation results are shown in
Figure 11, when guidance errors with different initial state
are shown in Table 4.

Simulation results show that vehicle can still realize guid-
ance and avoidance of no-fly zones with the disturbed initial
state. As the initial flight path angle and velocity increase,
the energy of the vehicle increases and the flight range
increases. And when the height decreases, vehicle is also can
be effectively guided as the flight range decreasing; on the
other hand, even though trajectory of the vehicle changes
greatly when the initial heading angle changes, it can still avoid
the no-fly zones effectively. It can be seen from Table 3 that
changing the heading angle has a greater impact on the guid-
ance accuracy, which is reflected in the decrease of lateral
guidance accuracy.

5.2.5. Simulation with Disturbed Reentry Process. Consider
the guidance result of our method with disturbed reentry
process. In this paper, 150 Monte Carlo simulations are car-
ried out where no-fly zones are set as same as case 3 in (1)
under the 20% uniform distribution of atmospheric devia-
tion, 5% uniform distribution of deviation mass and stressed
area, and 5% uniform distribution of lift and drag coefficient
deviation. The results are shown in Figure 12. Most of the
results show that the longitudinal guidance error is less than
2 km, and the most of lateral guidance error are within 5 km
when the maximum is less than 7 km. It shows that our
guidance method is robust to reentry disturbance.

5.2.6. Comparison of Guidance Methods. To reflect adaptive
crossrange and flight neural network’s effects, compare pro-
posed method with conventional predictor-corrector guidance
method which realize longitudinal guidance by integral-
iterationmethod, and realize the lateral guidance through cross-
range corridor and heading deviation angle corridor when
avoid no-fly zone refer to literature [26], which is named com-
paring method 1 and comparing method 2 in Figure 13 and
Table 5. And the setting of simulation is as same as case 3 in
(1). The guidance result is shown in Figure 13.

As can be seen from Figure 13, because the separation
between lateral guidance logic and no-fly zone avoid logic
for the traditional predictor-corrector guidance, the varia-
tion number of bank angle’ sign is usually more than that
of adaptive crossrange corridor; on the other hand, it also
easy to result in failure to avoid the no-fly zones as shown
in Figure 13. By using the adaptive crossrange algorithm in
this paper, the vehicle can realize avoidance effectively when
the lateral guidance is realized as well. The adaptive corridor
is always keep a certain width to reduce the variation num-
ber of bank angle’s sign. The guidance results of the three
methods are shown in Table 5.

As can be seen from Table 5, with different guidance
methods, vehicle can reach the terminal position finally. But
the guidance accuracy of the proposed method is better than
other methods. The separation of the two logic causes increas-
ing of change number of bank angle’s sign, which is meaning

that the guidance logic is affected by the avoidance logic. The
time of the algorithm combinedwith the flight range prediction
network is only 7.74 s, whose speed improves greatly compared
with the conventional longitudinal guidance method.

6. Conclusion

In this paper, according to long calculation time of the pre-
dicted flight range in traditional predictor-corrector method,
the variation characteristic of the predicted flight range is
analyzed firstly. Then, based on the structure of ResNet
and the dynamic model, the flight range prediction block
and flight range prediction network are designed to realize
the fast longitudinal guidance; on the other hand, to solve
the separation of the lateral guidance logic and the avoidance
logic of no-fly zone, the concept of the no-fly zone cross-
range and no-fly zone mapping crossrange are proposed;
and the adaptive cross corridor is established according to
the repulsion’s definition in artificial potential field method
and its convergence is analyzed. Finally, the simulation
results show that the proposed guidance method can realize
effective guidance in different no-fly zone situations and has
robustness to the disturbed initial position, state, and the
reentry process. Compared with other guidance logics, the
proposed guidance method has less sign variation number
of bank angle and faster running speed.

Data Availability
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