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Probabilistic damage tolerance assessment is an essential method to evaluate the safety of aeroengine rotors. The stress intensity
factors (SIFs) are the core parameters. The weight function method can calculate SIF efficiently. The available weight functions for
corner cracks are suitable for cracks with universal stresses. However, when cracks are under bivariant stress distributions, the lack
of the weight function database makes the damage tolerance assessment impractical. Therefore, this paper derives the point weight
functions for corner cracks, which are suited for cracks in real-world components with two-directional stress distributions. The
response surface method is used to build the surrogate model of the point weight functions. By integrating the weight
functions with the stress distributions, SIFs can be calculated with high accuracy. In sum, 81% of the differences between the
point weight function method and finite element results are less than 10%.

1. Introduction

Aeroengine rotors are typical life-limited parts [1] that oper-
ate in complex environments with remarkably high temper-
atures, pressures, and rotational speeds [2, 3]. The
probabilistic damage tolerance assessment methodology is
applied to address the threat of defects that may occur any-
where in the components [4–7]. The probability of failure of
these rare defects is predicted based on a generalized stress-
strength interference model, which requires the simulation
of the crack propagation process under complex loads [8,
9]. The stress intensity factor (SIF) is the core parameter
assessed during a crack propagation simulation, as it reflects
the severity and stress concentration around a crack [10].

SIF solution research has been a central topic in fracture
mechanics in recent decades. Various analytical and numer-
ical methods for determining SIFs have been proposed. Rep-
resentative SIF solutions of through cracks in two-
dimensional geometries have been generated and collected
in several well-known handbooks [11]. As to cracks in
three-dimensional geometries, Newman and Raju [12, 13]
have proposed SIF solutions for the corner, surface, and

embedded cracks in three-dimensional geometries. Unfortu-
nately, these solutions are expressed in simple load cases,
including uniform remote tension and bending stress.
Instead, finite element analysis or boundary element method
is developed to obtain the SIFs of the cracks with arbitrary
stresses. Nevertheless, the detailed three-dimensional
numerical approach only calculates the singular SIF of the
crack with specific loading and geometry with a complex
preprocess to model and mesh the geometry. Thus, these
numerical methods hardly meet the requirements of the
highly efficient probabilistic damage tolerance assessment
because millions of crack propagation processes need to be
calculated [14–16].

To efficiently obtain the SIFs for any specific cracked
body geometry that is applied with an arbitrary stress distri-
bution, the weight function method was envisioned by
Bueckner [17] and studied further by Rice [18]. The weight
function, also called Green’s function of a crack surface, is
determined by the geometry of the cracks in the plate. The
SIFs are calculated efficiently by integrating Green’s function
and the stress distribution on the crack surface. The stan-
dardized analytical weight function method was developed
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mainly concentrating on the through-thickness cracks in two-
dimensional geometries [19, 20]. For elliptical embedded
cracks and semielliptical surface cracks in three-dimensional
geometries, the universal weight function was proposed
[21–23]. These two weight functions are widely used to calcu-
late SIFs with univariate stress distributions [24, 25].

Nevertheless, these weight functions are limited when
the cracks are under complex bivariant stress distributions
[26, 27]. The corner cracks are more likely to bear complex
bivariant loadings because of the stress concentration, ther-
mal loading, and machining or strengthening residual stress.
Oore and Burns [28] proposed the point weight function
method to calculate SIFs under bivariant stress distributions.
Orynyak et al. then developed point weight functions for
elliptical cracks [29, 30]. Finally, the point weight function
method was applied on the corner cracks at holes for calcu-
lating SIFs under bivariant stress gradients and implemented
in production software for design and life management
[31–33]. However, few efforts have been devoted to explain-
ing the details for establishing point weight functions for
corner cracks in three-dimensional finite rectangular plates.
The lack of the weight function database makes the probabi-
listic damage tolerance assessment or reliability analysis of
corner cracks with arbitrary complex loadings impractical.
Moreover, previous research ignored analyzing the accuracy
of the point weight function method. To ensure the reliabil-
ity of the derived point weight function database, the quan-
tified error of the point weight function is supposed to be
considered when calculating crack propagation process.

This study derives the point weight functions for corner
cracks to calculate SIFs of corner defects under arbitrary
stress distributions and help conduct the probabilistic dam-
age tolerance assessment [25]. The challenge of the point
weight function method is to derive the coefficients of the
weight functions determined by the geometric parameters
of a structure with cracks. The response surface method
[34, 35] is an effective way to derive coefficients in the point
weight functions. The errors induced by the fitting method
are less than 1%. Then, the SIFs for corner cracks calculated
by the point weight function method are validated. When
bivariant stress distributions are applied onto the crack sur-
face, the differences between the point weight function
method and finite element results are less than 5MPa ffiffiffiffimp
when 0 < a/L ≤ 0:91 and 0 < a/T ≤ 0:91. Meanwhile, 81% of
the relative errors are less than 10%. The errors of the SIFs
calculated by the point weight function method may be
induced by the response surface method and the accuracy
of the reference SIFs. The errors induced by the response
surface method are less than 1%. Moreover, the 1% error
of the reference SIFs can cause a 1.25% deviation of the cal-
culated SIFs.

This paper is divided into five sections. The theoretical
formula of the point weight function is analyzed in Section
2. Section 3 introduces the derivation of the coefficients in
point weight functions determined by multiple geometric
parameters, including the length and thickness of a flat
plate. In Section 4, the accuracy of the point weight func-
tion is quantified. Finally, the conclusions are summarized
in Section 5.

2. Point Weight Function Theory for Bivariant
Stress Field

Stress distributions of structural components are compli-
cated such as aeroengines. These complex stress gradients
are mainly induced by local stress concentrations or multiple
loads, including centrifugal, thermal, and residual stresses.
When the stresses vary in bivariant directions (vertical and
along with the crack depth), the point weight function can
help obtain accurate SIFs of cracks. The SIF considered in
this paper is a mode I corner crack in rectangular geometry
with finite length and width, as shown in Figure 1. The SIFs
for two points along the corner cracks, A and B, are critical
for the crack propagation calculation [31].

When the point weight function is known, the SIF, the
core parameter used in probabilistic damage tolerance anal-
ysis, can be obtained by integrating the product of the load
with the weight function for the crack surface. This method
considers two variations compared with the universal weight
function method, which only considers stress distribution
changes in the x direction.

The weight function is called Green’s function of a crack
surface. The SIF is given by [27]

K =
ðc
0

ða ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− x2/c2ð Þ

p

0
σ x, yð ÞWQQ′dydx, ð1Þ

where σðx, yÞ is the stress perpendicular to the crack plane in
the corresponding uncracked body and WQQ′ is the point
weight function. The integration is carried out for the crack
dimensions, characterized by a in the x direction and c in the
y direction. Both a and c are the radii of the corner crack.
Only circular cracks are considered in this paper; thus, a =
c.

The point weight functions WQQ′ for quarter-circular
corner cracks are, respectively, given by [26]
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − r2

p

π
ffiffiffiffiffiffi
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where Qðx, yÞ denotes the location where the point load is
applied. The two points Qx and Qy do not exist on the crack
surface. The locations of Qx and Qy are those symmetrical to
the location of point load Q with respect to the x- and y
-axes. Q′ is the point along the crack perimeter. x and y
are the values of the x-axes and y-axes. R represents the dis-
tance between the point along with the crack front Q′ to the
ellipse center O, r represents the distance between the point
in the crack surface Q to the ellipse center O, lQQ′ is the dis-

tance between Q and Q′, lQxQ′ is the distance between Qx

and Q′, and lQyQ′ is the distance between Qy and Q′. The
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length parameters, lQQ′ , lQxQ′ , and lQyQ′ , correct the free sur-

face effects for a surface crack by assuming a symmetrical
stress distribution for an imaginary prolonged crack extend-
ing into the other semicircles.Π1,Π2, andΠ3 are the critical
coefficients of the point weight function, as determined by
the crack size and geometry parameters.Π

Equation (2) can be expressed in cylindrical coordinates

WQQ′ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − r2
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where φ and θ are the angles of Q and Q′.
With the integration of stress distribution σðx, yÞ and

point weight function, the SIF of Q′ along the surface crack
can be obtained by

K =
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The SIFs for points A and B are concerned ðQ′ = A, BÞ.
For each point, by using three known SIFs ðKk

rl, l = 1, 2, 3, k
= A, BÞ and the associated three reference stress distribu-
tions (σrlðr, θÞ, i = 1, 2, 3), six simultaneous equations are
given as

Kk
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The coefficients Πk
1, Π

k
2, and Πk

3 can be determined by
solving Equation (5). Finally, the point weight functions can
be derived, and the SIFs of corner cracks under unknown
stress distributions can be calculated by integrating the weight
functions and stress distributions as Equation (4).

3. Derivation of the Point Weight Functions for
Corner Cracks

3.1. Reference Stress Intensity Factors. ΠA
1 , Π

A
2 , Π

A
3 , Π

B
1 , Π

B
2 ,

and ΠB
3 are the critical coefficients of the point weight func-

tions obtained by solving Equation (5). The construction of
the equations leads to the acquisition of the reference SIFs
under reference stress distributions. Three-dimensional
finite elements are used to model the symmetric structure
containing a quarter-circular corner crack to obtain the ref-
erence SIFs. Figure 1 shows the geometry and the coordinate
system of the corner cracks. T and L are the thickness and
length of the finite plate, respectively.

Figure 1: Geometry and coordinate system.
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Finite element analysis is performed using ABAQUS
version 6.14 with 20-node isoperimetric three-dimensional
solid elements and reduced integration. As shown in
Figure 2, three-dimensional prism elements with four mid-
side nodes at the quarter points are used to model the square
root singularity at the crack tip, and the separate crack tip
nodal points are constrained and assumed to have the same
displacement.

The SIFs for two points of corner cracks, A and B, shown
in Figure 1, are critical for the crack propagation calculation
[31]. It is worth mentioning that the reference solutions are
determined as the SIFs taken at 2.5° inside the two points A
and B. This approach aims to avoid the numerical ambigui-
ties resulting from the corner point crack singularity associ-
ated with the calculation of the SIF directly at the surface.

The SIF is calculated from the J-integral by using the vir-
tual crack extension method. The analysis is conducted with
a linear classic elastic material model with Young’s modulus
E (210GPa) and Poisson’s ratio ν (0.361). The relationship
between J and SIF can be used to calculate the reference SIF

Kr =
ffiffiffiffiffiffiffi
JE′

q
ð6Þ

where E′ = E is the equation for the plane stress and E′ = E
/ð1 − ν2Þ is the formula for the plane strain.

The reference loads are applied directly onto the crack
surface. Three types of loading are applied to each crack
geometry, with the stress distribution given by

σr1 x, yð Þ = σ0,
σr2 x, yð Þ = σ0 1 −ð Þ,
σr3 x, yð Þ = σ0 1 −ð Þ,

ð7Þ

where σ0 is a constant, in which the value of 400MPa is
assigned and a is the crack radius whose value is 0.003m
in this paper.

3.2. Validation of the Finite Element Method. The accuracy
of the finite element results needs to be validated because
the reference SIFs are critical inputs for the point weight
function method. Therefore, the SIFs calculated by ABA-
QUS are compared with FADD3D results [32] to validate

Figure 2: Typical finite element mesh.
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Figure 3: SIF results when cracks under univariant and bivariant
stress distributions calculated by FADD3D and ABAQUS
(c/a = 1, a/T = 0:5, c/L = 0:5).

Figure 4: Quarter-elliptical corner crack in finite thickness
plate [23].
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the accuracy of the reference SIFs. The univariant stress dis-
tribution is given by

σ x, yð Þ = σ0 1 − y
a
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� �
: ð8Þ

The bivariant stress distribution is given by
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The bivariant stress distribution decreases to zero at both
surface tips, while the univariant stress distribution is uni-
form in the y-direction and applies a much larger resultant
force on the crack plane than the bivariant stress field.

Figure 3 shows the SIF results along the crack tip calcu-
lated by FADD3D and ABAQUS. The circular crack is ana-
lyzed, and a/c = 1. The geometry of the finite plate is set as
a/T = 0:5 and c/L = 0:5. Q is the shape factor associated with

the a/c ratio, defined by

Q =
1 + 1:464 a

c

� �1:65 a
c
≤ 1,

1 + 1:464 c
a

� �1:65 a
c
> 1:

8>><
>>: ð10Þ

Notably, the predicted results exist sharp changes at the
intersection of the crack perimeter with a free surface (A
and B tips) because of the complex nature of the singularity
at that point. Therefore, the solution values for A and B tips
are generally taken at the first node inside the free surface,
2.5° from the free surface.

MAPE is the average of the absolute relative errors of the
actual and predicted values. The smaller value of MAPE
indicates effective model prediction.

MAPE = 100%
Nall

〠
Nall

i=1
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Figure 6: Continued.
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where KWFM is the SIF results calculated by the weight func-
tion method, KFEM is the SIF results calculated by finite ele-
ment method, and Nall represents the number of the SIF
values.

The maximum error between these two numerical
methods is less than 3.12%. The average absolute relative
error MAPE of universal stress distribution between ABA-
QUS and FADD3D is 1.37%, while the average absolute rel-
ative error MAPE of bivariant stress distribution is 1.80%.
The validation ensures the accuracy of the reference SIFs
in this paper.

3.3. Weight Function Derivation. The SIFs are determined by
the geometry size parameters a, T , and L. Supposing H is

infinite, and the other three variables are then regarded as
critical parameters and normalized as a/L and a/T . The coef-
ficients of weight functions Πk

l ðl = 1, 2, 3, k = A, BÞ are also
determined by the geometry size parameters a, T , and L,
given by

Πk
l = F

a
T
, a
L

� �
, ð12Þ

where a/L = 0:91, 0.85, 0.75, 0.6, 0.3, 0.12, and 0.06. a/T is
the same as a/L.

The discrete data are calculated by finite element analy-
sis. The response surface method [34, 35] is applied to obtain
the relationship between the coefficients and the normalized
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Figure 6: Stress distributions on the corner crack.

Table 1: Stress distributions applied onto the crack surface.

Stress number xy Stress distributions

1 x2 σ x, yð Þ = σ0 1 − 2x/að Þ 1 − x/að Þ
2 x3 σ x, yð Þ = σ0 1 − x/að Þ 1 − x/að Þ 1 − x/að Þ
3 x4 σ x, yð Þ = −σ0 1 − 4x/að Þ 1 − 6x/að Þ 1 − x/að Þ 1 − 2x/að Þ
4 x5 σ x, yð Þ = −σ0 1 − 4x/að Þ 1 − 2x/að Þ 1 − 1:05x/að Þ 1 − 0:9x/að Þ 1 − 0:8x/að Þ
5 x6 σ x, yð Þ = −σ0 1 − 8x/að Þ 1 − 4x/að Þ 1 − 2x/að Þ 1 − x/að Þ 1 − 0:9x/að Þ 1 − 0:8x/að Þ 1 − 0:6x/að Þ + 5/4σ0

6 y1 σ x, yð Þ = σ0/4ð Þ 1 − 6y/að Þ
7 y2 σ x, yð Þ = σ0 1 − y/að Þ 1 + y/að Þð Þ
8 y3 σ x, yð Þ = σ0/80ð Þ 1 − 6y/að Þ 1 − 6y/að Þ 1 − 6y/að Þ
9 y4 σ x, yð Þ = σ0 1 − y/að Þ 1 − y/að Þ 1 − 2y/að Þ 1 − 3y/að Þ
10 xy σ x, yð Þ = σ0 1 − 2x/að Þ 1 − 6y/að Þ
11 xy3 σ x, yð Þ = σ0 1 − 6y/að Þ 1 − 3y/að Þ 1 − 2x/að Þ 1 − y/að Þ
12 xy7 σ x, yð Þ = σ0 x/að Þ y/að Þ7

13 x2y σ x, yð Þ = −σ0 1 − 8x/að Þ 1 − 4x/að Þ 1 − 2y/að Þ + 5/4σ0

14 x2y3 σ x, yð Þ = −σ0 1 − x/að Þ 1 − 0:5x/að Þ 1 − 4y/að Þ 1 − 2y/að Þ 1 − y/að Þ
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Figure 7: Continued.
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Figure 7: Comparison of SIFs on corner cracks for point A and point B with different stress distributions.
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size parameters. The theoretical formula is given by

Πk
l = p0 + 〠

2

i1=1
pi1ei1 + 〠

2

i1=1
〠
2

i2=1
pi1i2ei1ei2 + 〠

2

i3=1
〠
2

i1=1
〠
2

i2=1
pi1i2i3ei1ei2ei3

+ 〠
2

i3=1
⋯ 〠

2

i j=1
pi1⋯i j

ei1 ⋯ eij + ε,

ð13Þ

where j is the highest order of polynomial; p0, pi1⋯i j
repre-

sent the undetermined coefficients; ei1 ,⋯, eij represent the
normalized size parameters; e1 and e2 represent a/T and a/
L, respectively; and ε is the error term. The undetermined
coefficient is supposed to be obtained by the regression algo-
rithm, which is denoted as p̂0, p̂i1⋯i j

. Thus, Equation (14) can

be expressed by

Πk
l = p̂0 + 〠

2

i1=1
p̂i1ei1 + 〠

2

i1=1
〠
2

i2=1
p̂i1i2ei1ei2

+ 〠
2

i3=1
〠
2

i1=1
〠
2

i2=1
p̂i1i2i3ei1ei2ei3 + 〠

2

i3=1
⋯ 〠

2

i j=1
p̂i1⋯i j

ei1 ⋯ eij + ε:

ð14Þ

3.4. Stress Fit Formula. The SIF denoted by K can be
expressed by integrating the stress and the weight function
as Equation (4). In this case, the bivariate stress function is
another critical input of the point weight function method.
After a finite element analysis of rotor disks, the stress distri-
bution is extracted. Then, the stress fit process can help

obtain the stress distribution function, given by

σ x, yð Þ = 〠
m

κ=1
〠
n

η=1
βκηx

κ−1yη−1, ð15Þ

where x and y represent the coordinate value on the crack
surface, m and n are the degrees of a polynomial function,
and β is the coefficient. The Cartesian coordinates are con-
verted to cylindrical coordinates as

σ φ, rð Þ = 〠
m

κ=1
〠
n

η=1
βκη r cos φð Þð Þκ−1 r sin φð Þð Þη−1: ð16Þ

4. Validation of the Point Weight Functions

4.1. Comparison with the Universal Weight Function
Method. The universal weight function derived by Glinka
is suitable to calculate the stress intensity factor (SIF)
for quarter-elliptical corner crack [23] in a finite thickness
plate. As shown in Figure 4, T1, L1, andH1 are the plate’s
thickness, width, and height. The universal weight func-
tion derived by Glinka is suitable when L1 andH1 are
infinite.

The universal weight function method takes univariant
stress distribution into consideration. Thus, two types of
stresses are applied to the crack surface, given by

σ x, yð Þ = σ0 = 1 − x
a

� �
1 − x

a

� �
1 − x

a

� �
, ð17Þ

σ x, yð Þ = σ0 1 − x
a

� �
1 + x

a

� �
: ð18Þ

Then, the SIFs are calculated using the point weight
function method and universal weight function method

Table 2: Errors between point weight function method and finite element results.

Stress type
Max error Average error (MAPE)

A B A B A B A B
KUWF/KFEM − 1j j KUWF − KFEMj j KUWF/KFEM − 1j j KUWF − KFEMj j

1 127.27% 6.92% 6.297 2.701 37.92% 1.84% 1.268 0.507

2 26.33% 3.44% 3.966 1.357 10.59% 1.05% 0.805 0.273

3 57.53% 30.86% 10.904 3.349 15.87% 6.44% 2.233 0.584

4 56.23% 27.46% 2.301 6.437 21.00% 7.55% 0.499 1.193

5 8.06% 10.17% 8.502 9.590 2.64% 2.95% 1.656 1.708

6 25.26% 1.44% 0.047 0.400 1.90% 0.91% 0.008 0.245

7 1.74% 5.59% 1.294 3.295 0.62% 2.54% 0.266 0.623

8 58.93% 31.64% 2.009 10.820 22.86% 7.60% 0.415 2.001

9 20.56% 45.80% 5.758 2.746 6.26% 17.74% 1.140 0.587

10 105.03% 16.86% 19.736 20.491 33.50% 4.79% 4.803 4.284

11 87.32% 59.31% 15.234 2.927 19.47% 13.92% 3.112 0.532

12 35.36% 9.98% 0.125 0.165 14.05% 3.58% 0.022 0.033

13 52.64% 33.00% 14.612 2.396 12.20% 11.98% 2.936 0.541

14 5.32% 6.75% 0.632 0.542 4.23% 2.15% 0.133 0.103
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[22, 23]. Meanwhile, the finite element method results calcu-
lated by ABAQUS are compared with these two weight func-
tion methods, as shown in Figure 5.

Figure 5 illustrates that the point weight function
method and the universal weight function method fit the
finite element method results well. The MAPE between the
point weight function and the universal weight function
method is less than 0.64% for point A and 1.46% for point
B. Therefore, the accuracy of the point weight function
method is verified under univariant stress distributions
based on the comparison of the point weight function
method results and the universal weight function method
results.

4.2. Comparison with the Finite Element Results

4.2.1. Stress Distributions. To validate the SIF results
calculated by the point weight function derived in Section
3, arbitrary stress distributions are applied onto the crack
surface to replace the reference stresses (σrlðx, yÞ, l = 1, 2, 3
). Fourteen stress distributions along the x and y direc-
tions are applied onto the crack surface, as shown in
Figure 6. The stress gradients are listed in Table 1. σ0
is assigned 400MPa, and a is assigned 0.003m in this
paper. Stresses 1-5 change in the x direction as shown
in Figure 6(a). Only these stress distributions are con-
cerned by the universal weight function method. Stresses
6-9 change in the y direction as shown in Figure 6(b),
while stresses 10-14 are the bivariate gradients shown in
Figures 6(c)–6(g). The point weight function method
can calculate the SIFs when there are cracks under these
three types of stresses. The Πk

l varies associated with two
dimensionless geometric ratios a/L and a/T . To obtain
the weight function coefficients when 0 < a/T ≤ 0:91 and
0 < a/L ≤ 0:91, 49 geometries are considered when a/T =
0:91, 0.85, 0.75, 0.6, 0.3, 0.12, and 0.06 and a/L = 0:91,
0.85, 0.75, 0.6, 0.3, 0.12, and 0.06.

4.2.2. Validation Results. The Πk
l varies associated with two

dimensionless geometric ratios a/L and a/T . To obtain the
weight function coefficients when 0 < a/T ≤ 0:91 and 0 < a/
L ≤ 0:91, the surrogate model is established as Equation
(10), and the surrogate model of the point weight function
coefficients is shown in the appendix. The SIFs calculated
by the obtained point weight functions with Πk

l (surrogate
model) are compared with finite element results to validate
the accuracy of the weight function method. The SIF values
are normalized by

Normalized SIF = K

σ0
ffiffiffiffiffiffi
πa

p : ð19Þ

These 49 geometries with different sizes are numbered as
shown in Figure 7(a). The SIF results under stresses 1-14 are
calculated, and Figures 7(a)–7(l) show the results of stresses
1, 5, 6, 7, 10, and 14. The normalized SIFs calculated by the
finite element method for point B and point A of the 49
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geometries are marked with hollow and solid points, respec-
tively. With the surrogate model, the SIFs are calculated and
shown as three-dimensional surfaces (0 < a/T ≤ 0:91 and 0
< a/L ≤ 0:91) in Figures 7(a), 7(c), 7(e), 7(g), 7(i), and 7(k).
Figures 7(b), 7(d), 7(f), 7(h), 7(j), and 7(l) show the relation-
ship between the finite element results and the weight func-
tion method results of the 49 geometries.

Results show that the SIFs are determined by the geom-
etries with the same loading. When a/T and a/L are close to
1, the SIFs are 3-6 times larger than SIFs when a/T and a/L
are close to 0. The validation result also shows that the SIFs
calculated by the two methods are consistent when a/L and
a/T are small.

The relative error CWFM between the weight function
method and finite element method is defined as

CWFM = KWFM − KFEM
KFEM

				
				, ð20Þ

where KWFM is the SIF results calculated by the weight func-
tion method and KFEM is the SIF results calculated by a finite
element method. Similarly, the absolute error ΔKWFM
between the weight function method and finite element
method is defined as

ΔKWFM = KWFM − KFEMj j: ð21Þ

The specific errors between the weight function method
and finite element method results of these 14 stresses are
shown in Table 2. The relative errors are larger than 100%
when the absolute SIF value is small, less than 1MPa ffiffiffiffimp

.
Most of the differences between the weight function method
and the finite element results are less than 5MPa ffiffiffiffimp

when
0 < a/L ≤ 0:91 and 0 < a/T ≤ 0:91 except for stress 3, 10, 11,
and 13 cases. The errors are related to the monotonicity of

the stress distribution. Stress 1 can represent most stress
concentration conditions that occur in rotor disks.

The cumulative distributions of CWFM and ΔKWFM are
shown in Figures 8(a) and 8(b). Results show that 81%
CWFM of point B and 54% of point A are less than 10%. As
shown in Figure 8(b), for point B, 97% ΔKWFM are less than
5MPa

ffiffiffiffimp
while 93% for point A. The absolute values of

point B are usually larger than point A; thus, the relative
error of point B is more minor.

In sum, the derived point weight functions can help
obtain SIFs of corner cracks in disks under bivariant stress
distributions. The relative error may increase when the abso-
lute SIFs are less than 1MPa ffiffiffiffimp

, and 81% of the relative
errors for point B and 54% for point A are less than 10%.
Meanwhile, 90% of the absolute errors between the point
weight function and finite element method results are less
than 5MPa ffiffiffiffimp

.
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4.3. Error Analysis

4.3.1. Errors Induced by the Surrogate Model. Based on the
finite element analysis mentioned in Section 3.1, Forty-
nine geometries with different sizes (a/T = a/L = 0:91, 0.85,
0.75, 0.6, 0.3, 0.12, and 0.06) are established, and the associ-
ated discrete weight function coefficients Πk

l are obtained by
solving Equations (5). But to obtain the point weight func-
tion coefficients when 0 < a/T ≤ 0:91 and 0 < a/L ≤ 0:91,
the surrogate model is established by the response surface
method. The surrogate model will induce errors in the SIFs.

The hexagonal polynomials (j = 6) fit well, and the coef-
ficient of determination (R-square) value reaches 0.9995.
The stress distributions 1-14 mentioned in Table 1 are
applied on the crack surface, and the SIFs of the 49 geome-
tries are calculated. The relative error of the SIFs calculated
by discrete Πk

l and surrogate model is given as

Cfit =
Krps − Kdis

Kdis

				
				, ð22Þ

where K rps is the SIF results calculated by the surrogate
model and Kdis is the SIF results calculated by discrete
Πk

l . The cumulative distribution of Cfit is shown in
Figure 9. Results show that 93% Cfit is less than 1%. The
response surface method helps obtain the surrogate model
of weight function coefficients Πk

l with relatively small
errors.

4.3.2. Errors Induced by the Reference Stress Intensity Factors.
The accuracy of the reference SIFs directly ensures the
effectiveness of the Πk

l as shown in Equations (5). It is
assumed that the three reference solutions for point AKA

r1
, KA

r2, and KA
r3 deviate to the actual finite element results

ranging from -20% to 20%. Thus, the three reference solu-
tions are given as

KA
rl

� �
d
= KA

rl + αKA
rl, ð23Þ

where α is the offset scale and ranges from -20% to 20%.

Table 3: Coefficients of corner cracks.

ΠA
1 ΠA

2 ΠA
3 ΠB

1 ΠB
2 ΠB

3
Intercept -5.89487 1.744329 5.483675 -5.57322 5.182255 1.682277

ψ 12.23616 -2.8135 -12.3955 19.84396 -20.5147 -4.60525

ω 17.23644 -4.15612 -18.5356 2.643509 -4.50073 -0.66889

ψω -191.662 48.48578 188.8367 -162.592 163.544 40.48922

ψ2 -5.15717 -1.62008 13.64749 -98.9282 111.2018 22.24433

ω2 -51.6542 11.39764 72.86457 50.87852 -31.1102 -13.1278

ψ2ω 694.9921 -177.653 -639.773 512.5473 -560.977 -124.341

ψω2 619.1506 -155.007 -645.637 558.9573 -518.524 -143.321

ψ3 -176.303 55.97378 133.407 318.2883 -350.748 -74.6492

ω3 47.06721 -8.3759 -129.874 -285.838 215.4524 73.37892

ψ2ω2 -1340.88 335.4021 1339.255 -1614.62 1557.657 404.7878

ψ3ω -1046.01 268.2438 941.0398 -288.739 531.7028 57.00663

ψω3 -779.806 190.325 923.7442 -466.474 448.4325 121.6402

ψ⁴ 649.7488 -188.386 -521.065 -581.051 622.5189 143.1407

ω⁴ 121.8748 -32.9044 49.1703 636.8395 -493.739 -164.994

ψ3ω2 930.4039 -232.407 -890.219 1586.042 -1619.86 -394.61

ψ2ω3 1385.34 -343.516 -1447.03 1153.059 -1054.76 -289.309

ψ⁴ω 821.6166 -211.521 -740.003 -382.276 37.04412 115.9074

ψω⁴ 289.6608 -64.6728 -505.561 26.88483 -79.8354 -10.0415

ψ⁵ -824.146 232.6068 672.9231 553.7472 -570.244 -143.993

ω⁵ -245.295 58.45897 82.59844 -626.826 496.7595 163.578

ψ3ω3 -852.344 222.7734 773.2179 -889.685 800.4015 232.0421

ψ⁴ω2 -22.0219 -1.7828 53.76269 -282.883 391.5173 61.49444

ψ2ω⁴ -204.763 40.99851 320.3094 -110.543 118.5102 20.83128

ψ⁵ω -297.664 77.99593 268.4639 297.6055 -148.1 -82.0632

ψω⁵ -10.9416 0.816179 103.7489 68.2753 -31.1838 -14.7748

ψ⁶ 339.1238 -94.8148 -280.593 -197.52 197.0109 54.70254

ω⁶ 129.7753 -28.7984 -70.8769 213.952 -173.829 -56.2093
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The proportion of the new coefficients derived by the
offset reference solutions are defined as

γAl
� �

d
=

ΠA
l

� �
d

ΠA
l

, ð24Þ

where ðΠA
l Þd are the coefficients derived by the deviated ref-

erence solutions.
Similarly, the proportion of the SIFs calculated by the

new coefficients are given as

δAl

� �
d
= , ð25Þ

where ðKA
l Þd are the SIFs calculated by the weight function

method. Equations (23)–(25) also apply to point B.
The Πk

l show a multivariate linear correlation of the off-
set scale in Figure 10 because the Πk

l are solved by Equation
(5). When the reference SIFs have a 1% error, the Πk

l will
change to 5 times of the original value. The SIFs calculated
by the point weight function also change, as shown in
Figure 11. When the reference SIFs have a 1% error, the SIFs
for points A and B have an error up to 1.25%. The coeffi-
cients of the point weight function are highly dependent
on the reference SIFs. Thus, the precise reference SIFs are
significant to the point weight function method.

The errors of the SIFs calculated by the point weight
function method may be induced by the response surface
method and the accuracy of the reference SIFs. First, the
response surface fitting process of the discrete weight func-
tion coefficients causes the deviation of the SIFs. By fitting
the coefficients with high order polynomial, the errors are
less than 1%. Second, the accuracy of the reference SIFs cal-
culated by the finite element method will influence the
results of the weight function coefficients up to 5 times since
these coefficients are calculated by solving simultaneous
equations. A 1% error of the reference SIFs can cause a
1.25% deviation of the calculated SIFs.

In addition to these two factors, the selection of the types
of the reference stress distributions influences the accuracy
of the point weight function. Since the uniform and linear ref-
erence stresses are used in this paper, the SIF results of linear
distributions are accurate. Further research is necessary to
study the influence of the selection of the reference loadings.
Moreover, the point weight function equations can approxi-
mate Green’s function instead of equaling to Green’s function
completely. The SIF errors are inevitably induced because the
weight functions deviate from Green’s function, which is the
limitation of the weight function method itself.

In this case, during the crack propagation calculation
and damage tolerance assessment, the SIF errors are sup-
posed to be considered. Meanwhile, the development of the
accurate finite element solutions is highly essential, which
can provide the reference solutions to the point weight func-
tion method. Apart from the weight function method, a new
surrogate model between the SIFs and the stress distribu-
tions of different geometries with cracks may be developed

by other methods such as the machine learning method with
enough SIF data.

5. Conclusions

This paper derives the point weight functions for corner
cracks in finite plates to efficiently calculate SIFs when cracks
are subjected to complex stress distributions induced by
thermal, residual, and other types of stresses and conduct
the probabilistic damage tolerance assessment. The conclu-
sions are as follows:

(1) Based on the point weight function for the cracked
structure, the SIFs for corner cracks can be obtained
by integrating the two-directional stress in the
uncracked body. Inmost cases (more than 90%), when
the stress distributions are close to that of the rotor
disks, the differences between the point weight func-
tion method and finite element results are less than
5MPa ffiffiffiffimp

when 0 < a/L ≤ 0:91 and 0 < a/T ≤ 0:91.
The relative error may increase when the absolute SIFs
are less than 1MPa ffiffiffiffimp

, and 81% of the relative errors
for point B and 54% for point A are less than 10%

(2) Obtaining the coefficients in the weight function,
which are determined by the geometric parameters
of the plates, is the critical process for the point
weight function method. The response surface
method is efficient for deriving the point weight
function to reflect the relationship between geomet-
ric parameters and SIFs. The errors induced by the
fitting method are less than 1%

(3) The reference stress intensity factors under associ-
ated loadings are essential input for the point weight
function method because the unknown point weight
function coefficients are calculated by solving simul-
taneous equations. The finite element method can
help obtain the reference stress intensity factors.
The accuracy of the reference SIFs will influence
the results of the weight function coefficients. A 1%
error of the reference SIFs can cause five times of
deviation of the coefficients and a 1.25% deviation
of the calculated SIFs. Thus, the accurate SIFs are
the basis of the point weight function

Appendix

The Polynomials of the Point Weight Function
Coefficients of Corner Cracks

The coefficients for the normalized SIFs are shown in
Table 3.

Πk
l = F

a
T
, a
L

� �
  l = 1, 2, 3, k = A, Bð Þ,

ψ = a
T
, ω = a

L
:

ðA:1Þ
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Nomenclature

K : Stress intensity factor
σ: Stress distribution
W: Weight function
c: Crack size
a: Crack size
R: Crack radius
r: Radius of point Q
Π: Coefficients of point weight function
lQQ′ : Length parameter of Q
lQxQ′ : Length parameter of Q′
lQyQ′ : Length parameter of Q′
φ: Angle of Q
θ: Angle of Q′
E: Young’s modulus
ν: Poisson’s ratio
T : Plate thickness
L: Plate length
p̂: Estimated response surface method coefficients
p: Response surface method coefficients
e: Normalized size parameter
ε: Error term
x: x-axis value
y: y-axis value
q: Coefficients in stress function
J : J integral value
β: Coefficient of the stress distribution
Cfit: Relative error of fitting method
CWFM: Relative error of weight function method
ΔKWFM: Absolute error of weight function method.
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