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In order to solve the coarse alignment problem of the strapdown inertial navigation system on a rocking base, a fast coarse
alignment method using the Special Orthogonal Group optimization has been proposed in this paper. In this method, based
on the alignment idea of tracing gravitational apparent motion in inertial frame, the model of coarse alignment on a rocking
base has been established using the Special Orthogonal Group directly. A new attitude error function has been proposed on
the basis of the cosines between the measurement vector and predictive vector to describe the error between the estimated
attitude and the true one. In order to directly reflect the change in the attitude error in the new innovation term and enable
the attitude error to converge to zero as fast as possible, the gradient of the new attitude error function has been selected as the
new innovation term to compensate for the attitude in the estimation process. Finally, the stability of the proposed
optimization estimation method has been proved by employing the Lyapunov stability theory. Simulation and experiment
results show that the method presented in this paper exhibits good performance in terms of alignment accuracy and time and
can be applied to coarse alignment under a rocking base under different environments.

1. Introduction

The strapdown inertial navigation system (SINS) involves
plenty of knowledge of different subjects and has developed
into a cutting-edge technology in the scientific world [1]. For
SINS, the initial speed and position can be obtained using
auxiliary sensors. The initial attitude is determined by initial
alignment which is a key technology for the research of
SINSs [2]. The convergence precision and speed of the
initial alignment directly determine the performance of
the SINSs [3].

A two-step alignment framework including coarse
alignment and fine alignment is usually adopted in most of
the initial alignment methods. The purpose of the coarse
alignment is to obtain an accurate initial attitude in a short
time. Fine alignment linearizes the attitude model based on
the relatively accurate attitude obtained from the coarse
alignment [4]. If the precision of the coarse alignment is
insufficient, there will be large linearization error and, more
serious, the system may not be linearized. Therefore, the

coarse alignment plays an important role in the whole initial
alignment process. In the case of static bases, the coarse
alignment has been addressed well, and several common
methods such as analytic rough alignment [5] and zero
speed alignment based on the Kalman filtering [6] have been
proposed in the literature. These coarse alignment methods
use two Earth feature vectors, namely, the acceleration of
gravity and the self-rotational angular rate of the Earth to
calculate the attitude matrix. However, for the rocking base,
there are some interference factors, such as engine rotation,
wind, and wave surging [7], which give rise to an issue that
the angular velocity of the disturbance far outweigh the
angular velocity of the Earth’s rotation. Although some
methods have been proposed to solve this problem, the con-
vergence accuracy and rate do not satisfy the requirements
of the carrier.

In recent years, a coarse alignment method based on the
gravitational apparent motion in the inertial frame for SINS
on a rocking base has been investigated [8, 9]. The inertial
frame coarse alignment methods can be divided into two
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categories, namely, the dual-vector determination method
[10–13] and the Wahba method [14–17]. The former one
is based on the traditional dual-vector method used for
calculating the initial attitude. According to the principle
of dual-vector attitude determination, the TRIAD algorithm
is proposed and gravity is used as an observation vector [10].
The attitude matrix is calculated using two noncollinear
gravity vectors at different times. An improved alignment
method based on the inertial frame was proposed by Silson
in [11]. The velocity was obtained by integrating its apparent
motion in gravity so as to reduce the influence of random
noise on the measured acceleration. Owing to the errors in
the measured value of the sensors, a digital low-pass filter
was developed to reduce the high-frequency noise in the
sensor measurement [12, 13]. It was shown that the accuracy
of the coarse alignment had been improved and an accurate
acceleration value could be achieved. However, the dual-
vector determination method only uses the gravity vector
of two moments to determine the initial attitude, and a large
amount of measurement information is discarded, resulting
in a poor precision of the coarse alignment process. Further-
more, the method requires that the two gravity vectors used
for calculating the attitude are noncollinear, and thus, the
time interval between the two selected gravity vectors is
required to be sufficiently long. This implies that the align-
ment time of the coarse alignment process based on dual-
vector determination will take longer.

The second method is to transform the traditional
attitude estimation problem into the Wahba problem and
obtain the initial attitude using different solving methods
[14–17]. For the coarse alignment problem under a rocking
base, an algorithm based on the singular value decomposi-
tion (SVD) was proposed by Jiang and Wang [14]. This
algorithm solves the Wahba problem by using the theory
of SVD to obtain the direction cosine matrix (DCM). How-
ever, its disadvantage is that it takes a long time to converge.
A coarse alignment method based on Q-method was
described by Yang in [15]. In this method, a unit quaternion
was used for solving the Wahba problem, which can directly
obtain the attitude quaternion and reduce the computation
by avoiding solving DCM. A new coarse alignment method
based on quaternion estimation (QUEST) was developed
by Cheng and Shuster in [16]. This method transforms the
Wahba problem into an eigenvalue determination problem.
The characteristic polynomial is given, and the eigenvalues
can be obtained by Newton’s method after several iterations.
In [17], an extension of the work done by Cheng and Shuster
[16] was proposed, where the main focus was the simplifica-
tion of the characteristic polynomials. This method, named
as the fast linear attitude estimator (FLAE), gives a symbolic
solution of the characteristic polynomial, making the process
of calculating the eigenvalue simpler and faster. Although
the Wahba method can make full use of all the measurement
information, it is nonconvex and not guaranteed to be glob-
ally optimal and this will affect the alignment accuracy and
rate during the coarse alignment process.

In recent years, a new class of attitude estimation
methods has been developed based on the Special Orthog-
onal Group representation, defined as SOð3Þ-based estima-

tion method. Different from the quaternion, there are
three distinctive advantages in these estimation methods
[18, 19]: (i) they are deterministic in that they require no
knowledge of the noise properties of the sensor; (ii) since they
evolve directly on the Special Orthogonal Group of rigid-
body rotations, they uniquely describe the attitude of a rigid
body; and (iii) the convergence properties and the stability
of these methods can be guaranteed. Because of these advan-
tages, the SOð3Þ-based estimation method can be used for
attitude estimation and control of various carriers by
combing the existing method, such as ships, aircraft, vehicle,
mobile robots, and quadrotors [20–23]. In the work by
Khosravian and Namvar [24], the distance of the attitude
error group to the identity matrix, defined as F-norm, was
selected as the attitude error function. Then, this function
was used as a Lyapunov candidate function to prove the
stability of the system. Zlotnik and Forbes [25] used the
Euclidean distance of the measurement vector and the
estimation vector as the attitude error function and estab-
lished the system renewal equation using the SOð3Þ group
to realize attitude estimation. A particular attitude error
function that uses the trace of the attitude error to the
identity matrix to measure the error between the estimated
attitude and the true one was used by Grip et al. [26]. An
adaptive identifier on Special Orthogonal Group (AISOG)
was proposed by Kinsey and Whitcomb in [27]. In these
works, the cross product of the vector was used as an innova-
tion term to compensate the attitude and the asymptotic
stability of the system was proved. However, in the existing
SOð3Þ-based estimation methods, there is no direct relation-
ship between the innovation term and the attitude error
function. Thus, it is difficult to achieve the reflection of the
change of the attitude error function in the update term,
which results in poor performance of attitude estimation in
terms of convergence time and convergence accuracy.

Motivated by the advantages of the SOð3Þ-based estima-
tion methods, this paper proposes a rapid coarse alignment
method using the Special Orthogonal Group optimization
for SINS on a rocking base. On the basis of the attitude
decomposition and the Special Orthogonal Group differ-
ential equation, a coarse alignment model based on the
SOð3Þ group has been established. A new attitude error
function has been established to efficiently represent the
attitude error by using the relationship between vectors.
In order to reflect the change in the attitude error in the atti-
tude compensation, the gradient of the new attitude error
function has been used as the innovation term to compensate
the attitude in real time, which enables the system to con-
verge quickly. The Lyapunov stability theory has been used
to prove the stability of the proposed optimization method.
Simulation and experiments were designed to verify the
performance in terms of alignment accuracy and time as
compared to the existing coarse alignment methods.

The main contributions of this paper can be summarized
as follows: (1) the attitude error function is defined as the
cosine similarity between the true reference vector and
estimated reference vector, which can establish the direct
relationship between the innovation term and the attitude
error function. (2) In order to reflect the change of the
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attitude error function and improve the rate of converge of
the attitude error function, the gradient of the attitude error
function is used as the update term to compensate the esti-
mated attitude. (3) The stability of the proposed method is
proved by Lyapunov’s second theorem, which gives an effec-
tive way to prove the stability of Special Orthogonal Group
optimization method.

The remainder of this article is organized as follows:
Section 2 provides a review of the preliminary material.
The definitions of the reference frames and various symbols
are listed in Tables 1 and 2, respectively. A description of the
system model based on the Special Orthogonal Group
representation is given in Section 3. Details of the proposed
Special Orthogonal Group optimization method are given in
Section 4, and the stability analysis is given in Section 5. The
results of the simulation and experiment are given in Section
6. Conclusions from this work are given in Section 7.

2. Preliminaries

A Special Orthogonal Group is a smooth and differentiable
manifold satisfying two conditions: group operations and
reversibility [18]. The Special Orthogonal Group SOð3Þ
describes the group of 3D rotation matrices and is defined as

SO 3ð Þ = RjR ∈R3×3, RRT = I, det Rð Þ = 1
È É

: ð1Þ

Special Orthogonal Group forms a smooth manifold, and
its tangent space at the origin is a 3 × 3 skew-symmetric
matrix, denoted as soð3Þ [28],

so 3ð Þ = S Sj ∈R3×3, S = −ST
ÉÈ
: ð2Þ

The operation ð∙Þ × represents the mapping from a 3 × 1
vector ω ∈R3 to the corresponding 3 × 3 skew-symmetric
matrix S ∈R3×3:

S = ω × =
0 −ω3 ω2

ω 0 −ω1

−ω2 ω1 0

2
664

3
775,∀ω =

r1

r2

r3

2
664

3
775 ∈R3: ð3Þ

The inverse operation ð∙Þ∨ represents the map from the
skew-symmetric matrix S ∈ soð3Þ to a vector ω ∈R3.

S∨ = ω: ð4Þ

The operation exp ð∙Þdefines the exponential map from
soð3Þ to SOð3Þ and conforms to the standard matrix expo-
nential formula (the Rodrigues’ formula):

exp Sð Þ = I + sin ωk kð Þ
ωk k S + 1 − cos ωk kð Þ

ωk k2 S2: ð5Þ

If RðtÞ ∈ SOð3Þ, then _RðtÞRTðtÞ and RTðtÞ _RðtÞ are skew-
symmetric matrices [28]. The Special Orthogonal Group
differential equation can then be described as

_R tð Þ = R tð Þ ω ×ð Þ, ð6Þ

where ω × ∈soð3Þ. For a given sampling time interval T , the
discrete implementation of (6) is given as

Rk+1 = Rk exp T∙ω ×ð Þ: ð7Þ

The tangent space of the SOð3Þ group at any point R is
given by [29]

TRSO 3ð Þ = RS ∈R3×3 R ∈ SO 3ð Þ, S ∈ so 3ð ÞjÈ É
: ð8Þ

The inner product h∙, ∙i on soð3Þ is defined as

A, Bh i = tr ATB
À Á

 for all A, B ∈ so 3ð Þ: ð9Þ

The Riemannian metric h∙, ∙iR on the SOð3Þ group can be
defined as [29]

V ,Uh iR = VRT ,URT
 �
,∀U , V ∈ TRSO 3ð Þ: ð10Þ

The gradient of a function f : SOð3Þ⟶ℝ is defined as
the unique tangent vector ∇Rf ðRÞ ∈ TRSOð3Þ such that [29]

d
dϵ

f Γ ϵð Þð Þ
����
ϵ=0

= ∇Rf Rð Þ, SRh iR,∀S ∈ so 3ð Þ, ð11Þ

where ϵ ∈ℝ and ΓðϵÞ = exp ðϵSÞR is a curve around R.
ðd/dϵÞf ðΓðϵÞÞjϵ=0 is the tangent map of f atR.

3. The System Model Based on the Special
Orthogonal Group Representation

Because of the nature and the advantages of the SOð3Þ
group, SOð3Þ representation can be used to improve the
performance of the coarse alignment on a rocking base.
The alignment model based on the Special Orthogonal
Group differential equation and the idea of the inertial frame
alignment has been established in this section.

3.1. State Model. According to the attitude chain rule, the
initial attitude matrix can be decomposed into a product of
three Special Orthogonal Groups:

Rb tð Þ
n tð Þ = Rb tð Þ

b 0ð ÞR
b 0ð Þ
n 0ð ÞR

n 0ð Þ
n tð Þ , ð12Þ

where R ∈ SOð3Þ, RbðtÞ
nðtÞ represents the attitude matrix of the n

frame relative to the b frame, and Rbð0Þ
nð0Þ is the initial attitude

group and represents the attitude change from n0 frame to

b0 frame at the initial moment. Rbð0Þ
bðtÞ and Rnð0Þ

nðtÞ are time-

varying attitude groups in the b frame or n frame,

3International Journal of Aerospace Engineering



respectively, from time t to 0 and can be calculated using the
following equations:

_R
b 0ð Þ
b tð Þ = Rb 0ð Þ

b tð Þω
b
ib × ,

_R
n 0ð Þ
n tð Þ = Rn 0ð Þ

n tð Þω
n
in × ,

ð13Þ

where ωb
ib is the angular velocity of the frame b relative to the

frame i under the b frame and ωn
in is the angular velocity of

the frame n relative to the frame i under the n frame and
can be calculated by the expression ωn

in = ωn
ie + ωn

en, where
ωn
ie = ½0ωie cos Lωie sin L� is the angular velocity of the

rotation of the Earth, L is the local latitude, and ωn
en is

the zero vector when the carrier is not moving.

Using (5), RnðtkÞ
nðtk−1Þ and RbðtkÞ

bðtk−1Þ can be obtained as

Rn tkð Þ
n tk−1ð Þ = I + sin φnk kð Þ

φnk k φn × + 1 − cos φnk kð Þ
φnk k2 φn ×ð Þ2,

Rb tkð Þ
b tk−1ð Þ = I + sin φbk kð Þ

φbk k φb × + 1 − cos φbk kð Þ
φbk k2 φb ×ð Þ2,

ð14Þ

where φn =
Ð tk
tk−1

ωn
indτ = T∙ωn

in, φb =
Ð tk
tk−1

ωb
ibdτ = T∙ωb

ib, and

T is the sampling time. φb is calculated using the two-
sample iteration algorithm φb = Δθ1 + Δθ2 + 2/3Δθ1 × Δθ2,
where Δθ1 and Δθ2 are the first and second samples of
the gyro-measured incremental angle [30].

Because Rnð0Þ
nð0Þ and Rbð0Þ

bð0Þ are the attitude matrices at the

initial moment, they can be chosen as unit matrix. Then,

the expressions for RnðtkÞ
nð0Þ and RbðtkÞ

bð0Þ in the iteration calcula-

tion are given as follows:

Rn tkð Þ
n 0ð Þ = Rn tkð Þ

n tk−1ð ÞR
n tk−1ð Þ
n 0ð Þ ,

Rb tkð Þ
b 0ð Þ = Rb tkð Þ

b tk−1ð ÞR
b tk−1ð Þ
b 0ð Þ :

ð15Þ

Since RnðtÞ
nð0Þ and RbðtÞ

bð0Þ are calculated using (17) and (18),

RbðtÞ
nðtÞ can be obtained from (12) if the initial attitude group

Rbð0Þ
nð0Þ can be determined. Then, the coarse alignment prob-

lem is transformed into the problem of estimating the initial

attitude group Rbð0Þ
nð0Þ. Because Rbð0Þ

nð0Þ does not change with

time, the state equation based on the Special Orthogonal
Group representation can be established as

_R = 0: ð16Þ

3.2. Measurement Model. In some inertial frame alignment
methods, the accelerometer measurements at different
moments are directly used for calculating the gravitational
apparent motion. As a result, the alignment accuracy is
easily disturbed by the measurement noises, especially the
random noises from the accelerometers [10, 11, 14]. To
reduce the influence of the measurement noises, previous
work [9, 12] integrated the gravitational acceleration with
time in order to obtain the velocity and then used the veloc-
ity vectors instead of the gravity vectors for the alignment
calculation. Similar to the existing inertial frame alignment
methods, we also use the velocity vectors to establish the
measurement equation. Thus, the measurement equation
based on the Special Orthogonal Group can be established as

Vb0
g tð Þ =

ðt
0
gbb0dt = Rb 0ð Þ

n 0ð Þ

ðt
0
gn
n0
dt = Rb 0ð Þ

n 0ð ÞV
n0
g tð Þ: ð17Þ

The measurement equation can then be written as

y tð Þ = Rx tð Þ, ð18Þ

Table 1: Definitions of the reference frames.

Reference frame Definition

n frame The navigation frame (n frame), which is orthogonal reference frame aligned with east-north-up (E-N-U) geodetic axes

b frame The sensor’s body fixed frame

i frame The inertial coordinate frame

n0 frame The inertial coordinate frame obtained by fixing the n frame at the initial time

b0 frame The inertial coordinate frame obtained by fixing the b frame at the initial time

Table 2: Definitions of various symbols.

Reference frame Definition

×ð Þ Skew-symmetric matrix operator

∙ð Þ∨ Map from skew-symmetric matrix to a vector

T Sampling time interval

Rb
a

Attitude matrix between the a frame and the
b frame

ω Angular rate vector

I 3 × 3 identity matrix

f b Specific force

g Gravitational acceleration
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where

y tð Þ =
ðt
0
gbb0dt =

ðt
0
Rb 0ð Þ
b tð Þg

bdt = −
ðt
0
Rb 0ð Þ
b tð Þ f

bdt,

x tð Þ =
ðt
0
gnn0dt =

ðt
0
Rn 0ð Þ
n tð Þg

ndt:

ð19Þ

The coarse alignment model based on the Special
Orthogonal Group representation can be established as

_R = 0,
y tð Þ = Rx tð Þ:

(
ð20Þ

Because the state of this model is the SOð3Þ group, the
alignment problem is transformed into the problem of

estimating the initial attitude group Rbð0Þ
nð0Þ. Furthermore, it

can be seen from (24) that the alignment model established
on the basis of the Special Orthogonal Group is a linear
model that effectively avoids the nonlinear problem and
the nonuniqueness of the unit quaternion representation.

4. The Special Orthogonal Group
Optimization Method

For the model expressed by (24), a novel estimation method
is proposed to improve the alignment accuracy and time,
and its details are presented in this section. In the model rep-

resented by (24), the state is the initial attitude group Rbð0Þ
nð0Þ,

while the attitude error function of R is usually described as

η = RTR̂: ð21Þ

Then, through the definition of the attitude error func-
tion, the estimated value R̂ could be adjusted repeatedly so
that the attitude error approaches the identity matrix I.
And R̂ is considered to be the optimal estimate of R.Gener-
ally, the gradient descent method can quickly reduce the
value of this attitude error function η to the minimum value
I. However, since the unknown attitude truth value R is
involved, the obtained gradient should be a function of the
unknown value R, which makes the gradient descent method
unable to be used in the alignment algorithm using the
traditional attitude error function η and affects the rapidity
of local error descent. Therefore, a new error function is
needed, which can be consistent with the traditional error
function η in the geometric sense, but the update of this
error function should not be subject to the unknown truth
value R so that the gradient is solvable, and the gradient
could be used to continuously adjust estimated value R̂ to
make the error function converge quickly.

In order to efficiently reflect the changes of the attitude
error in the coarse alignment on a rocking base, a new atti-
tude error function based on the cosine between the vectors
has been proposed in the novel estimation method. Here, the
gradient of the new attitude error function is taken as the
innovation term in the estimation process. The proposed

method can enable the estimated attitude to spread along
the gradient descent direction of the new attitude error func-
tion such that the attitude error approaches to zero.

For the measurement equation given by (24), the Special
Orthogonal Group R can convert the vector xðtÞ in the n
frame into the vector yðtÞ in the b frame. If the projection
of the vector direction is considered individually, Equation
(20) can be written as

r tð Þ = Ru tð Þ, ð22Þ

where r = y/kyk, u = x/kxk, and thus, r and u are both unit
vectors.

In the estimation process, if the estimated attitude R̂ is
equal to the real attitude R, the measurement vector rðtÞ
and predictive vector r̂ðtÞ = R̂uðtÞ should be equal. However,
since there are errors between R̂ and R, rðtÞ and r̂ðtÞ are not
equal. Therefore, in order to accurately describe the error of
the attitude estimation, the following attitude error function
EðR̂, RÞ has been constructed:

E R̂, R
À Á

= 1 − cos r̂, rð Þ = 1 − r∙r̂ð Þ
rj j r̂j j : ð23Þ

Since r and u are both unit vectors, Equation (23) can be
written as

E R̂, R
À Á

= 1 − r∙r̂ð Þ = 1 − r̂T∙r = 1 − tr r∙r̂T
À Á

: ð24Þ

Using (25), (27) can be rewritten as

E R̂
À Á

= 1 − tr RuuTR̂
T

� �
: ð25Þ

In order to improve the convergence speed of the
estimation of attitude, the gradient of the new attitude error
function is used as the innovation term for updating the atti-
tude in the estimation process. Some preliminary knowledge
needs to be introduced before deriving the gradient of the
attitude error function.

According to [29], the infinitesimal variation δR̂ of
R̂ ∈ SOð3Þ is

δR̂ = d
dϵ

exp ϵSð ÞR̂
����
ϵ=0

= SR̂: ð26Þ

For any U ∈R3×3, the following equation holds:

P a Uð Þ +P s Uð Þ =U , ð27Þ

where P aðUÞ = ð1/2ÞðU −UTÞ and P sðUÞ = ð1/2ÞðU +UTÞ.
The operator P að∙Þ is an antisymmetric projection operator
and P sð∙Þ is a symmetric projection operator.
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From the definition of EðR̂Þ in (28), the tangent map of
EðR̂Þ at R̂ is given by [29]

d
dϵ

E Γ ϵð Þð Þ
����
ϵ=0

= −tr RuuT δR̂
À ÁT� �

: ð28Þ

Using (29), Equation (28) can be written as

d
dϵ

E Γ ϵð Þð Þ
����
ϵ=0

= tr RuuTR̂
TS

� �
= tr r∙r̂TS

À Á
: ð29Þ

From (30), we have:

d
dϵ

E Γ ϵð Þð Þ
����
ϵ=0

= tr P a r∙r̂T
À Á

S +P s r∙r̂T
À Á

S
À Á

= tr P a r∙r̂T
À Á

S
À Á

+ tr P s r∙r̂T
À Á

S
À Á

:

ð30Þ

The trace of the product of an arbitrary symmetric
matrix and an antisymmetric matrix is equal to zero. Thus,

d
dϵ

E Γ ϵð Þð Þ
����
ϵ=0

= tr P a r∙r̂T
À Á

S
À Á

= tr e×Sð Þ, ð31Þ

where e× =P aðr∙r̂TÞ.
Equation (31) can be rewritten using (9) as

d
dϵ

E Γ ϵð Þð Þ
����
ϵ=0

= <e×, S > = < e×R̂R̂
T , SR̂R̂T > : ð32Þ

On the basis of (10), we can get

d
dϵ

E Γ ϵð Þð Þ
����
ϵ=0

= <e×R̂, SR̂>R̂: ð33Þ

From (11), the tangent mapping of EðR̂Þ has the follow-
ing relationship with the gradient of EðR̂Þ:

d
dϵ

E Γ ϵð Þð Þ
����
ϵ=0

= ∇R̂E R̂
À Á

, SR̂

 �

R̂
: ð34Þ

Since (36) and (37) represent the tangent mapping of
EðR̂Þ, it holds true that

∇R̂E R̂
À Á

= e×R̂: ð35Þ

where ∇R̂EðR̂Þ is the gradient of the attitude error
function.

We choose ∇R̂EðR̂Þ as the new innovation term to com-
pensate the attitude group, and this enables the estimated
spread of the attitude group to be along the direction of
the gradient descent and eventually enables the attitude
group to converge fast. Therefore, the entire process of the

Special Orthogonal Group Optimization method can be
written as follows:

_̂R = −e×R̂,
e =P a r∙r̂T

À Áν
:

8<
: ð36Þ

5. Stability of the Special Orthogonal Group
Optimization Method

Stability is an important property of a control system. In the
linear control system theory, the stability analysis of a
mathematical model based on a controlled object is an
indispensable content in the system design. In the fields of
mathematics and automatic control, Lyapunov’s theorem is
often used to judge the stability of a dynamic system. If the
trajectory of any initial condition of the dynamical system
eventually converges to the equilibrium point, the system
can be said to be Lyapunov asymptotically stable at the
equilibrium point. In this section, we use the Lyapunov sta-
bility theorem to prove that the Special Orthogonal Group
optimization method proposed in this work is asymptoti-
cally stable.

5.1. Propositions

Proposition 1. If A is a three-dimensional symmetric matrix
and B is a three-dimensional antisymmetric matrix, the
following equation holds:

tr ABð Þ = 0: ð37Þ

Proof. Suppose that the general form of the symmetric
matrix A and the antisymmetric matrix B is as follows:

A =

a1 a4 a5

a4 a2 a6

a5 a6 a3

2
6664

3
7775,

B =

0 b1 b2

−b1 0 b3

−b2 −b3 0

2
6664

3
7775:

ð38Þ

Then,

AB =

a1 a4 a5

a4 a2 a6

a5 a6 a3

2
6664

3
7775

0 b1 b2

−b1 0 b3

−b2 −b3 0

2
6664

3
7775

=

−a4b1 − a5b2 a1b1 − a5b3 a1b2 + a4b3

−a2b1 − a6b2 a4b1 − a6b3 a4b2 + a2b3

−a6b1 − a3b2 a5b1 − a3b3 a5b2 + a6b3

2
6664

3
7775:

ð39Þ
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Therefore, the trace of the matrix AB can be obtained
from (41) as follows:

tr ABð Þ = −a4b1 − a5b2 + a4b1 − a6b3 + a5b2 + a6b3 = 0:
ð40Þ

This proves that trðABÞ = 0 is true.

Proposition 2. Trace of the three-dimensional antisymmetric
matrix A has the following relationship:

tr AAð Þ = −tr ATA
À Á

: ð41Þ

Proof. Suppose that the general form of the matrix A is

A =
0 a1 a2
−a1 0 a3
−a2 −a3 0

2
664

3
775: ð42Þ

Then, the matrix ATA is obtained as follows:

ATA =

0 −a1 −a2

a1 0 −a3

a2 a3 0

2
6664

3
7775

0 a1 a2

−a1 0 a3

−a2 −a3 0

2
6664

3
7775

=

a21 + a22 a2a3 a1a3

a2a3 a21 + a23 a1a2

a1a3 a1a2 a22 + a23

2
6664

3
7775:

ð43Þ

It can be seen from (44) that

tr ATA
À Á

= 2 a21 + a22 + a23
À Á

: ð44Þ

Similarly, we can get

tr AAð Þ = −2 a21 + a22 + a23
À Á

: ð45Þ

The proof is completed.

Proposition 3. The trace of the three-dimensional antisym-
metric matrix A has the following relationship with the
two-norm of the matrix:

tr ATA
À Á

= Ak k2, ð46Þ

where k∙k is the two-norm of the matrix.

Proof. Based on Proposition 2, one has that trðATAÞ =
2ða21 + a22 + a23Þ. The two-norm of the matrix A can be calcu-
lated as follows:

Ak k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 a21 + a22 + a23
À Áq

: ð47Þ

This proves Proposition 3.

5.2. Stability Analysis. The purpose of our work is to con-
struct the estimate R̂ðtÞ of R, which satisfies the condition
that R̂ðtÞ converges asymptotically to R, i.e., lim

t⟶∞
R̂ðtÞ = R.

Note that this condition implies that the estimated measure-
ment vector r̂ðtÞ converges asymptotically to the actual mea-
surement vector rðtÞ, i.e., lim

t⟶∞
r̂ðtÞ = rðtÞ.

The error of the state of the Special Orthogonal Group is

defined as ~R = R̂
T
R, whereas the time derivative of the error

is _~R = _̂
R
T
R. The second theorem of Lyapunov’s stability

analysis is used to prove the asymptotic stability of (39).
The Lyapunov candidate function is constructed as follows:

E ~R
À Á

= 1 − cos r̂, rð Þ = 1 − tr RuuTR̂
T

� �
= 1 − tr uuTR̂

T
R

� �
= 1 − tr uuT ~R

À Á
:

ð48Þ

This function has the following two properties:

Property 4. If ~R = I, then Eð~RÞ = 0. If ~R ∈ SOð3Þ and if ~R ≠ I,
then Eð~RÞ > 0.

Proof. When ~R = I, we take it as the Lyapunov candidate
function:

E ~R
À Á

= 1 − tr uuT ~R
À Á

= 1 − tr uuT
À Á

= 1 − uk k2, ð49Þ

where kuk represents the two-norm of the vector u. u is a
unit vector, kuk = 1. Thus, when ~R = I, Eð~RÞ = 0.

If ~R ∈ SOð3Þ and if ~R ≠ I, then

R̂
T
R ≠ I ⟺ R ≠ R̂⟺ Ru ≠ R̂u⟺ r ≠ r̂⟺ cos r̂, rð Þ < 1:

ð50Þ

Thus, Eð~RÞ = 1 − cos ðr̂, rÞ > 0 is true.

Property 5. _Eð~RÞ ≤ 0 holds true for ∀t, and for any initial
nonzero ~R, _Eð~RÞ is not always equal to zero.

Table 3: Comparison of the attitude angle error and the alignment
time obtained using different coarse alignment methods.

TRIAD QUEST FLAE AISOG SOGO

Yaw error (′)
Mean value 11.6247 8.4124 7. 8728 5.7845 4.2348

Variance 1.1421 0.8784 0.7925 0.5945 0.3893

Pitch error (′)
Mean value 1.2157 -0.6142 0.5852 0.5449 0.4016

Variance 0.2463 0.0524 0.0513 0.0612 0.0328

Roll error (′)
Mean value 1.4245 0.8926 -0.8345 -0.7143 0.4863

Variance 0.4662 0.0424 0.0413 0.0615 0.0304

Alignment time (s) 110 82 76 65 40
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Proof. The time derivative of the Lyapunov candidate func-
tion is given by

_E ~R
À Á

= 1 − tr uuT _~R
� �

= −tr uuT _̂R
T
R

� �
: ð51Þ

Substituting (39) into (52), we get

_E ~R
À Á

= −tr uuTR̂
T
e×R

� �
= −tr RuuTR̂

T
e×

� �
= −tr r∙r̂Te×

À Á
= tr e×r∙r̂T

À Á
:

ð52Þ

Using (30), Equation (52) can be written as follows:

_E ~R
À Á

= tr e×P a r∙r̂T
À Á

+ e×P s r∙r̂T
À ÁÂ Ã

: ð53Þ

Since e× is an antisymmetric matrix, P sðr∙r̂TÞ is a sym-
metric matrix. Thus, from Proposition 2 we know that

_E ~R
À Á

= tr e×P a r∙r̂T
À ÁÂ Ã

: ð54Þ

Substituting the innovation item e in (39) into (55), we
get

_E ~R
À Á

= tr P a r∙r̂T
À Á

P a r∙r̂T
À ÁÂ Ã

: ð55Þ
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Figure 1: The attitude angle errors of the four alignment methods.
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From Proposition 2, Equation (55) can be written as

_E ~R
À Á

= −tr P a r∙r̂T
À ÁÈ ÉT

P a r∙r̂T
À Áh i

, ð56Þ

According to Proposition 3, the expression is simplified
as follows:

_E = − P a r∙r̂T
À Á 2 ≤ 0, ð57Þ

where P aðy∙ŷTÞ = ð1/2Þðy∙ŷT − ŷ∙yTÞ is a matrix which is
not always equal to zero.

To sum up, the selected Lyapunov candidate function is
a positive definite and has a unique equilibrium point. Fur-
ther, the derivative of the Lyapunov candidate function is a
negative semidefinite, and thus, the system is asymptotically
stable.

6. Simulation and Experiment

This section investigates the performance of the Special
Orthogonal Group Optimization (SOGO) method proposed
in this work by using numerical and experiment simulations.
For comparisons, four currently popular coarse alignment
methods, namely, TRIAD, QUEST, AISOG, and FLAE, have
been compared with SOGO in terms of alignment accuracy
and time. In order to guarantee the fairness in the compari-
son, five synchronous threads were designed in the simula-
tion and experiment to run the five alignment methods
simultaneously.

6.1. Simulation Results and Analysis. The simulation was
designed to verify the feasibility of the proposed method
under swaying condition. In the simulation, the carrier was
set to be affected by external disturbances, which was used
to simulate the carrier on the rocking base. The true attitude
angle changes in three directions were set to the following
cosine changes:

Ψ = 20° + 4° cos π

6 t +
π

4
� �

,

θ = 6° cos π

3 t +
π

5
� �

,

γ = 8° cos π

9 t +
π

4
� �

:

ð58Þ

where Ψ, θ, and γ represent yaw, pitch, and roll, respectively.
The equatorial radius is 6378165.0m, the gravity accelera-
tion is 9.7849m/s2, and the angular velocity of the Earth is
7.292158e-5 rad/s. The initial position was taken as 118°E
and 40°N. The constant drift and the random drift of the
accelerometer in three directions were 1mg and 0.1mg,
respectively. The constant drift and the random drift of the
gyro in the three directions were 0.1°/h and 0.01°/h, respec-
tively. The attitude update period was set to T = 0:02 s and
the alignment lasted for 200 s. The accuracy of the various
methods was obtained by comparing the error between the

true attitude angle and the attitude angle estimated by the
different methods.

The TRIAD method selected the middle moment and
the last moment, respectively, and 10 groups of data were
selected to obtain the attitude, respectively. The obtained
results under different methods are given in Table 3. For
the other four methods, the attitude angle errors obtained
in the three directions are plotted in Figure 1. In order to
see the yaw error more clearly, the logarithmic scale was
adopted. The statistical mean value and variance in the last
100 s and the alignment time are also listed in Table 3.

As can be seen from Table 3, the TRIAD method deter-
mines the attitude based on two vectors that are sufficiently
collinear, which results in a longer alignment time. Besides,
because the finite set of data can be used to solve the attitude
and then get the mean, the convergence accuracy is poor
compared to other methods. It can be seen from Figure 1
that the convergence time of the method based on SOGO
is faster than that based on quaternion. The yaw angle error
of AISOG converges to 8.4′ around 80 s, whereas the yaw
angle error of SOGO converges to 4.2′ around 40 s. Because
the SOGO method presented in this paper propagates along
the direction of the attitude error gradient, it can converge
faster.

Computer Antenna

Fixed cable Crossbow VG700AB XW-ADU7612

Figure 2: Experimental setup.

Table 4: System accuracy of the XW-ADU7612 module.

System accuracy

Heading 0.1° (baseline length > 2m)

Gyro zero bias stability 0.5°/h

Accelerometer zero bias stability ≤1mg

Table 5: System accuracy of the Crossbow VG700AB module.

System accuracy

IMU

Gyro 0.5°/h

Accelerometer ≤1mg

Data update rate 100Hz
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From Table 3, it is clearly observed that the alignment
time of the SOGO method is the shortest. In addition, the
steady-state errors of the different methods are also shown
in Table 3. The yaw, pitch, and roll obtained by applying
SOGO converge to 4.23′, 0.40′, and 0.48′, respectively.
Compared with the mainstream AIF, the SOGO improves
alignment accuracy by 26% and alignment speed by
nearly 23%. It is obvious that the SOGO method has
the smallest mean attitude angle error and the smallest
variance among all the methods, which indicates that
the SOGO method has a higher convergence accuracy
and fairly good stability.

6.2. Experimental Results and Analysis. In order to verify the
effectiveness and the application value of the SOGO method,
we conducted a contrastive experiment on a platform that
was placed on the surface of the water. In order to further
simulate a rocking base, we shook the platform artificially
to change the attitude, including that we make waves to

make the ship sway and drag both ends of the platform to
change the head azimuth. The XW-ADU7612 attitude
azimuth integrated navigation system was used for obtain-
ing the reference attitude in this experiment. The XW-
ADU7612 module consists of dual GPS and inertial measure-
ment unit, allowing it to provide precise carrier attitude. By
comparing the error of the attitude resulting from the differ-
ent methods and the reference attitude value obtained using
the XW-ADU7612 module, we can easily know the differ-
ence among various methods. The parameters representing
the system accuracy of the XW-ADU7612 attitude azimuth
integrated navigation system are given in Table 4. The
angular velocity and acceleration of the platform in all
three directions were measured using Crossbow VG700AB.
The parameters representing the accuracy of Crossbow
VG700AB are listed in Table 5. The experimental setup
is shown in Figure 2. The reference attitude used in the
experiment, measured by the XW-ADU7612 module, is
shown in Figure 3.
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Figure 3: Variation in the attitude as a function of time, measured using the XW-ADU7612 module.
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Table 6: Comparison of the attitude angle error and the alignment time.

TRIAD QUEST FLAE AISOG SOGO

Yaw error (′)
Mean value 89.6247 55.1124 51. 8728 43.5465 24.9348

Variance 29.0471 11.2784 10.7925 9.6945 5.8937

Pitch error (′)
Mean value 19.1787 11.3142 10.2852 7.8249 4.0164

Variance 4.1463 1.9314 1.7513 1.2435 0.6846

Roll error (′)
Mean value 18.6347 10.1426 8.8345 6.4312 3.2863

Variance 3.4662 1.4254 1.2413 0.9495 0.4374

Alignment time (s) 126 103 98 92 76
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Figure 4: The attitude angle errors of the four alignment methods.
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The TRIAD method used 10 sets of data and the results
obtained are given in Table 6. The experimental results
obtained using other four methods are also given in this
table and are plotted in Figure 4. The logarithmic scale was
used to observe the variation in the yaw, pitch, and roll for
the sake of more clarity. However, this makes it impossible
to display the instances having a negative attitude error.
Table 6 also lists the statistical mean value and variance in
the last 100 s as well as the alignment times.

From Table 6, it can be seen that SOGO, AISOG, FLAE,
and QUEST spend less alignment time than the TRIAD
method. Since the degree of collinearity between two vectors
is required to be large enough to obtain an accurate attitude,
the alignment time of the TRIAD method is the longest
compared to other methods. In addition, the TRIAD
method only uses the measurement vectors at two moments
to determine the attitude, making a large amount of mea-
surement information unavailable. As a result, the alignment
accuracy is the worst among these methods. From Table 6
and Figure 4, the yaw angle error of the SOGO method con-
verges to 24.9′ in about 70 s. The yaw angle error of the
AISOG method converges to 43.5′ in about 90 s. Moreover,
the convergence time of the pitch angle and the roll angle
calculated using the SOGO method is obviously shorter than
other methods, which indicates that the convergence time
can be effectively improved by propagating along the direc-
tion of the gradient of the attitude error function proposed
in this paper. From the results of Figure 4 and Table 6, it
can be seen that the yaw, pitch, and roll obtained from the
SOGO method converge to 24.93′, 4.01′, and 3.28′, respec-
tively. Thus, it can be concluded that the SOGO method
has the best alignment accuracy among the methods tested
here. The yaw angle error of the SOGO method is especially
significantly better than those of the FLAE and AISOG
methods. Compared with the mainstream AIF, the alignment
accuracy of SOGO in three axes is improved by 43%, 43%, and
49%, respectively, and alignment speed by nearly 17%.

In summary, simulation and experimental results dem-
onstrate that the proposed SOGO method can achieve high
alignment accuracy in a short alignment time. Therefore,
this method is fairly suitable for coarse alignment on a rock-
ing base.

7. Conclusion

The present work proposes a novel coarse alignment method
using the SOGO for SINS on a rocking base. Firstly, the
Special Orthogonal Group SOð3Þ has been directly used for
representing the attitude and establishing the coarse align-
ment model on the basis of the Special Orthogonal Group
differential equation. Secondly, in order to improve the
alignment accuracy and time, the optimal estimation
method has been investigated to estimate the initial attitude
SOð3Þ by using the gradient of a new attitude error function
which was adopted as the innovation term to compensate
the attitude in real time. Finally, the stability of the proposed
method has been proved by employing the Lyapunov stabil-
ity theory.

Simulation and experimental results show that compared
to the existing methods, the proposed coarse alignment
method based on SOGO exhibits a great improvement in
terms of alignment time and accuracy. Therefore, the coarse
alignment method proposed in this paper has a good applica-
tion prospect for the initial alignment of SINS on the rocking
base.

In future work, we will apply the proposed method on
the mobile robots and quadrotors control.
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