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To eliminate the influence of spacesuits’ joint resistant torque on the operation of astronauts, an active spacesuit scheme based on the
joint-assisted exoskeleton technology is proposed. Firstly, we develop a prototype of the upper limb exoskeleton robot and theoretically
analyse the prototype to match astronauts’ motion behavior. Then, the Jiles-Atherton model is adopted to describe the hysteretic
characteristic of joint resistant torque. Considering the parameter identification effects in the Jiles-Atherton model and the local
optimum problem of the basic PSO (particle swarm optimization) algorithm, a SA- (simulated annealing-) PSO algorithm is
proposed to identify the Jiles-Atherton model parameters. Compared with the modified PSO algorithm, the convergence rate of
the designed SA-PSO algorithm is advanced by 6.25% and 20.29%, and the fitting accuracy is improved by 14.45% and 46.5% for
upper limb joint model. Simulation results show that the identified J-A model can show good agreements with the measured
experimental data and well predict the unknown joint resistance torque.

1. Introduction

In 2018, the ISECG (International Space Exploration Coor-
dination Group), composed of 14 space agencies, released
the Global Exploration Roadmap 3rd edition (GER III) [1],
which emphasized that human beings should not only
return to the moon and establish a long-term manned lunar
base but also complete the manned mars and further deep
space exploration. Subsequently, the United States took the
lead in announcing the Artemis Program [2], which was
expected to achieve the manned lunar landing project in
2024 and the sustainable survival or even long-term resi-
dence on the moon before 2028. In this manner, the future
maneuvering missions of planetary walking, equipment
installation, sample collection, material handling, and base
construction will put forward higher requirements for the
flexibility and mobility of the EVA (extravehicular activity)
spacesuit. However, due to the pressure protection, the mul-
tilayer EVA spacesuit would produce an obvious resistance
torque, which increases energy expenditure, limits joint
mobility, and reduces ergonomic performance [3]; some
simple daily operations would not be easily completed after

wearing the spacesuit. In order to eliminate the influence
of joint resistant torque, some structure schemes have been
proposed for spacesuits, such as the MCP (mechanical coun-
ter pressure) spacesuit [4, 5], the power assist elbow [6], the
X1 exoskeleton [7], the elbow-assisted exoskeleton [8], and
the hard thigh-hip joint [9]. On the basis of those schemes,
we have proposed the concept of active spacesuit [10], that
is to say, a joint-assisted exoskeleton is directly worn outside
spacesuits to enhance the operational capability, as well as
assist astronauts to complete various maneuvering missions.
Furthermore, it is well known that astronauts mainly rely on
the upper limbs to complete the orbital missions, so active
spacesuit designed in this paper would provide assistance
to astronauts’ upper limbs.

Joint resistant torque is not only the main basis for astro-
nauts’ operation intensity and fatigue estimation but also an
important parameter for the extravehicular mission plan-
ning [11]. Therefore, many efforts should be made into
obtaining the accurate resistance torque. Considering the
joint resistant torque, one of the important features is the
hysteretic characteristics due to the energy loss caused by
the joint friction and material elastic distortion [12], so it
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is a highly challenging task for modeling and predicting the
resistant torque. Currently, polynomial fitting based on the
measured data can not reasonably describe the hysteresis.
In [13], the Preisach model was firstly employed to describe
the resistant torque of the EMU (extravehicular mobility
unit) spacesuit. In [14], the Preisach model was further used
to simulate the hysteretic characteristics and predict the joint
resistant torque. Nonetheless, the selection of the Preisach
model weight function and the experimental measurement
of related parameters are complex, which brings a lot of
trouble to numerical calculation and computer program-
ming. In view of the above defects, the J-A (Jiles-Atherton)
model [15], which has fewer parameters and less calculation
cost, is adopted to describe the hysteretic characteristic of
joint resistant torque in this paper. In addition, for the
conventional J-A model, the model parameters are not
easy to be identified directly by using the common identi-
fication methods. Therefore, the parameter identification
methods based on intelligent algorithm are addressed as
the primary goal.

PSO (particle swarm optimization), which was intro-
duced by Kennedy and Eberhart [16], starts from the ran-
dom solution in n-dimensional search space, the optimal
solution is found through updating generations, so it is suit-
able for the parameter identification of the J-A model [17,
18]. For example, in [19], the authors compared the identifi-
cation results of PSO, DSM (direct search method), and GA
(genetic algorithm) used in the J-A model parameters for
two magnetic materials and found that PSO was proved to
be better in calculation accuracy and convergence perfor-
mance. In [20], a modified PSO was proposed to identify
the parameters of the J-A model and obtained better para-
metric solutions than the basic PSO. However, similar to
other EAs (evolutionary algorithms), the application of
PSO also faces challenges in terms of diversity and conver-
gence. Motivated by some existing works [21–24], combin-
ing with other methods has been extensively investigated,
such as C- (coevolutionary-) PSO [25], AGLD- (adaptive
granularity learning distributed-) PSO [26], TA- (triple
archives-) PSO [27], and CL- (comprehensive learning-)
PSO [28]. Considering engineering applications, a SA-
(simulated annealing-) PSO algorithm is proposed in this
paper. Therein, the SA can accept the worse solutions with
a certain probability according to Metropolis criterion and
ensure the ability to reduce the chance of getting trapped
in a local optimum [29]. By using the random value to
update of the global optimal solution, the parameters of
the J-A model identified using the SA-PSO algorithm can
describe the hysteretic characteristic of joint resistant torque
in active spacesuit more accurately. To verify the effective-
ness of the proposed SA-PSO algorithm, the simulation
comparison test with the modified PSO has been performed
in terms of convergence rate and fitting accuracy.

The main content of the paper is as follows: Section 2
introduced the upper limb exoskeleton robot designed in
active spacesuit. The Jiles-Atherton hysteresis model
adopted to describe the hysteretic characteristic of joint
resistant torque is introduced in Section 3. In Section 4,
the identification procedure of the proposed SA-PSO

algorithm is presented. The comparison of model fitting
accuracy and prediction result is given in Section 5 to verify
the effectiveness of the identified J-A model. Finally, the con-
clusions about the identified J-A model for joint resistant
torque are discussed in Section 6. The contributions are
summarized as follows:

(1) A prototype of the upper limb exoskeleton robot is
developed and theoretically analyse the prototype
to match the astronaut’s kinematic behavior

(2) The Jiles-Atherton hysteresis model is introduced
and utilized to describe the hysteretic characteristic
of joint resistant torque

(3) Considering the parameter identification effects in
the Jiles-Atherton model and the local optimum
problem of the basic PSO algorithm, a SA-PSO algo-
rithm is proposed to identify the J-A model parame-
ters of joint resistant torque, and compared with the
modified PSO algorithm to predict the unknown
joint resistance torque

2. Upper Limb Exoskeleton Robot

Since the real spacesuits are high-value equipment, a mock
spacesuit, which is composed of the airtight dry diving suit
and the simulated spacesuit, is necessary to be developed.
And then, the upper limb exoskeleton robot is directly worn
outside the mock spacesuit to achieve the integration or
shedding of the existing equipment, as well as enhance the
operational capability. In addition, the design parameters
of the exoskeleton robot are determined by the size and
motion range of the mock spacesuit, including the connect-
ing rod size and the DoFs (degrees of freedom) of joint rota-
tion. Therefore, one side of the exoskeleton robot arm is
simplified as a 4-DoF system (2 DoFs-shoulder joint, 1
DoF-elbow joint, and 1 DoF-wrist joint). Due to flexion/
extension in the sagittal plane being the main form of upper
limbs’ motion, and the additional metabolic rate penalty
increases dramatically when mass is added distally during
the astronauts’ movement [30], we only choose to install
the driving motor on the flexion/extension direction of the
shoulder and elbow joint in the sagittal plane, so that realize
the joints assistance. The structural design of the upper limb
exoskeleton robot is shown in Figure 1.

The overall structure is composed of base frame struc-
ture, arm structure, and some arched fixed protective gears.
In the base frame structure, the DoFs of the curved shoulder
fixing rod and the curved back rod is convenient for astro-
nauts to put on and remove the exoskeleton robot, and the
DoFs of the curved back rod and the curved waist fixing
rod is used to adjust the position of the base frame. More-
over, the arm structure is connected with the shoulder sup-
port of the base frame structure, and the DoFs can ensure
the abduction/adduction of the spacesuit’s shoulder joint.
In the arm structure, the U-shaped ring is designed to lift
heavy objects and fix spacesuit gloves, and arched protective
gears can reduce the stress exerted on the upper limbs by the
exoskeleton robot. It is worth mentioning that the rods are
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designed to be replaceable and curved, which are convenient
to adapt to different EVA spacesuits.

3. Resistant Torque Modeling

3.1. Spacesuit Resistant Torque. Spacesuit resistant torque,
which needs to be overcome in the flexion or extension of
the EVA spacesuits, is produced by the soft material struc-
ture effect, volume effect, and pressure effect during the
bending process [31]. Among these, the structure effect is
caused by the stretching, squeezing, and friction of the
spacesuits’ soft material, and the volume effect and pressure
effect are caused by changes in the internal volume and pres-
sure of the spacesuits [32]. Based on the previous work [10],
we have measured the spacesuit resistant torque of the mock
spacesuit by a single-joint measuring device, and the angle
range of joints is needed be determined in advance. When
the motion range of the shoulder joint and the elbow joint
is set as 0.35–1.22 rad and 0.52–1.57 rad, the first-order tran-
sition curves, which are defined as bending from the mini-
mum angle to different maximum angles (0.52 rad, 0.7 rad,
0.87 rad, and 1.05 rad and 0.87 rad, 1.05 rad, 1.22 rad, and
1.4 rad) and then stretching back to the same minimum
angle (0.35 rad and 0.52 rad), are shown in Figure 2.

It can be seen from Figure 2 that the joint resistant tor-
que has hysteretic characteristics. When the joint angle is
the same, the joint resistant torque is different in different
directions of the joint rotation. Notably, it is necessary to
obtain the motion range of the upper limb joint in advance,
before manually measuring the resistant torque correspond-
ing to the mock spacesuit.

3.2. J-A Hysteresis Model. The J-A hysteresis model is
derived from ferromagnetic magnetization theory to show
the relationship between the applied magnetic field intensity
H and magnetization M [33]. Usually, the magnetization M
is decomposed into the reversible magnetization Mrev and
the irreversible magnetization Mirr,Mirr satisfies the differ-
ential equation:

dMirr
dHe

= Man −Mirr
δk

, ð1Þ

where k is the irreversible loss parameter; δis the direction
coefficient, when dH/dt > 0, δ = 1; when dH/dt < 0, δ = −1,
and He is the effective magnetic field, which is defined as
He =H + αM, α is the domain wall interaction parameter,
and Man is the anhysteretic magnetization, which can be
provided by the Langevin function:

Man =Ms coth He

a

� �
−

a
He

� �
, ð2Þ

where a is the shape parameter, Ms is the saturation
magnetization.

The reversible magnetization Mrev satisfies the differen-
tial equation:

dMrev
dH = c

dMan
dH −

dMirr
dH

� �
, ð3Þ

where c is the reversible coefficient. According to equations
(1) and (3), the differential equation of magnetization M
with magnetic field intensity H can be expressed as

dM
dH = Man −M + cδk dMan/dHeð Þ

δk − α Man −M + cδk dMan/dHeð Þð Þ , ð4Þ

where the parameters α, a, c, k, and Ms have a clear physical
definitions, only one first-order differential equation requires
less memory storage, which makes it suitable to describe the
hysteretic characteristics of the joint resistant torque.

4. SA-PSO Algorithm

4.1. Basic PSO Algorithm. In the basic PSO algorithm, each
candidate solution is treated as a particle point, which is
associated with a position, a velocity, and a fitness value
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Figure 1: The structural design of the upper limb exoskeleton robot.
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which depends on the optimization function. Corresponding
to the identified parameters α, a, c, k, and Ms of the J-A
model, a 5-dimensional search space is selected in this paper.
Accordingly, the initial position, velocity and fitness value of
the ith particle can be represented by

Pi = rand 1, 5ð Þ × Pmax − Pminð Þ + Pmin, ð5Þ

Vi = rand 1, 5ð Þ × Vmax −Vminð Þ +Vmin, ð6Þ

Fi =
1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
N

j=1

Tc,j − Tm,j
Tm,max

� �T Tc,j − Tm,j
Tm,max

� �
,

vuut ð7Þ

where Pmax, Pmin is set as the maximum and minimum value
of the particle position and Vmax,Vmin is set as the maxi-
mum and minimum value of the particle velocity, Tc,j is
the jth calculated resistant torque, Tm,j is the jth measured
resistant torque, Tm,max is the maximum measured value,
and N is the number of raw data to be compared.

Each particle updates itself by following two values in k
-iteration: (1) the personal best particle Pbest, which is
defined as the optimal solution found by the personal best
fitness FPbest and (2) the global best particle Gbest, which is
the overall optimal solution found by the global best fitness
FGbest. The velocity and position of particles can follow the
motion equation as

Vi k + 1ð Þ = ωVi kð Þ + c1r1 Pi,best kð Þ − Pi kð Þð Þ + c2r2 Gbest kð Þ − Pi kð Þð Þ,
ð8Þ

Pi k + 1ð Þ = Pi kð Þ +Vi k + 1ð Þ, ð9Þ
where ω is the inertia weight; c1 and c2 are the learning fac-

tors, c1 = c2 = 2; and r1 and r2 are two random numbers
being generated in ½0, 1�.

It is well known that the parameters of PSO significantly
affect its computational behavior, so the selection of its
parameters is crucial [34]. In this paper, a negative tangent
curve is selected to control the change of the inertia weight
[29]. Specifically, in the initial stage, a large value with a
gradual decline rate is set to give sufficient time for the par-
ticles to conduct a global search and reduce the probability
of falling into the local optimum. In the mid-term stage,
the local search ability is gradually strengthened through
the approximate linear descent of the inertia weight. When
reduced to a small value with a gradual decline rate in the
later stages, the algorithm focuses on a detailed local search
to obtain the global optimal solution. The inertia weight
function can be expressed as

ω = tanh −5 + 10 ∗ K − k
K

� �
∗

ωmax − ωminð Þ
2 + ωmax + ωminð Þ

2 ,

ð10Þ

where ωmax and ωmin are the maximum and minimum
values, and ωmax = 0:95, ωmin = 0:4. K is the maximum
iteration number, K = 100 in this paper.

4.2. SA Algorithm. For the basic PSO algorithm, it is easy to
get trapped in the local optimum because particles tend to be
homogenized. To solve the problem, the Metropolis crite-
rion of the SA algorithm is introduced into each iteration
of PSO. In other words, the worse solution can be accepted
at a certain probability in the process of temperature drop,
so as to reduce the probability of falling into the local opti-
mal solution. When the temperature is low, the probability
of accepting the worse solution becomes lower, which makes
the candidate solution more optimized [35].
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Figure 2: The first-order transition curves of upper limb joint.
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Figure 3: The flow chart of the SA-PSO algorithm.
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Firstly, the initial temperature of the proposed SA
algorithm is set according to the global best fitness
FGbest and attenuates with a certain cooling coefficient
after each iteration.

T kð Þ =
FGbest

e−10
, k = 1,

T k − 1ð Þ ∗ μ, k > 1,

8<
: ð11Þ

where μ is the cooling coefficient, μ = 0:95 in this paper.
Calculate the probability of accepting the new solution.

pi kð Þ = e
− FPi,best kð Þ−FGbest

� �
/T kð Þ

∑I
i=1 e

− FPi,best kð Þ−FGbest
� �

/T kð Þ
, ð12Þ

where I is the number of particle swarms, I = 50.
Compare the sum of the first m terms of the probability

piðkÞ with the random number r3 (value range ½0, 1�) to
determine whether the global best particle Gbest is replaced
by the new particle. When the new particle is the global opti-
mal particle and increase the probability of the basic PSO
algorithm jumping out of the local optimal solution, the
combination of PSO algorithm and SA algorithm can effec-
tively reduce the local optimum problem.

4.3. SA-PSO Identification Procedure. The flow chart of the
SA-PSO algorithm is shown in Figure 3, and the optimiza-
tion process is as follows.

Step 1. Set the boundary values of search space and
search speed and set the particle swarm size and the maxi-
mum iteration.

Step 2. Randomly generate the initial position Pi and ini-
tial velocity Vi of the ith particle according to equations (5)
and (6).

Step 3. Calculate the fitness value of each particle using
equation (7) and record the personal best particle Pbest, the
global best particle Gbest, the personal best fitness value
FPbest, the global best fitness value FGbest.

Step 4. Judge whether the fitness value is less than 10-3; if
not, continue with Step 5.

Step 5. Update the inertia weight ω using equation (10).
Step 6. Set the initial temperature and the temperature

drop function TðkÞ in the kth iterative optimization accord-
ing to equation (11).

Step 7. Calculate the probability piðkÞ of accepting the
new solution in the kth iterative optimization according to
equation (12).

Step 8. Compare the sum of the firstm terms of the prob-
ability piðkÞ with the random number r3 to determine
whether the global best particle Gbest is replaced by the
new particle.

Step 9. Update the position Pi,k and velocity Vi,k of the
moving particle in the kth iterative optimization according
to equations (8) and (9) and check their boundary condi-
tions: if Vi,k >Vmax, then Vi,k = Vmax; if Vi,k <Vmin, then

Vi,k =Vmin and if Pi,k > Pmax, then Pi,k = Pmax; if Pi,k < Pmin,
then Pi,k = Pmin.

Step 10. Calculate the fitness value of the moving particle
using equation (7) and decide whether to update the per-
sonal best particle Pbest, the global best particle Gbest, the per-
sonal best fitness value FPbest, and the global best fitness
value FGbest.

Step 11. Judge whether the fitness value is less than 10-3

or the maximum number of iterations K is reached, If not,
k = k + 1, and update the temperature Tðk + 1Þ = TðkÞ ∗ μ,
then go to Step 5.

Step 12. Output the current optimal particle, that is, the
optimization result, and the algorithm terminates.

5. Experiment Verification

5.1. Modified PSO Algorithm. In this section, to verify the
validity of the SA-PSO algorithm proposed in this paper,
the MPSO (modified PSO) algorithm, which is developed
for the SMA-based compliant actuator platform based on
the J-A model [20], is also applied for the parameter identi-
fication in the test. In MPSO, an iteration-varying inertia
weight ΛðnÞ is updated by

Λ nð Þ =Λmax − Λmax −Λminð Þ n
Ξ
, ð13Þ

where n is the algorithm iterations; Λmax, Λmin are the
selected maximum and minimum values, Λmax = 0:9,
Λmin = 0:4; and Ξ is the maximum iteration number,
Ξ = 100 in this paper.

Table 1: The search space of identification parameters.

Parameters Min Max

Ms 1 100

a 1 5000

α -10 10

c -10 10

k 1 2000

Table 2: Parameter identification results.

Parameters
Shoulder joint Elbow joint

MPSO SA-PSO MPSO SA-PSO

Ms 75.0927 22.2316 51.2134 11.4488

a 2910.71 319.55 1213.65 128.97

α 9.455 6.3223 5.5624 -0.0515

c 8.8561 4.7447 5.9824 6.4043

k 652.0938 168.582 166.8229 23.0945

Fitness 1.7709 1.5473 1.7243 1.1770
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Figure 4: Comparison of fitness values between the SA-PSO algorithm and the MPSO algorithm.
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The cognitive parameter c1 and the social parameter c2
can be expressed as

c1 = c1ini − c1ini − c1endð Þ ∗ e−70× Λ−Λminð Þ/ Λmax−Λminð Þð Þ6 ,

c2 = c2ini − c2ini − c2endð Þ ∗ e−70× Λ−Λminð Þ/ Λmax−Λminð Þð Þ6 ,
ð14Þ

where c1ini, c2ini, c1end, and c2end are positive constants,
c1ini = 2:5, c2ini = 0:5, c1end = 1:3, and c2end = 1:7.

In addition, we would select the partial resistant torque
of the first-order transition curves in Figure 2, the different

maximum angles of the shoulder joint and the elbow joint
is set as 0.52 rad, 0.87 rad, and 1.22 rad and 0.87 rad,
1.22 rad, and 1.57 rad, respectively. Comparing with the
measured resistant torque, the identification results of apply-
ing the SA-PSO and MPSO algorithms for the J-A model are
given and illustrated. An appropriate search space is
obtained according to the literature [11], as shown in
Table 1.

5.2. Comparison of Identification Results. In the SA-PSO
algorithm and the MPSO algorithm, the size of the particle
swarm is selected as 50 and the maximum iteration number
as 100. Following the procedure introduced in Figure 3, the
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test times are 30, and the identification results for 5 param-
eters in the J-A model are obtained, and the best result is
given in Table 2, and the fitness values of the SA-PSO and
MPSO algorithms are also given in Figure 4.

As for the shoulder joint model, in terms of conver-
gence rate, the SA-PSO algorithm starts to converge at
the 48th iteration, while the MPSO algorithm is the 51th
iteration, which is advanced by 6.25%. In terms of fitting
accuracy, the optimal fitness result of the SA-PSO algo-
rithm is 1.5473, while the MPSO algorithm is 1.7709,
which is improved by 14.45%. For the parameter identifi-

cation results of elbow joint model, the convergence rate
is advanced by 20.29% (the iterative times for convergence
of the SA-PSO and the MPSO are 69 and 83, respectively),
and the fitting accuracy is improved by 46.5% (the optimal
fitness result of the MPSO and the SA-PSO are 1.7243 and
1.1770, respectively). It can be seen that the SA-PSO
algorithm is superior to the MPSO algorithm in conver-
gence rate and fitting accuracy, the comparison of the
experimental data of measured resistant torque and the
identified the J-A model of upper limb joint is shown in
Figures 5 and 6.
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Figure 7: Comparison of resistant torque between upper limb joints’ experimental data and the J-A model with different PSO algorithms.
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Figure 8: Prediction errors of the J-A model with different PSO algorithms for upper limb joint.
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It can be seen from Figures 5 and 6 that the fitting effect
is poor in some areas, mainly due to the manufacturing error
of spacesuit joints and the measurement error of resistant
torque. As a result, the experimental data of resistant torque
does not show good symmetry, which makes the fitting error
of the symmetrical J-A model large. However, it can be
observed that the optimal fitness results is 1.5473 of shoulder
joint and 1.1770 of elbow joint, respectively, which is proved
that the simulation results can show good agreements with
the measured experimental data, so that the identified J-A
hysteresis model can be applied to the research fields of joint
motion performance and ergonomic performance.

5.3. Prediction Results.When given a known motion range of
upper joints, we can obtain the actual resistant torque
through the measuring device. In other words, the resistance
torque at a specific angle needs to be tested in advance.
However, the joint motion is unknown and uncertain under
different operating conditions, so it is desirable to apply the
identified J-A model to predict the resistant torque of upper
limb joint. In this manner, we would select the partial resis-
tant torque of the first-order transition curves in Figure 2,
the different maximum angles of the shoulder joint and the
elbow joint is set as 0.7 rad, 1.05 rad and 1.05 rad, 1.4 rad.
Comparing with the partial measured resistant torque, the
prediction results of applying the SA-PSO and MPSO algo-
rithms for the J-A model are shown in Figure 7 and the
modeling errors are shown in Figure 8.

It can be seen from Figure 8 that the SA-PSO algorithm
is superior to the MPSO algorithm in prediction effect of
unknown resistance torque. For two angles of motion for
the shoulder joint, the maximum error of the MPSO algo-
rithm and SA-PSO algorithm is 1.84Nm, 1.39Nm and
2.95Nm, 0.41Nm, and the prediction error of the SA-PSO
algorithm is relatively stable in the motion range of 0.35-
1.05 rad. As for the elbow joint, the overall prediction errors
of the SA-PSO algorithm is less than that of the MPSO algo-
rithm (the maximum error of the MPSO and SA-PSO algo-
rithm is 0.91Nm, 1.84Nm and 1.08Nm, 0.79Nm). In
addition, the prediction results are proved that the identified
J-A hysteresis model can well predict the unknown resis-
tance torque.

6. Conclusions

In this paper, the parameter identification of spacesuits’ joint
resistant torque described by the J-A model is addressed.
The experimental data of joint resistance torque are limited
and need to be measured in advance, so it is desirable to
apply the identified J-A model to model and predict the
resistant torque of upper limb joint. In addition, the accurate
prediction of these joint resistant torques in the upper limb
exoskeleton robot is conducive to the application of an active
spacesuit. For such purpose, a SA-PSO algorithm is
proposed to identify the J-A model parameters. Simulation
results show the SA-PSO algorithm is superior to the MPSO
algorithm in convergence rate, fitting accuracy, and
prediction effect. For this study, some future work to
improve some areas with poor fitting effect can be consid-

ered by introducing the compensation control algorithm.
Besides, we shall focus on the modeling and predicting of
multiorder transition curves of joint resistant torque and
apply some effective algorithms to identify the Jiles-
Atherton model parameters.

Data Availability

The raw data of the joint resistant torque involved in the
research process of this paper are obtained by a measuring
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