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In this paper, the dynamic modelling of a new configuration spacecraft is investigated. The significance of dumbbell-shaped
spacecraft to deep space exploration and the configuration of dumbbell-shaped spacecraft are introduced firstly. Then, the
vibration problem of the dumbbell-shaped spacecraft of large-angle attitude maneuver is investigated, and a control program
based on the combination of adaptive robust control (ARC) and component synthesis vibration suppression method-seven-
section path planning (CSVS-SPP) is proposed. The large-angle attitude maneuver route of the spacecraft, which serves as the
reference path, is planned using the CSVS-SPP approach, and the attitude controller is designed using the ARC. This program
can effectively reduce the influence of external disturbance and parameter uncertainty on the system performance while
completing attitude maneuver and suppress the vibration of the flexible beam during large-angle attitude maneuver. The
numerical simulations show the superiority and effectiveness of the proposed ARC+CSVS-SPP.

1. Introduction

With the rapid development of space technology and space
science, deep space exploration is playing an increasingly
important role in space activities. The nuclear-powered
spacecraft has become an important choice for deep space
exploration because the spacecraft needs to work for a long
time and consumes a lot of energy [1]. Because the heat
and radiation generated by the nuclear reactor can damage
electronic equipment and other facilities on the spacecraft,
it is necessary to separate the nuclear reactor and the main
body of the spacecraft when designing the nuclear-powered
spacecraft. Traditional spacecraft is mainly composed of
central rigid body and deployable flexible appendages, such
as solar panels [2, 3], synthetic aperture radar (SAR) [4],
and communication antenna [5]. The dumbbell-shaped
spacecraft is rigid at both ends and connected by a large flex-
ible truss in the middle. The structure and mass distribution

are quite different from those of traditional spacecraft [6].
Therefore, its dynamic characteristics, attitude control, and
vibration suppression will be different.

More and more attention has been paid to the dynamics
of dumbbell-shaped spacecraft, and a lot of research has
been done. Abouelmagd et al. [7] showed that when the
influence of the zonal harmonic parameter is not zero, the
pass trajectory of the dumbbell-shaped spacecraft is periodic.
Then, they further studied the equilibrium points’ position
and the stability of the trajectory [8]. Liang and Liao [9]
proved that the vibration of dumbbell-shaped spacecraft
has at least two periodic solutions; in these two periodic
solutions, at least one periodic solution is unstable. Those
researches above mainly focus on equilibrium and stability
analysis, and the mass and flexibility of the flexible beams
are not considered in the dynamic model, which cannot
meet the requirements of dynamic simulation and controller
design.
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During the past decades, a large amount of efforts have
been put into designing control systems for attitude maneu-
ver control of flexible spacecraft, such as trajectory tracking
control [10], variable structure control [11, 12], active dis-
turbance rejection control [13], fault-tolerant control [14],
and L1 adaptive control (AC) [15]. Recently, Sun et al. and
Qinqin et al. have proposed a new control theory called
adaptive robust control (ARC), which is used for various
systems with both parameter uncertainty and uncertain
nonlinearity [16, 17]. By employing online parameter adap-
tation to reduce the effects of parameter uncertainty and
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Figure 1: Existing dumbbell-shaped spacecraft design.

A

dm

𝜌a
roa 𝜁a

𝜁e

𝜁c

oa a 1

1´

2´
3´

2
B3

∆a
z0

x0

xmroc
ndc

zm

∆c

∆e

e 𝜌edm d´m

𝜃y
nd´

𝛿e

oc 𝜌c

dm

l6

c

𝛺
o

R0

E

C

Figure 2: Vector description and coordinate system definition.
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robust control law to control the influence of various uncer-
tainties, ARC can maintain the theoretical performance
results of AC and DRC [18]. In order to solve the conflict
between the two design methods, the projection parameter
adaptive control law is used [19]. Since ARC has the advan-
tages of high final tracking accuracy and guaranteed tran-
sient performance, it is of great significance to study the
applicability of ARC theory in attitude maneuver control
of dumbbell-shaped spacecraft.

Rapid maneuver of flexible spacecraft with large-angle
attitude is a necessary condition to meet the requirements
of specific missions. During and after manipulation, flexible
accessories usually deform elastically. Path planning tech-
nology has been widely used in spacecraft control [23].
The angular acceleration and velocity of spacecraft during
attitude maneuver are limited due to the limitation of the
function of attitude actuator and the capability of the mea-
suring device. Therefore, it is necessary to design an attitude
maneuver path in order to plan an appropriate angular posi-
tion, which would not easily arouse the vibration of flexible

appendages. Up to now, many attitude path planning
methods have been proposed, such as bang-coast-bang
(BCB) path planning [24], smooth bang-bang contour [25],
S contour [26], and parabolic contour [27]. These methods
have not been applied to the path planning of dumbbell-
shaped spacecraft with large-angle attitude maneuver.

In the dynamic modeling of dumbbell-shaped spacecraft,
the spacecraft is generally simplified as a massless rigid or
flexible rod connecting two particles or cabins without con-
sidering the moment of inertia of cabins at both ends. In the
process of large-angle attitude maneuver, the accuracy and
efficiency of attitude maneuver are not considered. It cannot
meet the requirements of dynamic simulation and controller
design.

Obviously, the existing dumbbell-shaped spacecraft
dynamics model cannot meet the requirements of attitude
control and vibration suppression with large angle, high pre-
cision, and high stability. As shown in Figure 1, the space-
craft is mainly composed of nuclear reactor, large flexible
beam, and active end. This is a typical rigid-flexible coupling
multibody system. It is necessary to establish an accurate
dynamic model of dumbbell-shaped spacecraft. In addition,
the model is simplified reasonably, which is convenient for
controller design. It is necessary to further study the large-
angle attitude control and attitude path planning, so as to
meet the accuracy requirements and minimize the vibration
of flexible appendages.

The objective of this paper is to build a dumbbell-shaped
spacecraft dynamics model to complete high-angle attitude
maneuver.

The main contributions are as follows: first, a dynamic
model of the dumbbell-shaped spacecraft has been estab-
lished using the Newton-Euler technique and Lagrange
equations in accordance with the multibody dynamics prin-
ciple. Second, a seven-segment trajectory planning approach
based on the component force synthesis method is provided
to give a reference trajectory for the large-angle attitude
maneuver of the dumbbell configuration spacecraft. Third,
a control approach based on the fusion of the adaptive
robust control (ARC) technique and component force syn-
thesis seven-segment attitude path planning method
(CSVS-SPP) is presented to address the vibration issue of
the flexure beam when the dumbbell-shaped spacecraft exe-
cutes large-angle attitude maneuvers.

The remainder of this paper is organized as follows: the
next section focuses on taking the dumbbell-shaped space-
craft in the unfolded state as the research object; the
dynamic modeling of rigid-flexible coupling dumbbell-
shaped spacecraft is carried out by the Newton-Euler and
Lagrange method. In the third part, aiming at the attitude
control problem of spacecraft with external disturbances
and parameter uncertainties, a control law based on the idea
of adaptive robust control is proposed, and strict stability
proof is provided. In the fourth part, a seven-section path
planning method based on component synthesis active
vibration suppression is proposed, which is combined with
ARC to realize attitude control and vibration suppression.
The fifth part is a numerical simulation analysis. The sixth
part is the conclusion.
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T/2 𝜏 𝜏+T/2 t2+𝜏+T/2t2 t2+T/2 t2+𝜏

v

vmax

va2

va1

0

B
C1

C2
A2

A3

A1 C3
t

Figure 7: Sketch of CSVS-SPP maneuver path.

x (t) f (t)

a

a

T/2

T

f (t)
x (t)

2a
w2

Step force
System response

First force response
Second force response

t

Figure 5: Effect of two equal amplitude step forces on vibration
system.

3International Journal of Aerospace Engineering



2. Dynamic Model of Dumbbell-
Shaped Spacecraft

As shown in Figure 2, the simplified model of the system is
mainly composed of the equivalent flexible beam in the

deployed state, the active end, and the nuclear reactor. The
active end and nuclear reactor are assumed to be rigid bod-
ies. eEis defined as inertial coordinate system, e0 is orbital
coordinate system, em is fixed coordinate system, eais active
end coordinate system, ecis nuclear reactor coordinate

Table 1: Parameters of dumbbell-shaped spacecraft.

Component Items (unit) Parameter

Main body

Mass (kg) 7000

Length × width × height (m) 6 × 3 × 3
Moment of inertia Diag (6000,13000,13000)

Flexible beam

Mass (kg) 1600

Length × outer diameter × inner diameter 30 × 0:06 × 0:055
Moment of inertia Diag (150,1.2e5,1.2e5)

Nuclear reactor

Mass (kg) 3000

Length × width × height (m) 2 × 2 × 2
Moment of inertia Diag (900,8000,8000)
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Figure 8: Modal shape of dumbbell-shaped spacecraft.
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system, and ee is unit coordinate system. o, oa, and oc are the
centroids of systems Aand C, respectively; R0is the vector
from the inertial reference point to the center of mass of
the system; ζa and ζc are the vectors from the center of mass
of the system to the active end and the connection point
between the nuclear reactor and the flexible beam.

As shown in Figure 2, the position vectors of any particle
dm on the active end, flexible beam, and nuclear reactor are
as follows:

sa = R0 + ζa + Δa + roa + ρa,
sc = R0 + ζc + Δc + roc + ρc,

seb = R0 + ζa + 〠
e−1

k=1
lk + ρe + δe, e = 1, 2,⋯, ne:

ð1Þ

Velocity is the time derivative of position, and the veloc-
ity vector is divided into two parts: those related to elastic
deformation and those independent of elastic deformation:

va = _sa = v0 +Ω × ζa + roa + ρa

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
vΓa

+ Δ
⊕

a +Ω × Δa,

vc = _sc = v0 +Ω × _ζc + _roc + _ρc

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

vΓc

+ Δ
⊕

c +Ω × Δc,

ve = _seb = v0 +Ω × ζ1 +〠e−1
k=1lk + ρe

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

vΓe

+Ω × Δ1 + δeð Þ + Δ1
⊕

+ δe
⊕
,

ð2Þ

whereΩ is the rotation vector of the system around the center of
mass and x⊕ is the relative derivative of the vector. The velocity

is transformed into the form expressed in generalized
coordinates as follows:

va = vΓa + eTmβ
1
1
_d + eTmΩ

×β1
1d ,

vc = vΓc + eTmβ
ne
3
_d + eTmΩ

×βne
3 d ,

ve = vΓe + eTm NePe + β1
1

� �
_d + eTmΩ

× NePe + β1
1

� �
d ,

ð3Þ

where βy
x
represents a sparse matrix of 3 × n dimensions, x is

the position of the line displacement or angular displacement
in the matrix, and y represents the unit.Ω× is the cross product
operator ofΩ. d represents the vibration of the whole body, Ne

is shape function, Pe represents the contact matrix, and _dis the
derivative.

Acceleration is the derivative of velocity, so the accelera-
tion of any particle of each body is as follows:

aa = _va = a0 + _Ω × ζa + roa + ρa

� �
+Δ
⊕⊕

a +φaa,

ac = _vc = a0 + _Ω × ζc + roc + ρc

� �
+Δ
⊕⊕

c +φac,

ae = _ve = a0 + _Ω × ζ1 + 〠
e−1

k=1
lk + ρe

 !
+Δ1

⊕⊕
+ δe

⊕⊕
+φae, e = 1, 2,⋯, ne,

ð4Þ

where x⊕⊕ represents the relative acceleration and φax is the
nonlinear term of each body.

φaa = _Ω × Δa +Ω × Ω × ζa + Δa + roa + ρa

� �� �
+ 2Ω × Δ

⊕

a,

φac = _Ω × Δc +Ω × Ω × ζc + Δc + roc + ρc

� �� �
+ 2Ω × Δ

⊕

c,

φae = 2Ω×NePe _d:

ð5Þ

The acceleration term is divided into generalized
displacement-related and unrelated forms, which are expressed
as follows:

aa = aΓa + eTmβ
1
1
€d +φaa,

ac = aΓc + eTmβ
ne
3
€d +φac,

ae = aΓe + eTm NePe + β1
1

� �
€d +φae:

ð6Þ

The attitude motion equation is the equilibrium between
the inertial moment and the external moment relative to the

Table 3: CSVS-SPP planning parameters.

No. Start time (s) End time (s) Control torque (N·m)

Section 1 0 T1/2 Ty/2

Section 2 T1/2 τ Ty

Section 3 τ τ + T1/2 Ty/2
Section 4 τ + T1/2 t2 0

Section 5 t2 t2 + T1/2 −Ty/2

Section 6 t2 + T1/2 t2 + τ −Ty

Section 7 t2 + τ t2 + τ + T1/2 −Ty/2

Table 2: Natural frequency comparison.

Modal This paper (Hz) ANSYS (Hz)

First modal (bending mode) 0.2230 0.2234

Second modal (bending mode) 0.6971 0.7054

Third modal (bending mode) 1.3431 1.3803
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center of mass of the system, and the equation is as follows:ð
A
ζa + Δa + roa + ρa

� �
× aadm +

ð
C
ζc + Δc + roc + ρc

� �
× acdm,

+〠
ne

e=1

ð
e

ζ1 + 〠
e−1

i=1
li + ρe + δe

 !
× aedm = u:

ð7Þ

The acceleration term of Equation (6) is brought into
Equation (7), and the second-order small quantity in the calcu-
lation process is omitted by using the centroid relationship of
the system, and the following results are obtained:

J oð Þ
Σ
€ϕ +HΣ

€d = u +φ
ati

−Ω× J oð Þ
Σ ⋅Ω, ð8Þ
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Figure 9: Desired attitude angular position: (a) bang-off-bang desired angular position and (b) CSVS-SPP desired angular position.
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Figure 10: Desired angular velocity: (a) bang-off-bang desired angular velocity and (b) CSVS-SPP desired angular velocity.
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where J ðoÞΣ represents the moment of inertia of the system rela-
tive to the center of mass, and the dimension is 3 × 3, andHΣ is
the cross-influence matrix. The nonlinear term is as follows:

φ
ati

= 〠
ne

e=1

ð
e

ζ×1 + 〠
e−1

k=1
l×k + ρ×

e

 !
φe
b
dm +

ð
C

ζ×
nd
+ r×oc + ρ×

c

� �
φ
a
dm

+
ð
A

ζ×1 + r×oa + ρ×
a

� �
φ
c
dm:

ð9Þ

The Lagrange equation of the second kind is used to derive
the system vibration equation as follows:

d
dt

∂E
∂d

	 

−

∂E
∂d

	 

=Q, ð10Þ

where Q is generalized force and d is generalized displacement,
that is, the displacement of each node of the beam, and the dis-

placement of each node is 6 dimensions.

d =

d1

d2

⋮

d6nd

2666664

3777775, ð11Þ

where nd is the number of nodes and E is the kinetic energy
of the system (the potential energy is implied in the generalized
forceQ). d andQ are the vectors of the same dimension, andQ
includes the elastic restoring force, damping force, and external
force. The kinetic energy of dumbbell-shaped spacecraft system
is expressed as follows:

E = Ea + Ec + 〠
ne

e=1
Ee,

Ea =
1
2

ð
A
va ⋅ vadm,

Ec =
1
2

ð
C
vc ⋅ vcdm,

Ee =
1
2

ð
e
ve ⋅ vedm,

ð12Þ
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Figure 12: Simulation results of PD control (a) angular position error of PD control, (b) angular velocity error of PD control, (c) control
torque profile of PD control, and (d) response of the first two modes.
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whereEa, Ec,andEeare the kinetic energy ofA, Candeunit,
respectively, brought into Equation (10) as follows:

ð
A

d
dt

∂va
∂ _d

⋅ va

	 

−
∂va
∂d

⋅ va

� �
dm +

ð
C

d
dt

∂vc
∂ _d

⋅ vc

	 

−
∂vc
∂d

⋅ vc

� �
dm

+ 〠
ne

e=1

ð
e

d
dt

∂ve
∂ _d

⋅ ve

	 

−
∂ve
∂d

⋅ ve

� �
dm =Q n×1ð Þ:

ð13Þ

Equation (2) is brought into Equation (13), and Q = F − h
_d − Kd; Equation (13) is arranged to get

HT
Σ
€ϕ +MΣ

€d + hΣ _d + Kd = F + φ
vib
, ð14Þ

where MΣ is the mass matrix of system, hΣ is the damping
matrix of system, hΣ _d is the damping force of system, K is
the system stiffness matrix, Kd is the system elastic restoring
force, F is the external force, and φ

vib
is the nonlinear term.

φ
vib

=
ð
A
β1T
1 φ

aa
dm +

ð
C
βneT
3 φ

ac
dm + 〠

ne

e=1

ð
e
PeTN eTφ

ae
dm:

ð15Þ

Combining attitude equation (8) and vibration equation
(14)

J oð Þ
Σ
€ϕ +HΣ

€d = u + φ
ati
,

HT
Σ
€ϕ +MΣ

€d + hΣ _d + Kd = F + φ
vib
,

ð16Þ

write in matrix form

J oð Þ
Σ HΣ

HT
Σ MΣ

" #
€ϕ

€d

" #
+

0 0
0 hΣ

" #
_ϕ

_d

" #
+

0 0
0 K

" #
ϕ

d

" #
=

u

F

" #
+

φ
ati

φ
vib

" #
:

ð17Þ

3. ARC for Dumbbell-Shaped Spacecraft

The proposed adaptive attitude controller is provided, and
the stability of the closed-loop system is proved. According
to the first equation of Equation (16), the state equation of
the dumbbell-shaped spacecraft system is as follows:

dx1
dt

= x2, ð18Þ
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Figure 13: Simulation results of DRC control: (a) angular position error of DRC control, (b) angular velocity error of DRC control, (c)
control torque profile of DRC control, and (d) response of the first two modes.

8 International Journal of Aerospace Engineering



J
dx2
dt

= u + Δ, ð19Þ

y = x1: ð20Þ

x = ½ϕ  _ϕ�T is the attitude angle and attitude angular
velocity of dumbbell-shaped spacecraft, J is unknown
moment of inertia of dumbbell-shaped spacecraft system,
and Δ represent the total uncertain nonlinear term including
nonlinear term, external disturbance, cross-influence term,
and uncertain part of model. u is the control input, and y
is the attitude, angle, and position output of the dumbbell-
shaped spacecraft.

The dumbbell-shaped spacecraft state space (Equation
(19)) can be rewritten as follows:

J
dx2
dt

= u + Δn + ~Δ, ð21Þ

where Δn is the nominal value of the total disturbance Δ and
~Δ = Δ − Δn. In order to reduce the influence of parameter
uncertainty and improve steady-state performance, online
parameter adaptation is needed. Define θ = J Δn½ �T . Equa-
tion (21) can be linearized according to unknown parame-

ters and expressed as follows:

θ1
dx2
dt

= u + θ2 + ~Δ: ð22Þ

Make the following reasonable assumptions:

Assumption 1. The degree θ of parameter uncertainty and
uncertainty nonlinearity is known:

θ ∈Ωθ ≜ θ : 0 < θmin ≤ θ ≤ θmaxf g, ð23Þ

where θmin = ½θ1 min, θ2 min�T and θmax = ½θ1 max, θ2 max�T
are known. The < symbol indicates that the corresponding
elements of two vectors perform operations.

Assumption 2. The uncertain nonlinear term ~Δ is bounded
and expressed as

~Δ ∈Ω~Δ = ~Δ : ~Δ
  ≤ δ

n o
: ð24Þ

Note 1. Unknown concentrated interference is bounded.
The magnitude and rate of vibration of flexible appendages

0.03

0.02

0.01

0

−0.01

−0.02

−0.03

−0.04

A
ng

ul
ar

 p
os

iti
on

 er
ro

r (
°)

0 50 100 150 200 250 300
Time (s)

(a) Attitude angle

A
ng

ul
ar

 v
elo

ci
ty

 er
ro

r (
°/

s)

0 50 100 150 200 250 300
Time (s)

0.01

0.005

−0.005

−0.01

−0.015

0

(b) Attitude angle error

0 50 100 150 200 250 300
Time (s)

150

100

50

−50

−100

0

C
on

tro
l t

or
qu

e (
N

m
)

(c) Control torque

Re
sp

on
se

 o
f 

fir
st 

m
od

e
Re

sp
on

se
 o

f 
se

co
nd

 m
od

e

0 50 100 150 200 250 300
Time (s)

0 50 100 150 200 250 300
Time (s)

1

−1

0

2

−2

0

×10−4

(d) Deformation

Figure 14: Simulation results of ARC control: (a) angular position error of ARC control, (b) angular velocity error of ARC control, (c)
control torque profile of ARC control, and (d) response of the first two modes.
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are bounded, and the energy of multiorder modes in
dynamic equations is finite. In addition, in practice, uncer-
tain boundaries can usually be measured or estimated.
Therefore, this assumption is reasonable.

Set xdðtÞ be the desired attitude angle trajectory of space-
craft. Assuming that it is known and bounded by the second
bounded derivative, the control objective is to synthesize
bounded control input u so that the actual position x1 is as
close xdðtÞ as possible despite various model uncertainties.

Define the synovial function as

s = _e + ce = x2 − q, q ≜ _xd − ce, ð25Þ

where e = ϕ − ϕd is the attitude angle tracking error of
dumbbell-shaped spacecraft and c is a given positive con-
stant. Solving the tracking problem of xd is equivalent to
making s as small as possible. Adaptive control rate u is
composed of adaptive compensation term ua, feedback term
us1, and robust term. The ARC schematic diagram is shown
in Figure 3, and the following control law is designed as

u = ua + us1 + us2, ð26Þ

ua = bθ _q, ð27Þ

us1 = −kss, ð28Þ
us2 = −η sign sð Þ, ð29Þ

where ks represents the positive feedback gain, ks > 0, η >D.
After taking the time derivative of s, replace _s and u with
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Figure 15: Simulation results of ARC+CSVS-SPP control: (a) angular position error of ARC+CSVS-SPP control, (b) angular velocity error
of ARC+CSVS-SPP control, (c) control torque profile of ARC+CSVS-SPP control, and (d) response of the first two modes.

Table 4: Performance indices of the four control strategies.

Control
strategy

PD DRC ARC
ARC+CSVS-

SPP

ts sð Þ 306 215 213 217

em
∘ð Þ 2:42 × 10−1 2:3 × 10−2 3:7 × 10−2 2:12 × 10−2

pm
∘ð Þ 1:42 × 10−3 1:82 × 10−5 2:56 × 10−7 1:10 × 10−7

ps
∘/sð Þ 3:45 × 10−4 5:79 × 10−6 5:05 × 10−6 2:25 × 10−6
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Equations (22) and (25), respectively, and get

θ
dx2
dt

= bθ _q − kss − η sign sð Þ + Δ, ð30Þ

where eθ = bθ − θ is parameter estimation error and bθ rep-
resents the estimated value of θ. Selection of adaptive control
law:

_bθ = −γ _qs: ð31Þ

γ > 0 is the adaptive control law matrix.
The Lyapunov function is defined as

V = 1
2 θs

2 + 1
2γ
eθ2: ð32Þ

Equations (20), (23), and (28) are taken into Equation
(30) and derived to obtain

_V = θs_s + 1
γ
eθ _eθ = s θ _x2 − €xd + c_eð Þ½ � + 1

γ
eθ _bθ

= s u + Δ − θ €xd − c_eð Þ½ � + 1
γ
eθ _bθ = s eθ €xd − c_eð Þ − kss − ηsign sð Þ + Δ

h i
+ 1
γ
eθ _bθ

= −kss
2 − sj jη + sΔ + eθ s €xd − c_eð Þ + 1

γ
_bθ� �
:

ð33Þ

Substituting the adaptive control law (29),

_V = −kss
2 − η sj j + sΔ < −kss

2 ≤ 0: ð34Þ

Because if and only when s = 0, _V = 0. That is, when _V
≡ 0, s ≡ 0. According to the LaSalle invariance principle,
the closed-loop system is asymptotically stable; that is, when
t⟶∞, s⟶ 0. The rate of convergence of the system
depends on ks. Because V ≥ 0 and _V ≤ 0, then when t⟶

∞, V is bounded. It can be proved that bθis bounded, but
there is no guarantee that bθ is converged to θ. In order to
prevent the control input signal uðtÞ from being too large

due to too large of bθ , it is necessary to make the change ofbθ within the range θmin θmax½ � through the design of the
adaptive control law. A discontinuous projection mapping
adaptive algorithm can be used to modify the Equation (34).

3.1. Projection Mapping. An adaptive robust design based on
discontinuous projection is constructed to solve the robust
tracking control problem by exploiting physically plausible
information, such as the bounds of parameter changes and

internal friction states. The parameter estimated value bθ is
updated by a parameter adaptive control law having the fol-
lowing form:

_bθ = Projbθ Γτð Þ, ð35Þ

where Γ represents the adaptation rate matrix and τ is
the adaptive function.

The projection mapping of Equation (35) is

Projbθ ⋅ð Þ =
0 if bθ = θmax and ⋅ >0,

0 if bθ = θmin and ⋅ <0,
⋅ otherwise,

8>><>>:
P1 bθ ∈ �Ωθ = bθ : θmin ≤ bθ ≤ θmax

n o
,∀t,

P2eθT Γ −1Projbθ Γτð Þ − τ
h i

≤ 0,∀τ:

ð36Þ

When bθ exceeded the maximum value, if there is a trend

of continuing to increase, that is
_bθ > 0, the value bθ remains

unchanged, that is,
_bθ = 0; when bθ exceeded the minimum

value, if there is a tendency to continue to decrease, that is,
_bθ < 0, the value bθ remains unchanged, that is,

_bθ = 0.

4. CSVS-SPP

Because the flexible beam of dumbbell-shaped spacecraft
easily vibrates during large-angle attitude maneuver, attitude
path planning for dumbbell-shaped spacecraft is carried out.
Firstly, for large-angle attitude maneuver, the time-fuel opti-
mal control strategy is adopted to plan the parameters of
control torque (size, shape, action duration, action moment,
etc.). If vibration suppression is not considered, the optimal
solution of rest-to-rest is the switching function of bang-off-
bang. The attitude maneuver program that can complete the
specified angle is found first. Then, bang-off-bang is used to
introduce the active vibration suppression method of force
component synthesis, so that the maneuver process can
reach the specified attitude angle without suppressing
vibration.

4.1. Time-Fuel Optimal Control.When considering the time-
fuel optimal maneuver, the cost function is as follows:

Φ =
ð
kt + kf u fj j� �

dt, ð37Þ

where kt is the time weight coefficient, kf is the fuel
weight coefficient, and u is the control ability, u = Tm/J . J
is the moment of inertia value, and f is the step function.
According to the optimization theory, the time-fuel optimal
solution of the rest-to-rest motion of the system is in bang-
off-bang form as shown in Figure 4, and this instruction can
be expressed as

ð38Þ

where Ai is the torque amplitude, but ti is the moment
when the torque changes, and Tm is the maximum control
torque. The duration of control torque τ and the occurrence
time t2 of deceleration command are determined by time
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weight coefficient, fuel weight coefficient, and maneuver
angle θf .

τ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ktθf
u kt + 2ukf
� �s

, t2 =
θf
uτ

: ð39Þ

4.2. CSVS Design Principles. First, consider the undamped
vibration system as follows:

€x + ω2x = f tð Þ: ð40Þ

4.2.1. CSVS Theorem 1. For an undamped second-order sys-
tem with zero initial condition (Equation (40)), if the vibration
period is divided into n equal parts and the same component
force is applied at the starting point of each equal part or at
the period difference of integer times from the starting point,
the system will move without vibration after all the forces are
finished.

4.2.2. CSVS Theorem 2. For an undamped second-order sys-
tem with zero initial condition (Equation (40)), if the m vibra-
tion periods p of the system are equally divided (m and p
coprime) and the same component force is applied at the start-
ing point of each equal division or an integer multiple period
difference from the starting point, the system will move without
vibration when all the forces are finished.

Prove as follows:

The special solution response to step force f ðtÞ =

0, t < 0
a, t ≥ 0

(
is

x tð Þ = a
ω

ðt
0
sin ω t − ξð Þ½ �dξ = a

ω2 1 − cos ωtð Þ: ð41Þ

Figure 5 shows the superposition response of two equal
amplitude step forces; a is the step amplitude, applied at t = 0
and t = T/2. The responses of the two-step forces are cosine
curves (Equation (41)). The response of the second step force
cancels out the response of the first force, so that the response
of the whole force is constant 2a/ω2 after half period.

4.3. Component Synthesis Vibration Suppression Method-
Seven-Section Path Planning (CSVS-SPP). Based on CSVS
method, the set attitude maneuver force is shown in Figure 6,
and the time history of angular velocity is shown in Figure 7.
The 7 sections are accelerated A1, accelerated A2, accelerated
A3, uniform B, decelerated C1, decelerated C2, and decelerated
C3. This method is called component synthesis vibration sup-
pression method-seven-section path planning (CSVS-SPP).
The angular acceleration of the acceleration section is 3 normal
numbers, of whichaA2

= 2aA1
= 2aA3

. The angular acceleration
of deceleration section is three constants opposite to that of
acceleration section, and aC2

= 2aC1
= 2aC3

, and aA2
= −aC2

;
the angular acceleration in the uniform velocity section B is
zero.

5. Simulation and Analysis

First, the key technical parameters of dumbbell-shaped space-
craft are provided with reference [6], and the parameters are
shown in Table 1. Section 5.1 verifies the correctness of the
dumbbell-shaped spacecraft dynamic model. In Section 5.2,
the simulation results of the desired attitude tracking response
control are provided, and the simulation results of PD, DRC,
and ARC are analyzed.

5.1. Model Validation. The natural frequencies and modes cal-
culated by the dynamic modeling method are compared with
ANSYS software, and the effectiveness of the dumbbell-
shaped spacecraft dynamic model is verified. In the dynamic
simulation, the first six bendingmodes are considered, and their
formations are shown in Figure 8, and their natural frequencies
are shown in Table 2.

Through the comparative analysis of the formation and the
first six orders of ANSYS, it can be seen that the formation trend
is consistent. The active module and nuclear reactor are
included in this paper. Table 1 shows that the frequency calcu-
lation is accurate. The correctness of the dynamic model in this
paper is fully proved.

5.2. Designed Attitude Angle Position. The flexible spacecraft
is intended to perform 90° large-angle attitude maneuver. From
the initial state of 0° to the desired attitude angle of 90°, both the
initial and desired attitude angular velocities are 0°/s. According
to the first-order frequency ω1 = 0:2230Hz, the calculated
period is T1 = 4:4846s, the BCB time planning parameters are
τ = 22:9211s and t2 = 189:0761s, and the CSVS-SPP time plan-
ning parameters are shown in Table 3.

The bang-off-bang and the CSVS-SPP planning angular
position are shown in Figure 9.

The desired attitude angle of bang-off-bang is divided into
three sections: acceleration section A, uniform section B, and
deceleration section C. The desired attitude angle of CSVS-
SPP is divided into seven sections; the acceleration is A1, A2,
and A3; the uniform velocity section B; and the deceleration
sections are C1, C2, and C3.The desired angular velocities for
both methods are shown in Figure 10.

The control of the bang-off-bang is shown in Figure 11(a),
and the control of the CSVS-SPP is shown in Figure 11(b).
Comparing the vibration of the twomethods, it can be seen that
the energy and time of CSVS-SPP are the same as those of
bang-off-bang, but the amplitude of vibration is obviously
reduced, which is of great significance to the attitude accuracy
and stability of spacecraft.

5.3. Simulation Results. Comparative analysis of four control
strategies:

(1) PD+BCB: PD control law is u = −kpe − kd _e, control
gain selection kp = 500, kd = 220

(2) DRC+BCB: the DRC control rate is Equation (24);
the parameters are c = 30, ks = 80, and η = 2:01. The
initial parameter estimation is bθ = J 0½ �; the inter-
ference term is Δ = 0:5 sign ðtÞ, γ = 300
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(3) ARC+BCB: other parameters are the same as the
above parameters, among which θmin =
0:8J −0:1½ �, θmax = 1:2J 0:1½ �

(4) ARC+CSVS-SPP: other parameters are the same as
the above parameters, in which the target path
parameters of the trajectory are Tu = 4:4846s, τ =
22:9211s, t2 = 189:0761s, and ac = 0:01∘/s2

To measure the quality of each control strategy, the follow-
ing performance metrics will be considered: (1) settling time ts,
the time and measured velocity it takes for the single-axis atti-
tude angular position and velocity errors to converge to 1 ×
10−2∘and 1 × 10‐2∘/s; (2) peak error em, the maximum absolute
value of the single-axis attitude angle position error to evaluate
the transient performance; (3) aiming accuracy pm refers to the
root mean square value of the single-axis attitude angle position
error between 250 and 300 s, as the final measure metrics to
track performance; and (4) degree of stability ps. The root mean
square value of the single-axis attitude angular velocity error of
100~200 s is used to measure the steady-state performance.

The simulation results of PD-controlled large-angle atti-
tude maneuver are shown in Figure 12. It can be seen from
Figures 12(a) and 12(b) that the PD controller needs to exe-
cute 306 s to make the attitude angular position and attitude
angular velocity error of the dumbbell-shaped spacecraft less
than the set 1 × 10 − 2° and 1 × 10 − 2°/s. It is obvious that
the attitude angular position of the dumbbell-shaped space-
craft has a stable steady-state error. Figure 12(c) is the con-
trol torque curve. It is evident from Figure 12(d) that the
higher-order vibrations of the modes are not excited.

Figure 13 is the simulation result of DRC. It can be seen
from Figures 13(a) and 13(b) that the DRC controller needs
to execute 215 s to control the attitude angular position and atti-
tude angular velocity errors of the dumbbell-shaped spacecraft
within the required range, and the attitude angular position
has a small static steady-state error. Compared with the PD
control, the steady-state time ts is much smaller than the PD
controller. The peak error is an order of magnitude smaller.
The aiming accuracy pm and degree of stability ps are, respec-
tively, two orders of magnitude smaller than those of the PD
controller. The overall performance index is better than the
PD controller. From the perspective of vibration, the vibration
values of PD control and DRC control are larger.

For the simulation analysis of ARC control, when using
ARC to control the large-angle attitude maneuver of the
dumbbell-shaped spacecraft, the angular position and veloc-
ity errors are shown in Figures 14(a) and 14(b). It can be
seen that ARC has higher control precision than DRC and
PD control. However, there is no significant steady-state
error in the angular position because of ARC adjustable
model compensation. Steady-state error and residual vibra-
tion suppression are required. Therefore, the ARC+CSVS-
SPP is adopted below to improve ARC.

Finally, the combined method of ARC+CSVS-SPP is
used to realize the large-angle attitude maneuver and active
vibration suppression of the dumbbell-shaped spacecraft.
The simulation results are shown in Figure 15. It can be seen

from Figures 15(a) and 15(b) that the time required to
achieve the control accuracy is 217 s, which is similar to
DRC and ARC, and the peak error em is smaller than the
other three controllers. Aiming accuracy and degree of sta-
bility are also significantly better than ARC. The specific
parameters are shown in Table 4. Therefore, the following
conclusions can be drawn: the controller constructed by
the ARC+CSVS-SPP can meet the requirements of large-
angle attitude maneuvers for dumbbell-shaped spacecraft.

The simulation results of the above performance indica-
tors are shown in Table 4. From the perspective of the per-
formance index steady-state time ts, the PD controller does
not perform well in terms of fast response. The other three
control strategies are similar, but significantly better than
the PD controller. For the performance index peak error
em, DRC, ARC, and ARC+CSVS-SPP are all reduced by an
order of magnitude compared with PD control. In addition,
compared with PD control and DRC control, the aiming
accuracy pm of ARC and ARC+CSVS-SPP is improved by
4 orders of magnitude and 2 orders of magnitude, respec-
tively. In conclusion, the proposed ARC+CSVS-SPP control
strategy has good results in transient performance, final
tracking performance, and steady-state performance.

6. Conclusion

Aiming at the large-angle and fast attitude maneuver of
dumbbell-shaped spacecraft, an active vibration suppression
technology based on ARC and CSVS-SPP is proposed. The
desired angular position of the spacecraft is planned by the
proposed CSVS-SPP, and the attitude angular position is
divided into seven sections. Compared with the traditional
BCB method, the vibration of the aircraft can be effectively
suppressed. The ARC attitude controller can simultaneously
consider the uncertainty of the rotational inertia of the flex-
ible spacecraft and externally induced disturbances. The
ARC+CSVS-SPP controller guarantees the specified tran-
sient performance as well as steady-state performance. The
simulation results show that in the presence of external dis-
turbance and parameter uncertainty, the attitude maneuver-
ing and vibration suppression of ARC+CSVS-SPP are better
than PD control and DRC control.

Data Availability

The raw/processed data required to reproduce these findings
cannot be shared at this time due to technical or time
limitations.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] A. S. Koroteev, Y. A. Oshev, S. A. Popov et al., “Nuclear power
propulsion system for spacecraft,” Thermal Engineering,
vol. 62, no. 13, pp. 971–980, 2015.

[2] J. Zhang, S. Lu, and L. Zhao, “Modeling and disturbance sup-
pression for spacecraft solar array systems subject to drive

13International Journal of Aerospace Engineering



fluctuation,” Aerospace Science and Technology, vol. 108, arti-
cle 106398, 2021.

[3] Z. Ma, Z. Liu, H. Zou, and J. Liu, “Dynamic modeling and
analysis of satellite detumbling using a brush type contactor
based on flexible multibody dynamics,” Mechanism and
Machine Theory, vol. 170, article 104675, 2022.

[4] H. Zhang, H. Liu, and D. Li, “Study of dynamics simulation on
large space deployable membrane structures,” Chinese Journal
of Space Science, vol. 38, no. 1, pp. 101–108, 2018.

[5] D. A. Litvinov, N. V. Nunes, A. I. Filetkin et al., “The antenna
phase center motion effect in high accuracy spacecraft tracking
experiments,” Advances in Space Research, vol. 68, no. 10,
pp. 4274–4291, 2021.

[6] B. Wang, Z. Liu, and P. Zheng, “Rigid-flexible coupling
dynamic modeling and analysis of dumbbell-shaped space-
craft,” Aerospace Science and Technology, vol. 126, p. 107641,
2022.

[7] E. I. Abouelmagd, J. L. G. Guirao, and J. A. Vera, “Dynamics of
a dumbbell satellite under the zonal harmonic effect of an
oblate body,” Communications in Nonlinear Science and
Numerical Simulation, vol. 20, no. 3, pp. 1057–1069, 2015.

[8] E. I. Abouelmagd, J. L. G. Guirao, A. Hobiny, and F. Alzahrani,
“Stability of equilibria points for a dumbbell satellite when the
central body is oblate spheroid,” Discrete and Continuous
Dynamical Systems - Series S, vol. 8, pp. 1047–1054, 2015.

[9] Z. Liang and F. Liao, “Periodic solutions for a dumbbell satel-
lite equation,” Nonlinear Dynamics, vol. 95, no. 3, pp. 2469–
2476, 2019.

[10] K. Shi, C. Liu, Z. Sun, and X. Yue, “Coupled orbit-attitude
dynamics and trajectory tracking control for spacecraft elec-
tromagnetic docking,” Applied Mathematical Modelling,
vol. 101, pp. 553–572, 2022.

[11] C. Liu, Z. Sun, D. Ye, and K. Shi, “Robust adaptive variable
structure tracking control for spacecraft chaotic attitude
motion,” IEEE Access, vol. 6, pp. 3851–3857, 2018.

[12] G. Shan, L. You, X. Huifeng, and Y. ShuYue, “Dynamic sliding
mode controller with variable structure for fast satellite atti-
tude maneuver,” Mathematical Problems in Engineering,
vol. 2021, Article ID 5539717, 11 pages, 2021.

[13] C. Liu, X. Yue, J. Zhang, and K. Shi, “Active disturbance rejec-
tion control for delayed electromagnetic docking of spacecraft
in elliptical orbits,” IEEE Transactions on Aerospace and Elec-
tronic Systems, vol. 58, no. 3, pp. 2257–2268, 2022.

[14] M. N. Hasan, M. Haris, and S. Qin, “Vibration suppression
and fault-tolerant attitude control for flexible spacecraft with
actuator faults and malalignments,” Aerospace Science and
Technology, vol. 120, article 107290, 2022.

[15] S. Yang, J. Han, L. Xia, and Y. H. Chen, “An optimal fuzzy-
theoretic setting of adaptive robust control design for a lower
limb exoskeleton robot system,” Mechanical Systems and Sig-
nal Processing, vol. 141, article 106706, 2020.

[16] H. Sun, Y.-H. Chen, and H. Zhao, “Adaptive robust control
methodology for active roll control system with uncer-
tainty,” Nonlinear Dynamics, vol. 92, no. 2, pp. 359–371,
2018.

[17] S. Qinqin, W. Xiuye, and C. Ye-Hwa, “Adaptive robust control
for dual avoidance–arrival performance for uncertain mechan-
ical systems,” Nonlinear Dynamics, vol. 94, no. 2, pp. 759–774,
2018.

[18] S. Roy and I. N. Kar, Adaptive-Robust Control with Limited
Knowledge on Systems Dynamics, Springer, Singapore, 2020.

[19] Z. Yu, Y. Guo, L. Wang, and L. Wu, “Adaptive robust attitude
control and active vibration suppression of flexible spacecraft,”
Proceedings of the Institution of Mechanical Engineers Part G
Journal of Aerospace Engineering, vol. 231, no. 6, 2017.

[20] Z. Yu, Y. Guo, L. Wang, and L. Wu, “Adaptive robust attitude
control and active vibration suppression of flexible spacecraft,”
Proceedings of the Institution of Mechanical Engineers, Part G:
Journal of Aerospace Engineering, vol. 231, no. 6, pp. 1076–
1087, 2017.

[21] C. Liu, X. Yue, K. Shi, and Z. Sun, “Inertia-free attitude stabi-
lization for flexible spacecraft with active vibration suppres-
sion,” International Journal of Robust and Nonlinear Control,
vol. 29, no. 18, pp. 6311–6336, 2019.

[22] Y. S. Hamed, K. M. Albogamy, and M. Sayed, “Nonlinear
vibrations control of a contact-mode AFM model via a time-
delayed positive position feedback,” Alexandria Engineering
Journal, vol. 60, no. 1, pp. 963–977, 2021.

[23] T. Rybus, M. Wojtunik, and F. L. Basmadji, “Optimal
collision-free path planning of a free-floating space robot using
spline-based trajectories,” Acta Astronautica, vol. 190,
pp. 395–408, 2022.

[24] Y. Kim, W. Jung, and H. Bang, “Real-time path planning to
dispatch a mobile sensor into an operational area,” Informa-
tion Fusion, vol. 45, pp. 27–37, 2019.

[25] Y. Hu, B.Wu, Y. Geng, and Y.Wu, “Smooth time-optimal atti-
tude control of spacecraft,” Proceedings of the Institution of
Mechanical Engineers, Part G: Journal of Aerospace Engineer-
ing, vol. 233, no. 7, pp. 2331–2343, 2019.

[26] X. Zhang, X. Zhang, Z. Lu, and W. Liao, “Optimal path
planning-based finite-time control for agile CubeSat attitude
maneuver,” IEEE Access, vol. 7, pp. 102186–102198, 2019.

[27] L. Zheng, Y. Guo, and A. Lai, “Path planning for large angle
attitude maneuver of flexible spacecraft,” Journal of Huazhong
University of Science and Technology, vol. 39, pp. 232–234,
2011.

14 International Journal of Aerospace Engineering


	Adaptive Robust Control and Active Vibration Suppression of Dumbbell-Shaped Spacecraft
	1. Introduction
	2. Dynamic Model of Dumbbell-Shaped Spacecraft
	3. ARC for Dumbbell-Shaped Spacecraft
	3.1. Projection Mapping

	4. CSVS-SPP
	4.1. Time-Fuel Optimal Control
	4.2. CSVS Design Principles
	4.2.1. CSVS Theorem 1
	4.2.2. CSVS Theorem 2

	4.3. Component Synthesis Vibration Suppression Method-Seven-Section Path Planning (CSVS-SPP)

	5. Simulation and Analysis
	5.1. Model Validation
	5.2. Designed Attitude Angle Position
	5.3. Simulation Results

	6. Conclusion
	Data Availability
	Conflicts of Interest

